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ABSTRACT Deepfakes pose an evolving cybersecurity threat that calls for the development of automated
countermeasures. While considerable forensic research has been devoted to the detection and localisation of
deepfakes, solutions for ‘fake-to-real’ reversal are yet to be developed. In this study, we introduce the concept
of cyber vaccination for conferring immunity to deepfakes. In other words, we aim to impart a self-healing
ability to the face-containing media so that the original content can be recovered after manipulation by
AI-based deepfake technology. Analogous to biological vaccination which uses injected antigens to induce
immunity prior to infection by an actual pathogen, cyber vaccination simulates deepfakes and performs
adversarial training to build a defensive immune system. Aiming to build up attack-agnostic immunity with
limited computational resources, we propose simulating various deepfakes with one single overpowering
attack: face masking. The proposed immune system consists of a vaccinator for inducing immunity and a
neutraliser for recovering facial content. Experimental evaluations demonstrate effective immunity to face
replacement and various types of corruption.

INDEX TERMS Cybersecurity, deepfakes, forensics, immunity, vaccine.

I. INTRODUCTION
Deepfakes, as an emergent cyber-security threat, leverage
artificial intelligence and machine learning to create syn-
thetic media. This technology is proving a double-edged
sword: facilitating innocent entertainment, but also entailing
insidious ramifications to the economy, politics and society,
including but not limited to market manipulation, electoral
influence, nonconsensual pornography, defamatory accusa-
tion, evidence fabrication and identity fraud. As the saying
goes, ‘seeing is believing’, and this natural human tendency
fuels the spread of disinformation posed by deepfakes. The
widespread use and rapid advancement of deepfakes present
an evolving challenge to develop countermeasures to enable
us to tell fact from fiction [1].

While the term deepfake has been generalised to refer
to a broad range of synthetic media nowadays, we focus
on one main category that arouses major public con-
cern—facial manipulation [2]. In general, the defence against
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manipulation centres around three fundamental (step-by-
step) tasks: detection, localisation and restoration, as illus-
trated in Figure 1. Computational forensics has offered
fruitful outcomes for detecting whether a given image has
been tampered with by deepfake algorithms [3], [4], [5], [6]
and for further localising the fake parts [7], [8], [9], [10].
However, solutions for reversing the fraudulent content are
yet to be developed. Unlike detection and localisation which
can rely on passive diagnostics (observation of abnormality in
media after attack), reliable restoration often requires active
precautions before the media becomes exposed to public
cyberspace, as illustrated in Figure 2. In digital communi-
cations, for instance, error correction codes are used as an
active precaution to protect a message prior to transmission
over a noisy channel. Vaccination, as another example from
medicine, injects antigens to trigger an immune response
within the body, thereby inducing protective immunity prior
to infection by an actual pathogen. These precautionary
measures make it possible to restore the original state after the
attacks take place. On top of this, the restored content can also
serve as a reference for deepfake detection and localisation.
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FIGURE 1. Aims of cyber forensics: detection, localisation, restoration.

Adversarial training, similar to the notion of pathogen-
specific vaccination, is an intuitive approach combating
security vulnerabilities [11], [12], [13]. It is performed by
training models in the presence of simulated adversaries so
that the computationalmodels, similar to a biological immune
system, learn to defend themselves against future attack.
While adversarial training can be a potential solution, there
are a number of inherent limitations. First of all, preparation
and execution of a wide variety of deepfake algorithms can
be expensive in terms of (computational) time and resources.
On top of this, a vaccine against one specific pathogen
typically cannot protect against another, except when the
two are very similar. However, deepfakes, as a type of cyber
virus, evolve over time, and it is virtually impossible to take
every possibility into consideration in practice. For real-world
applications, it is important to pursue the capability to defend
against various (even unforeseen) attacks, sometimes referred
to as attack agnosticism.

The contributions of this study are summarised as follows.
• As far as we are aware, this is one of the first studies to
address the problem of deepfake restoration. Revealing
the original media content can provide useful forensic
clues to combat cyber crimes.

