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ABSTRACT Classical two-dimensional chaotic systems are not safe enough due to few control parameters
and limited chaotic range. To cope with this problem, a new wide-range 2D-Logistic-Sine hyperchaotic
map (2D-LSHM) is proposed in this paper. By analyzing the bifurcation map and Lyapunov exponent of
2D-LSHM, the results prove that the map has good ergodicity and unpredictability. In addition, this paper
proposes a 2D-LSHM-based image encryption scheme, LSHM-IES, to solve the problem that the dislocation
diffusion algorithm based on specific rules is vulnerable to attacks. The scheme uses a 3 x 3 convolutional
kernel to replace the pixel values in the dislocation process. An improved Zigzag transform is developed in
the diffusion phase to make the algorithm more secure and the key space larger. Experimental results from a
variety of performance tests on different images indicate that the LSHM-IES encryption scheme possesses
favorable encryption performance, low time cost, and high robustness against data missing attacks and noise

effects.

INDEX TERMS Chaotic systems, image security, image encryption, security evaluation.

I. INTRODUCTION

As data exchange on open networks and the Internet contin-
ues to rise, the boundaries between the physical and virtual
worlds are increasingly blurred, and safeguarding data has
become a crucial issue. Images are commonly utilized in
diverse domains for their visual representation. However,
images in the context of Internet of Things and mobile devices
may encompass substantial personal information. Especially,
the 5G era is expected to boost the use of images, making
it even more crucial to ensure their secure storage and trans-
mission. The main drawbacks of traditional image encryption
techniques are slow encryption speed and low security [1].
For example, for larger images, DES encryption can take min-
utes or even hours. AES algorithm encryption is several times
faster than DES, but it still cannot meet the current demand
and is difficult to cope with today’s computer attacks in terms
of security [2]. To solve the problem, researchers are con-
stantly exploring new encryption algorithms and techniques,
including chaos theory, deep learning based and quantum
techniques [3], [4], [5], which have been introduced into
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encryption schemes. Chaotic systems exhibit random behav-
ior and unpredictable trajectories in nonlinear systems, and
are sensitive to initial values and control parameters, which
makes their trajectories difficult to replicate. As such, they
offer a fresh perspective for the design of cryptosystems,
and have therefore become an important aspect of modern
cryptography [6], [7], [8].

The chaotic image encryption algorithm leverages the
sequence produced by chaotic systems to modify the image,
creating a visual discrepancy between the original and
modified versions, thereby achieving image encryption [9].
In practice, the effectiveness of image encryption techniques
relies heavily on the performance of chaotic maps, as per
the chaos theory. Chaotic maps can be categorized as one-
dimensional (1D) or multidimensional (MD) [10]. 1D chaotic
maps possess a simple structure and minimal parameters,
which can make their chaotic behavior predictable in certain
scenarios. In contrast, MD chaotic maps exhibit complex
structures and numerous parameters, making it challeng-
ing to predict their chaotic trajectories. While MD chaotic
map offers superior characteristics, it can be impractical
and costly to implement in real-world scenarios. As such,
two-dimensional (2D) chaotic map has emerged as a more
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viable option, given its favorable features and implementation
cost [11], [12].

In this work, an enhanced two-dimensional logical hyper-
chaotic map is designed and an LSHM-IES encryption
scheme is developed based on it. The main contributions are
the following three:

o An enhanced two-dimensional logistic hyperchaotic
map is proposed. Compared with the 1D chaotic map,
it can demonstrate more complex dynamical behavior,
generate more random and complex chaotic sequences,
easier to regulate and control and handle larger amounts
of data.

o An encryption scheme LSHM-IES is proposed based on
2D-LSHM chaotic system. 2D-LSHM generates chaotic
sequence based on the key, uses convolution kernel to
convolve with the chaotic sequence to disrupt the pixel
values in the permutation stage, and uses a modified
Zigzag transform to diffuse the image pixels.

o According to the evaluation of LSHM-IES, the proposed
encryption scheme demonstrates improved performance
and practicality.