• A novel framework of a cyber immune system based
on neural networks is proposed for automatic immunity
acquirement. It consists of a vaccinator for inducing
immunity, a neutraliser for recovering facial content,
a validator for distinguishing between vaccinated and
unvaccinated media, and an adversary for simulating
deepfakes.

• An attack-agnostic method is developed based on face
masking. Instead of exhausting every possible kind of
deepfake, we consider a single overwhelming adversary
model, the masked-face model, in an attempt to build
up attack-agnostic capability with limited computational
resources.

II. PRELIMINARIES
The battle between the attacker and the defender is never-
ending. To pave the way for the development of further
countermeasures, we introduce basic concepts and review
relevant literature regarding deepfakes.

A. ATTACK
The term ‘deepfake’, a portmanteau of deep learning and fake
media, is considered to have originated from an anonymous

FIGURE 2. Types of defence: passive and active. Passive defence
responds solely after the occurrence of attacks, whereas active defence
takes precautions before being compromised.

user named ‘deepfakes’ who posted face-swap videos on
a social media platform. Face replacement, as the very
first example of deepfakes, creates convincing face-swap
videos using an auto-encoder model, which consists of a
shared encoder and two decoders for two respective identities
(source and target), as illustrated in Figure 3. An auto-
encoder is a class of neural network model that uses an
encoder to reduce data dimensionality, or to project data
into a compact latent space, and a decoder to reconstruct
data from the latent features. This process mimics squeezing
information through a bottleneck, thereby retaining useful
information for prediction. A heuristic idea of the face-swap
auto-encoder is that the shared encoder learns to extract
features such as facial expressions and poses, whereas each
decoder learns to use such features along with invariant
features of the corresponding identity to reconstruct the
video frame. Once trained, the synthetic source frames are
generated by passing the target frames through the shared
encoder, while reconstructing the video frames with the
decoder of the source identity. A face-swap video is then
produced by blending the face region in the synthetic source
frames with non-face region in the target frames.

Another example of deepfake is referred to as face
reenactment, which turns an identity into a virtual puppet.
As the name suggests, this technique manipulates a target
individual’s facial movements such as expression [14], [15],
[16], gaze [17], [18], [19], and head-pose [20], [21], [22],
[23], [24]. Mouth reenactment, also known as lip synchro-
nisation, matches a target’s lip movements with a vocal
audio track [25], [26], [27], [28]. Facial editing or retouching
is also a common form of deepfake manipulation that
alters the appearance of a target, usually for entertainment
[29], [30], [31].

B. DEFENCE
Deepfake artefacts may appear subtle to the human eye, but
can often be detected by forensic analysis. For instance,
the blending boundary may leave detectable imperfections
[32], [33], [34], [35], [36]. Generative deepfake models may
also leave statistically identifiable patterns [37], [38], [39].
For deepfake video sequences, temporal inconsistencies are
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FIGURE 3. Deepfake autoencoder for face replacement.

recognisable features [40], [41], [42]. In addition to this, the
mismatch of facial landmarks in the face synthesis process
can result in an inconsistency in head poses (orientation
and position) [43]. Camera fingerprints can also provide
clues for distinguishing deepfakes from authentic videos [44].
For audio-to-video synchronisation, there may be anomalous
mismatches between the visemes (mouth shapes) and the
spoken phonemes (utterances) [45], [46], [47]. Biometric
liveness detection is another approach that monitors, for
example, irregular eye blinking patterns [48]. To yield
further forensic clues, certain methods involve training neural
networks to localise the tampered-with areas [49], [50], [51].

III. METHODOLOGY
We begin with a fundamental conceptual model of cyber
vaccination and discuss the limitations of a natural solution.
We then present the proposed solution as well as the
procedures for building an immune system.

A. DEEPFAKE SAMPLING
Cyber vaccination can be viewed as a form of communi-
cations. A communication system typically consists of an
encoder (at the source) and a decoder (at the destination)
[52]. The goal is to accurately transmit a message from
the source to the destination over a noisy channel with
the help of an encoder/decoder pair. As the communication
system employs this pair consisting of an encoder and
decoder for error correction, the cyber vaccination system
has a corresponding pair consisting of a vaccinator and
neutraliser for manipulation reversal. It is possible to train
a pair of neural networks jointly with an attack model in
the middle. Random sampling of attack models during the
training process may lead to adaptability to various hostile
conditions. However, there are a number of challenges that
may limit the practicality of this approach.

From an engineering standpoint, it is difficult to construct
a universal deepfake toolkit containing diverse attack models.
Impediments to constructing a universal toolkit include, but

are not limited to, different input requirements (e.g. photo
size, face position, portrait composition, auxiliary data),
different levels of generalisability (i.e. identity-specific or
identity-agnostic) and different pre/post-processing proce-
dures. In addition to this, different attack models would
cause very different degrees and forms of distortion (e.g.
face reenactment and face replacement) and therefore it
is arguable whether the training loss can converge within
a reasonable time frame. Furthermore, it is a formidable
challenge to prove that in-the-lab vaccines can reliably
protect against in-the-wild virus variants.

B. FACE MASKING
To overcome these issues, neither restricting ourselves by
focusing on a limited number of deepfake algorithms nor
exhausting all possibilities, we attempt to consider a single
attack model. It should be identity-agnostic and able to
be executed in real time. Most importantly, addressing this
fatal type of attack implies addressing a variety of types of
deepfake attack. A common factor for nearly all deepfake
manipulations is that the face region becomes untrustworthy
to a greater or lesser extent. As an extreme case, face
masking can be an ideal attack model that satisfies all the
aforementioned requirements.

If we mask out the face region and attempt to reconstruct
it based on the rest of the context information, this becomes
an image inpainting problem [53], [54], [55]. Although
one could expect a plausible and realistic reconstruction
of the missing parts, the original content cannot be recov-
ered with absolute certainty in most cases. If we permit
imperceptible modifications prior to face masking, we can
apply steganographic algorithms to embed the reconstruction
information about the face region into the non-face region.
Nonetheless, this steganographic solution (also referred
to as self-embedding) often requires non-trivial manual
adjustments of parameters when put into practice [56], [57],
[58], [59], [60], [61]. Consider that steganographic capacity
is limited under an embedding distortion constraint. For
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FIGURE 4. Cyber immune system using a vaccinator and neutraliser pair for deepfake restoration.

FIGURE 5. U-shaped backbone network architecture for vaccinator and
neutraliser.

controlling the amount of data to be embedded below the
capacity limit, one may apply source coding to compress the
data, which involves a trade-off between code efficiency and
reconstruction quality. Consider further that digital images
may be processed by a wide range of transformations in
blurriness, brightness, contrast, saturation, hue, etc. Due to
the fragility of steganography, one may apply channel coding
to correct errors to ensure reliable data extraction, which
involves a trade-off between code redundancy and correction
capability. Moreover, some content-dependent algorithmic
parameters may need to be optimised for each individual
image. While there are learning-based steganographic meth-
ods aiming to embed messages in an automatic and robust

manner [62], [63], [64], the message is usually assumed to
be a sequence of random binary digits or a secret image and
the location of the hidden information cannot be specified.
In our context, the message is the face region of the portrait
image itself and the location of hidden information is the non-
face region. Synchronisationmay also be a problem if the face
region detected at the encoder side is inconsistent with that at
the decoder side.

C. CYBER IMMUNE SYSTEM
Machine learning forges a path to be (mostly) free from
manual intervention in parameter configurations. Consider
the transmission of a portrait image between a vaccinator
and a neutraliser over a face masking channel. Both
vaccinator and neutraliser are neural networks and the goal
is to preserve the quality of the vaccinated image while
ensuring the quality of the neutralised image. Our idea is
to embed the information about the face region into the
non-face region through imperceptible modification, similar
to the steganographic approach. Nonetheless, we do not
need to explicitly specify the information to be embedded,
nor its location. In addition to this, we need to be able
to distinguish between the vaccinated and unvaccinated
objects. Furthermore, robustness against common image
processing operations would be an appealing feature in
practice. Both vaccination and neutralisation are composed
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FIGURE 6. Visualisation of residuals between unvaccinated and
vaccinated image samples.

of pre-processing, mid-processing and post-processing steps,
as illustrated in Figure 4. In our implementation, we use
the U-Net as the backbone network architecture [65],
as illustrated in Figure 5.