Specifically, the work of this paper is organized as follows:
Section I introduces the background related to the research
of chaotic image encryption. Section II presents the current
state of research related to chaotic image encryption systems.
Section III introduces the new chaotic map model 2D-LSHM
proposed in this paper. section IV presents the algorithms of
the dislocation and diffusion phases of LSHM-IES; section V
simulates and compares LSHM-IES; section VI summarizes
the research of this paper and briefly explains the next work
schedule.

Il. RELATED STUDIES

The chaotic map used by Fridrich is a two-dimensional
logistic map that maps two-dimensional coordinates to new
coordinates. The logistic map is iterated many times to gen-
erate a series of pseudo-random numbers that are used as keys
for the encryption process. This has sparked the development
of numerous image encryption methods grounded in chaos
theory by other scholars [13]. For instance, Man et al. [14]
employed a five-dimensional hyperchaotic system to gen-
erate chaotic sequences as weights for convolutional neural
networks, successfully scrambling plaintext image pixels
and effectively thwarting plaintext attacks. This approach
yielded dynamic adaptive capability and high security. The
study by Muthu and Murali [15] combines a one-dimensional
chaotic map system with a shuffling algorithm that divides
the plaintext image into multiple blocks and performs mis-
match operations using the shuffling algorithm, and finally
performs heteroscedastic operations in the diffusion phase.
Although this scheme is faster in encryption, the diffusion
performance is poor, resulting in lower security. On the other
hand, Orhan [16] proposed an encryption algorithm based
on Fibonacci polynomials and matrices, which increases the
randomness and unpredictability of the encryption algorithm
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through mathematical operations such as modulo and shift
operations, but the high computational complexity and
storage space requirements lead to inefficient encryption.
Hua [17] et al. proposed a method to design S-boxes using
a complete Latin square, which can improve the security of
cryptographic algorithms without increasing the complexity
too much.

Lai et al. proposed two important schemes: a novel Hop-
field neural network structure [18] for real-time encryption
applications with high encryption strength and attack resis-
tance while realizing fast encryption and decryption oper-
ations, and a cross-channel two-dimensional hyperchaotic
map-based algorithm [19] with high security and efficiency
against illegal attacks. In addition, they proposed a pixel seg-
mentation image encryption scheme based on 2D Salomon
map [20], which generates the key by segmenting the image
and Salomon map, which is further enhanced in security.
They also extended the dynamic properties and applications
of neural networks by adjusting the parameters and intro-
ducing memory resistive elements to generate and control
attractors with complex dynamical behavior [21]. Mean-
while Qian et al. [22] improved on this by introducing bidi-
rectional bit-level cyclic shifting and dynamic DNA level
diffusion techniques to enhance the obfuscation and dif-
fusion of encryption. Wei et al. proposed various image
encryption algorithms. First, they designed an algorithm
based on image filtering and discrete logarithmic transforma-
tion [23] by reducing redundant information and increasing
image complexity, and then utilized scrambling code per-
turbation technique and keystream generator for encryption
and decryption. Secondly, they improved the scheme based
on disambiguation perturbation technique [24] to enhance
the obfuscation and diffusion of encryption and improve the
encryption strength. For the pixel-level filtering and DNA
diffusion problem with low encryption strength, they also
proposed an improved scheme based on cyclic replacement
and nonlinear replacement [25] to enhance the obfuscation
and diffusion of encryption and improve the encryption
strength. In addition, they utilized two different chaotic maps
to enhance the security of image data [26].

As information technology continues to evolve, the
issue of image security becomes increasingly impor-
tant. Various attacks and jamming methods continue to
emerge to assess the confidentiality of algorithms. These
methods include [27], [28], and [29]. While encryption
algorithm design has made some headway, certain algo-
rithms remain vulnerable to deciphering techniques that have
evolved [30], [31]. Thus, the quest to discover more secure
and efficient encryption schemes must persist.