1) VACCINATION
Given video footage or a still image, a preliminary procedure
is to detect the face region (with any available face detection
algorithms), crop a portrait (for each video frame) and
resize it to meet the input resolution specification (e.g.
64 × 64 pixels), leaving aside the case of multiple faces per
image for simplicity. The pre-processing step of vaccination
prepares a mask by detecting facial landmarks with off-the-
shelf face alignment algorithms and assigning binary digits
to pixels inside/outside the face contour. The mid-processing
step inputs both portrait and mask into the vaccinator and
obtains a raw output. The post-processing step produces the
vaccinated portrait by substituting the face region of the raw
output with that of the original portrait according to the
mask. The vaccinated portrait is required to be similar to
the original portrait. Since the face region is replaced in the
post-processing step, the vaccination process is allowed to
introduce imperceptible perturbations only to the non-face
region. In this way, the vaccinator can automatically learn to
embed the information about the face region into the non-face
region. Figure 6 visualises the residuals (differences) between
the unvaccinated and vaccinated portraits.

2) NEUTRALISATION
The pre-processing step of neutralisation process prepares a
mask and uses it to mask out the face region of the given
portrait, which can be either vaccinated or unvaccinated.

Algorithm 1 Training (Cyber Immune System)
Input: x◦ ∈ D ▷ image from dataset
Output: [Vaccinator,Neutraliser]

▷ vaccination
m = MaskDetector(x◦) ▷ pre-proc.
xraw• = Vaccinator(x◦,m) ▷ mid-proc.
x• = xraw• ·m+ x◦ · m̄ ▷ post-proc.
Limp = Distance(x•, x◦) ▷ loss

▷ neutralisation
mrnd

= RandomAffine(m) ▷ pre-proc.
xrnd• = RandomTransform(x•) ▷ augmentation
▷ vaccinated case
yraw• = Neutraliser(xrnd• ,mrnd) ▷ mid-proc.
y• = yraw• ·mrnd

+ x• · m̄rnd
▷ post-proc.

Lrev = Distance(y•, x◦) ▷ loss
▷ unvaccinated case
yraw◦ = Neutraliser(x◦,mrnd) ▷ mid-proc.
y◦ = yraw◦ ·mrnd

+ x◦ · m̄rnd
▷ post-proc.

Lval = Distance(y◦, x◦ · m̄rnd) ▷ loss

▷ back-propagation
L = Limp + Lrev + Lval ▷ loss
Backprop(L, [Vaccinator,Neutraliser]) ▷ update

Algorithm 2 Inference (Vaccination)
Input: x◦ ▷ image (unvaccinated)
Output: x• ▷ image (vaccinated)
m = MaskDetector(x◦) ▷ pre-proc.
xraw• = Vaccinator(x◦,m) ▷ mid-proc.
x• = xraw• ·m+ x◦ · m̄ ▷ post-proc.

Algorithm 3 Inference (Neutralisation)
Input: x ▷ image (attacked/not; vaccinated/not)
Output: y ▷ image (neutralised)
m = MaskDetector(x) ▷ pre-proc.
yraw = Neutraliser(x · m̄,m) ▷ mid-proc.
y = yraw ·m+ x · m̄ ▷ post-proc.

In the actual inference stage, the face region of the given por-
trait may be manipulated by arbitrary deepfake algorithms,
which will cause slight misalignment of facial landmarks
in the neutralisation process. During the training stage, it is
unnecessary to involve deepfake algorithms because this
kind of misalignment can be simulated by applying random
affine (geometric) transformations to the mask generated
in the vaccination process. We also apply random colour
transformations to reinforce robustness against common
image distortions. Themid-processing step inputs themasked
portrait along with the mask into the neutraliser and yields a
raw output. The post-processing step merges the face region
of the raw output into the masked portrait, resulting in the
neutralised portrait. We require the neutralised portrait to
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FIGURE 7. Comparison between neutralised image samples with and without vaccination. Numerical data denotes latent-space cosine
similarity.