Ill. 2D-LOGISTIC-SINE CHAOTIC MAP

This section introduces the classical one-dimensional logistic
map and Sine map, and then leads to the 2D-LSHM chaotic
map proposed in this paper.
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Logistic Map

Sine Map

FIGURE 1. Bifurcation diagram:(a) Logistic map;(b) Sine map;(c)2D-LSHM map.

A. CLASSICAL CHAOTIC MAPS

A common drawback of many one-dimensional chaotic maps
is their limited chaotic range and weak output sequence
randomness, often due to their restricted control parameters.
To address this issue, multiple chaotic maps can be combined.
The 2D logistic-Sine hyperchaotic map (2D-LSHM) intro-
duces cosine variations and offers an improved solution. The
logistic map is a classic and extensively researched example
of one-dimensional chaotic map, known for its intricate non-
linear behavior and defined by Eq. (1).

ey

The sine map is also a high-quality random sequence
generator, which is widely used in chaotic encryption and
pseudo-random number generation, and the mathematical
expression is Eq. (2).

X1 = uxp(l — x,)

(©))

Fig.1(a) shows the bifurcation of the Logistic map, while
Fig.1(b) displays that of the Sine map. Due to the small
chaotic ranges and multiple period windows, the Logistic and
Sine maps exhibit discontinuous chaotic ranges. The cosine
transform is a nonlinear map function that maps the input
values to the range [—1,1], and it can be used in chaotic maps,
chaotic encryption, and pseudo-random number generation to
produce more complex dynamical behavior and higher qual-
ity random sequences. Thus, to address this issue, we propose
2D-LSHM, which involves applying cosine variation to the
logistic and sine maps using Eq. (3).

X1 = 8 sin(mrx,) /4

Xnt1 = k[l + o cos(rrx,,)ﬁ] mod 1

3)
Yn+1 = ko cos(yn(1 — xp))

where the control parameters @ = 3, 8 =5, k1 =20, k» = 20.
From Fig. 1(c), respectively, 2D-LSHM can produce chaotic
states over a fairly wide range, which means it has a high
flexibility and adjustability to adjust the parameters as needed
to achieve better encryption.

B. PERFORMANCE EVALUATION OF 2D-LSHM
The attractor of a chaotic map is a set of values, and they
are important factors to guide the system into the chaotic
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state. The attractor is a stable state to which the chaotic
map converges after continuous evolution, and it has a highly
complex structure and unpredictable trajectory.

Specifically, the better the chaotic performance of a chaotic
map, the more complex and higher the fractal dimension of
its attractor is usually, and the larger the region in the phase
space it occupies. This is because the chaotic performance
of a chaotic map requires its iterative sequence to cover as
many states as possible in the phase space in order to exhibit
randomness and unpredictability. In this paper, we choose
two existing chaotic maps, 2D-TM and 2D-ICM, for compar-
ative analysis. Firstly, the initial conditions are set and a point
(0.6, 0.8) is chosen randomly, secondly, 20,000 iterations are
computed, and by tracking the iterative trajectories of the
chaotic maps, the trajectory images of the attractors can be
drawn.

In Figure 2, the attractor trajectories of the 2D- LSHM are
compared with those of the two 2D chaos maps.

According to Fig. 2(c), it can be seen that the attractors
of 2D-LSHM completely occupy a two-dimensional phase
space in the range of (-20,20), which means that the attractors
of 2D-LSHM form a highly complex geometric structure.
And it has better ergodicity than 2D-ICM (2D infinite col-
lapse map) [32] and 2D-TM (triangular map) [33].

Chaotic systems exhibit a crucial feature called sensitivity
to initial conditions, which can be analyzed by studying
the growth or decay rate of small perturbations over time
in a dynamical system using the Lyapunov exponent (LE).
In chaotic systems, the Lyapunov exponent (LE) measures
both the stability and degree of chaos in a system. A larger
LE exponent indicates greater unpredictability and sensitivity
to initial conditions, which leads to more erratic behavior
within the system. A positive value of the Lyapunov expo-
nent (LE) indicates chaos in a dynamical system, with the
distance between phase trajectories increasing over time.
Hyperchaotic systems are different from chaotic systems in
that their Lyapunov exponent is an infinite function, indicat-
ing an even greater sensitivity to initial conditions. The phase
space structure of hyperchaotic systems is also more com-
plex. Hyperchaotic phenomena occur in many natural and
technological systems, for example, in the fields of weather
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FIGURE 2. Attractors of different 2D chaotic maps:(a) 2D-TM; (b) 2D-ICM; (c) 2D-LSHM.

2D-TM

2D-LSHM

FIGURE 3. LE Index Comparison:(a) 2D-TM; (b) 2D-ICM; (c) 2D-LSHM.

forecasting, biological systems, and communications. Let the
chaotic system be. The LE index is calculated by Eq. (4) [34]
Fig. 3 compares the 2D- LSHM proposed in this study with
two other 2D chaotic maps: 2D-TM and 2D-ICM. As shown
in the figure, the Lyapunov exponent of our proposed 2D
chaotic map is larger, which means that its dynamical behav-
ior is more chaotic and unpredictable. Moreover, the relative
trend is smoother and more stable in the graph, which also
indicates that the nature of this chaotic system is better than
the existing 2D chaotic graphs.

n—1

1
LE = lim — gln If' (x| “4)

Our proposed 2D-LSHM graph possesses several advan-
tages based on the above metrics. First, it shows a continuous
hyperchaotic range, which is crucial in cryptographic appli-
cations because it avoids falling into the cycle range that
could lead to dynamical disruptions and serious security
problems. In addition, LSHM has almost no cycle range,
which further improves its performance. Second, LSHM has
a maximum Lyapunov exponent of up to 80, which is highly
random and facilitates message encryption. Finally, the struc-
ture of LSHM is scalable, and we can derive completely
novel two-dimensional hyperchaotic maps by replacing one-
dimensional maps.

C. NIST SP800-22 TEST
The security of stream cipher is closely related to the random-
ness of the generated sequence. Therefore, when designing
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stream ciphers, pseudo-random sequence generation algo-
rithms with good statistical properties need to be selected to
ensure that the generated key streams are sufficiently random
and unpredictable. Currently, the linear congruence generator
is one of the most commonly used pseudo-random number
generators. It can be described as

Xnt1 = (aXy, + ¢) mod m ®))

where m is the modulus, @ is the multiplier, and ¢
is the increment. Both the linear congruence genera-
tor as well as the 2D-LSHM are capable of generat-
ing pseudo-random sequences in floating-point form. After
amplitude expansion, rounding, and modulation, these gener-
ated pseudo-random sequences are quantized to values in the
range (0, 1).

The NIST SP800-22 test suite is a widely adopted industry
standard and contains 15 different test items. According to
the official documentation, if the P-VALUE of a test result
is greater than 0.01, the test has been successfully passed.
Meanwhile, the larger the value of P-VALUE, the better
the test result is. We conducted the NIST SP800-22 test on
the above pseudo-random sequences, and the test results are
shown in Table 2. As shown in Table 2, both pseudo-random
sequences successfully passed all 15 test items. It is worth
noting that the P-VALUE of the 2D-LSHM pseudorandom
sequence is larger than that of the linear congruence pseu-
dorandom sequence in all 10 tests. This indicates that the
pseudo-random sequence generated by 2D-LSHM has better
randomness.
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TABLE 1. The comparison between the proposed 2D-LSHM and existing 2D chaotic maps.