FIGURE 8. Evaluation of imperceptibility and reversibility.

be similar to the original portrait. Since the vaccinator and
neutraliser neural networks are trained in a joint manner,
the neutraliser learns to use the information embedded
imperceptibly in the non-face region to reconstruct the face
region.

3) LOSS FUNCTIONS AND VALIDATION
Loss functions are essential for training neural networks.
For cyber vaccination, we aim to achieve imperceptibility,
reversibility and validatability. We evaluate imperceptibility
by the similarity between the non-face region of the vacci-
nated image and that of the original image, and reversibility
by the similarity between the face region of the neutralised
image and that of the original image. There are several

feasible ways of imparting validatability to the system and
one viable option is to make the neutraliser unresponsive
to the unvaccinated input. In other words, the output is
expected to remain a masked portrait when unvaccinated.
It can then be identified effortlessly with the naked eye
or automatically with a data-driven visual classifier. Let x◦

and x• denote unvaccinated and vaccinated images, and y◦
and y• their neutralised counterparts respectively. Also let m
denote a mask where the face region is assigned as 1 and
the non-face region as 0. Its inverse is denoted by m̄ where
the binary assignment is opposite. Note that in practice it is
not necessary that the mask be composed of binary digits
but rather of real numbers with soft edges to provide a
smoother blending effect. The loss function for optimising
both vaccinator and neutraliser is the (weighted) sum of three
loss terms:

L = Limp(x•, x◦) + Lrev(y•, x◦) + Lval(y◦, x◦ · m̄). (1)

In our implementation, each loss term is composed of
mean absolute error (MAE) and structural similarity index
measure (SSIM). The algorithmic procedures for training
and inference (vaccination and neutralisation) are shown in
Algorithms 1, 2 and 3. To train an automatic validator to
distinguish between vaccinated and unvaccinated images,
we use neutralised images as the inputs and binary cross
entropy as the loss function.

IV. EVALUATION
We evaluate the proposed cyber vaccination system with
respect to imperceptibility, reversibility, robustness and val-
idatability. We also carry out case studies for demonstrating
deepfake immunity and discuss potential limitations.
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FIGURE 9. Evaluation of robustness with respect to different types of
corruption.

A. EXPERIMENTAL SETUP
The models are trained and tested on the FaceForensics++

dataset, consisting of a thousand video clips with trackable
faces [66]. For both vaccinator and neutraliser, we use the
U-Net as the backbone architecture and apply a state-of-
the-art version by OpenAI with residual connection and
multi-head attention mechanisms [67], which has been
widely used as a diffusion probabilistic model for various
computer vision tasks [68], [69], [70]. We specify the number
of residual blocks as 3 and the attention resolutions as 4,
8 and 16. The number of parameters is about 83 million
for the above specifications. In terms of computational
time complexity, the reported running time of the model is
approximately 0.15 seconds per frame on the Apple M1 CPU
(consumer electronics) without batch processing. For the
validator, we test several representative classification models
from pioneering to contemporary architectures, including
the multi-layer perceptron (MLP) [71], the neural network
by Lecun et al. (LeNet) [72], the residual neural network
(ResNet) [73], the vision transformer (ViT) [74] and the
next-generation convolutional neural network (ConvNeXT)
[75]. We test immunity to face replacement with both
mask-dependent and mask-independent deepfakes. For the
former, we use the original deepfake method and train several
pairs of autoencoders to swap between different pairs of
identities. For the latter, we employ a pre-trained identity-
agnostic SimSwap model [76]. We also test immunity to face
reenactment by using a pre-trained X2Face model [77].

B. ABLATION STUDY ON CYBER VACCINE
We evaluate the effects of the cyber vaccine by making
comparisons with a variant system without the vaccinator.
This variant system consists only of a neutraliser trained
to fill up the masked face area in a way similar to image
inpainting. To compare the neutralised results with and
without vaccination, we measure identity similarity. This is
performed by projecting the images into a latent space using

the FaceNet and computing the cosine similarity between
the latent-space vectors [78]. It can be seen from Figure 7
that although the inpainting-based approach can reconstruct
plausible portraits, the results are visually different from the
original samples and the identity similarity is much lower
than that achieved with the vaccination-based approach.
For 200 test samples, the average identity similarity with
the vaccine is 0.99 and that without the vaccine is 0.57,
suggesting that vaccination generally leads to a close identity
similarity.