Name Chaotic maps Parameters Attractors
x, ., =sin(wx,)—rsin
2D-T™M { v = Sin(@x, ) (@y,) w=1007.r=5. Fig 2(a)
Y, =cos(wx,)
: a : b
= sin(-+) - sin(-=
2D-ICM X = SINGE)-sinGy) a=10:p=21. Fig.2(b)
Y, =sin(£)-sin(2)
— B a=3;0=5;
oD SHM {xm k[1+ acos(rx,)” Jmod1 B Fig2(0)
Vs = ky cos(y, (1-x,)) k =20k, =20.
TABLE 2. NIST test results of linear congruence and hyperchaotic Secret key K
pseudorandom sequences. and 2D-LSHM

statistical linear pseudorandom hyperchaotic pseudorandom
results congruence __sequence sequence
P-VALUE PROPORTION P-VALUE PROPORTION
Frequency  0.185566 1.00 0.190836 1.00
Block
Frequency  0.965295 1.00 0.970673 1.00
Cumulative
Sums 0.486646 1.00 0.563382 1.00
Runs 0.147094 1.00 0.162706 1.00
Longest Run 0.351485 0.99 0.437374 0.96
Rank 0.586209 0.99 0.654367 0.99
FFT 0.885137 0.99 0.105518 0.98
Non-
Overlapping  0.948602 1.00 0911313 1.00
Template
Overlapping 0.074277 1.00 0.242886 1.00
Template
Universal ~ 0.875639 0.98 0.895263 0.99
Approximate
Entropy 0.862544 1.00 0.048616 1.00
Random
Excursions  0.947657 0.98 0.976684 0.98
Random
Excursions  0.934218 1.00 0.865797 1.00
Variant
Serial 0.551226 1.00 0.122425 1.00
Linear
Complexity  0.195263 0.99 0.232860 0.99

IV. 2D-LSHM BASED IMAGE ENCRYPTION SCHEME

In a typical image, individual pixel values are often strongly
correlated, and this correlation may be used by an attacker
to break the encryption algorithm or extract the image infor-
mation. Therefore, a reliable algorithm should be developed
that combines chaotic sequences to further ensure security.
LSHM-IES, an image encryption scheme depicted in Fig 4,
is introduced in this section.

The IES encryption scheme comprises three primary com-
ponents: key generation, scrambling, and diffusion. The
scrambling process of IES involves modifying pixel values
primarily through convolution, the diffusion component of
the encryption scheme propagates changes made to a few
pixels in the plaintext image throughout the entire ciphertext
image. IES encryption scheme can efficiently transform a
standard image into a chaotic and unidentifiable image in a
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FIGURE 4. The structure of the system for encrypting images.
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FIGURE 5. Key structure.

relatively short duration, resulting in enhanced security and
efficiency.

A. KEY CREATION

Generating chaotic sequences using 2D-LSHM requires
determining an initial value, also referred to as the seed value
or key. The generated chaotic sequences are usually highly
unpredictable and random, so they can be used to encrypt and
decrypt data. To resist brute-force attacks [35] and ensure a
balance between encryption efficiency and security, the key
space must exceed 2190, In this paper, a 256-bit key is used,
Fig.5 depicts the structure of the key, which consists of the
original initial value (xg, yo) of length 48 bits and the original
control parameters ry, the perturbation coefficients d, and
the correlation coefficients A; and A of the original initial
value. Where the variables (xg, o, 7o) and d are floating point
numbers between [0-1) and can be calculated by Eq. (6). The
parameters work in tandem to determine the size of the key
space and the strength of the encryption algorithm. Among
them, (xp, yo) and ro define the dynamical behavior of the
chaotic system, while d perturbs initial values to increase
randomness, while A; and A; are used to control the nature
of the chaotic system. By properly selecting and tuning these
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FIGURE 6. How convolution works.

parameters, keys with high randomness and security can be
generated.

48
FN = Bin; x 27" ©)
i=1
The variables A1 and A, are 32-bit integers and can be
calculated by Eq. (7).

32
IN = ZBinl- x 21 @)
i=1

Eq. (8) can be used to calculate the seed value for generat-
ing the chaotic sequence.

x(()i) =(xg Xx A1 +d) mod 1
¥ = (0 x A2 +d) mod 1 ®)
rs) = (ro x Ai +d) mod 1

where i = (1, 2), using the initial state (xg, yo, ro), 2D-LSHM
can generate chaotic sequences for efficient permutation and
random number permutation diffusion.