C. IMPERCEPTIBILITY AND REVERSIBILITY
We require the vaccinator to keep distortion imperceptible
and the neutraliser to reconstruct the original content with
high fidelity. Imperceptibility and reversibility refer to
the visual qualities of vaccinated images and neutralised
images respectively in comparison to the original images.
Peak signal-to-noise ratio (PSNR) is a common objective
assessment of image quality. Figure 8 presents the PSNR
values of 200 video samples for which each value is
averaged over all the frames. Typical PSNR values in lossy
image/video compression are between 30 and 50 decibels
(dB) under the condition of 8 bits per colour channel. The
mean PSNR values of vaccinated and neutralised videos
are above 40 and 35, respectively, indicating acceptable
imperceptibility and reversibility.

D. ROBUSTNESS
Robustness is an important consideration when translating
a system into practical applications. It concerns the extent
to which a system can continue to function despite faults,
disruptions and varying conditions. We measure the neutral-
isation performance by the SSIM of neutralised videos with
regard to changes in blurriness, brightness, contrast and hue.
Figure 9 compares each case in terms of the distribution
of SSIM values. The degradation parameters are randomly
sampled within a limited range. The average SSIM values
for the cases of no and hybrid corruptions, as expected,
are at opposite ends. Among individual cases, brightness
adjustment appears to have the most negative effect on
the neutralisation performance, whereas other adjustments
cause minor fluctuations compared with the no-corruption
case. Figure 10 compares each case over the full spectrum
of degradation. It can be seen that the system is capable
of withstanding major changes in brightness and contrast,
while sudden performance drops are observed in the presence
of extreme adjustments of blurriness and hue. Overall,
the evaluations show that the system can be considered
reasonably resilient within a certain range of degradation and
reliable for certain types of corruption.

E. VALIDATABILITY
To demonstrate that the vaccinated videos can be automat-
ically validated and readily distinguished from the unvacci-
nated ones, we apply several neural network classifiers with
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FIGURE 10. Evaluation of robustness with respect to full spectrum of degradation.

a wide variety of model size and architectural complexity
and evaluate their classification performance across different
degradation conditions. As shown in Figure 11, the average
accuracy of each classifier is around 99 percent for every
condition and the true positive rate is only slightly lower
than the true negative rate. In general, it appears that an
advanced model with a larger number of parameters and
a more complex connection of neurones tends to achieve
higher accuracy. Nevertheless, it is remarkable that even a
most rudimentary perceptron model can demonstrate classi-
fication performance comparable to state-of-the-art models,
suggesting that the neutralised results from vaccinated and
unvaccinated videos are readily distinguishable.

F. DEEPFAKE IMMUNITY AND LIMITATIONS
We demonstrate immunity to face replacement and face
reenactment, which are the types of deepfake that could
lead to serious consequences. We evaluate the immunity
to both mask-dependent and mask-independent deepfake
methods. In general, mask-dependent deepfakes would be
easier to cope with since the non-face region is more likely
to be kept intact. For mask-dependent face replacement,
we employ the classic autoencoder-based method. From

Figure 12, we can see that the facial area is restored with
high fidelity, providing that the videos are vaccinated prior
to attacks. By contrast, an empty facial area is observed for
the unvaccinated cases, suggesting that the system shows
no immune response to unvaccinated videos. The bounding
box annotations on the neutralised frames show the validity
of vaccination determined by a validator model. It is worth
noting that the system also shows adaptability to head
positions and occlusive objects (e.g. eyeglasses). There are
nonetheless some limitations such as inaccurate skin tones
andmismatchedmake-up colours, as shown in Figure 13. The
former problem may be improved through post-processing
by using a more delicate blending mechanism. The latter
phenomenon is likely due to unusual colours, namely out-
of-distribution data, and hence a possible improvement is to
train themodels with a greater diversity of data collected from
real sources or created artificially. For mask-independent face
replacement, we use a pre-trained SimSwap model, which
is an identity-agnostic model, being able to swap arbitrary
identities with a single model rather than requiring a model
for each pair of identities. Figure 14 shows an increase of
SSIM scores between the infected and neutralised videos.
From the visual examples provided in Figure 15, it can
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FIGURE 11. Validatability with different neural network classifiers in terms of true positive rate (top bars), accuracy (middle bars) and true negative
rate (bottom bars).

FIGURE 12. Demonstration of immunity to mask-dependent face replacement by the original deepfakes. Top (from left to right): unvaccinated videos,
infected videos and neutralised videos. Bottom (from left to right): vaccinated videos, infected videos and neutralised videos.

be seen that while the neutralisation is functioning, the
reversibility in the mask-independent case is inferior to that
in the mask-dependent case, especially in the boundary of
the face area (e.g. eyebrows). We also test the performance
against face reenactment with a pre-trained X2Face model.
In particular, it is interesting to explore the impact of
pose changes. The results from Figure 16 suggests that
neutralisation would be viable in the case of minor pose

changes and yet infections are irreversible when major pose
changes are presented.

G. DETECTION AND LOCALISATION
The restored content can also serve as a reference for deter-
mining whether the given video contains inauthentic content
(deepfake detection) and which parts are likely to be forged
(deepfake localisation). Compared with other detection and
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FIGURE 13. Case study on colour misalignment between original videos (top row) and neutralised videos (bottom row).

FIGURE 14. Evaluation of reversibility of infections by SimSwap.

FIGURE 15. Demonstration of immunity to mask-independent face
replacement by SwimSwap. Top: original images. Middle: infected images.
Bottom: neutralised images.

FIGURE 16. Demonstration of immunity to face reenactment by X2Face.
Left: vaccinated image. Right: infected images (top row) and neutralised
images (bottom row).

localisation methods, restoration-based approach is more
interpretable (because the inconsistent parts are observable),
albeit at the cost of requiring active precautions. For instance,
in Figure 17, we can generate a binary map that segments
between the real and fake areas by applying a threshold
on the differences between the test and neutralised images.
In our experiments, the threshold value is derived from the
90th percentile of the difference map. It can be observed
that our active approach can generate a map more similar
to the ground truth than a passive approach. In Figure 18,
we assess the performance of our method in terms of
detection and localisation compared to the Capsule-Net [6],

FIGURE 17. Demonstration of deepfake localisation using cyber-vaccine
method (active) alongside another forensic method (passive).

Efficient-Net [79] and Y-Net [10]. We use the area under the
curve (AUC) and equal error rate (EER) for the detection
performance, and the intersection over union (IoU) between
the predicted and ground-truth maps for the localisation
performance. Our performance testing involves 4 videos,
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FIGURE 18. A comparison of detection and localisation performance between cyber-vaccine method and other forensic methods.

each containing around 200 frames. The forged videos
are created using the classic autoencoder-based deepfake
algorithm. For our method, the latent-space cosine similarity
between the test and neutralised images serves as the indicator
of non-deepfakes. Evaluation results indicate that our method
surpasses state-of-the-art detection methods, achieving AUC
values ranging from 0.99 to 1.00 and EER values ranging
from 0.00 to 0.01. For localisation, we select the deepfake
video frames on which the Y-Net can successfully detect
fake content. Our method achieves an IoU score ranging
approximately from 0.7 to 0.8, whereas that of the Y-Net
remains below 0.3.

V. CONCLUSION
In this study, we propose a cyber vaccination mechanism
for conferring immunity to deepfakes. It is shown that the
distortion caused by vaccination is generally imperceptible
and effective neutralisation is achieved under various cor-
ruption conditions. Furthermore, the validity of vaccination
can be readily verified with a wide range of neural network
classifiers. There is nonetheless colour misalignment in cer-
tain cases, which may be improved through post-processing
and data augmentation. There is also room for improvement
in the recovery performance on mask-independent face
replacement. For face reenactment that causes changes in
pose and thus major alterations in the non-face region,
novel mechanisms with greater robustness are worth further
investigation. We envisage further progress in cyber vaccines
for addressing more threats posed by deepfakes ‘in the wild’.
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