B. DISRUPTION PROCESS

In image processing, convolutional filtering is a common
technique used to modify spatial frequency features. Typi-
cally, a fixed kernel matrix, either 3 x 3 or 5 x 5 in size,
is selected, and the central pixel value is determined by adding
the weighted values of its neighboring elements. The weights
are calculated by multiplying the neighboring pixel values
with the corresponding entries in the kernel matrix, and this
process is used to replace the pixel values. In this section,
we use 3 x 3 convolution kernels. The use of a 3 x 3 convolu-
tion kernel can increase network depth, decrease convolution
kernel parameters, increase the number of nonlinear maps,
simplify the model, and improve the efficiency of operations.
Defining the convolutional operation can be achieved using
Eq. (9).

h(a, b) = f(a, b) x g(a, b)

= > fG.j)-ga—ib—j (9

i=—00 j=—00

where & denotes the output, f denotes the input, and g denotes
the convolution kernel. Fig.6 shows the working principle
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FIGURE 7. Convolutional changes of the dislocation process.

of convolution. In this paper, the plaintext index is calcu-
lated using a convolution operation. A chaotic sequence,
f(a, b), generated by a chaotic system, and the plaintext pixel
value of the pure image, g(a, b), are used as inputs for the
convolutional operation, which outputs the dislocated cipher-
text image, h(a, b). The convolution process can effectively
destroy the pixel size of the image and reduce the pixel
correlation. Fig.7 clearly illustrates the convolutional changes
of the dislocation process.

Step 1: The sequence A = [aj, a2, - - , amxn] Of length
m X n is generated by putting the image R, x,, in the order of
first and then the column. The chaotic sequence is generated
by substituting the original initial values, xp and yp, into the
chaotic system for m x n + 1000 iterations. To remove any
transient effects, the first 1000 terms are discarded to obtain
the chaotic sequence B = [by, b2, - - - , byyxn]- The elements
of B in the sequence correspond to the elements of A one by
one.

Step 2: Converting the sequences A and B into
two-dimensional matrices produces A; and Bj, both of size
m x n,where the elements of By correspond one-to-one with
those in Aj. Through the convolution process, the matrix
B1 composed of chaotic sequences is convolved with the
corresponding part of the 3 x 3 convolution kernel matrix
A; to obtain the convolution result, and it is composed of
the matrix C(;m x n). The matrix C is the image after pixel
size dislocation, and the encryption processing of the image
is realized.

C. IMPROVED ZIGZAG DIFFUSION

The Zigzag transform is a process of scanning and storing
two-dimensional matrix elements in a “Z” shape into a one-
dimensional array. A specific rearrangement method [36] can
convert the 1D array into a 2D matrix. The Zigzag transform
is a useful tool for aligning image pixels in encryption. The
process of the Zigzag transform, which rearranges pixels in a
“Z” shape into a 2D matrix based on specific requirements,
is illustrated in Fig.8. The pixel traversal order may begin
from other corners of the image, resulting in eight Zigzag fold
transform patterns, as depicted in Fig.9, which scan either
horizontally or vertically from the four corners. Enhancing
randomness can be achieved by shifting the one-dimensional
array and arranging the scan order array in a ring. The Zigzag
arrangement offers the advantages of simplicity and speed
while enabling each pixel to be traversed for rearrangement.
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FIGURE 8. Zigzag folding line change.
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FIGURE 9. Eight modes of Zigzag transformation.

Similarly, Zigzag diffusion can create a butterfly effect by
altering only a few pixels, resulting in the modification of the
entire encrypted image.

The eight Zigzag fold patterns discussed above begin from
the four corners of the image and utilize both vertical and
horizontal patterns, resulting in a total of eight patterns.
Nonetheless, this approach has a drawback: it only utilizes
one round of Zigzag transformations for diffusion, and the
key space of the encryption scheme is not sufficiently large
to withstand brute force attacks. Effectively breaking down
the high correlation between adjacent elements is also a
challenge for the encryption scheme.

The eight Zigzag fold patterns discussed above begin from
the four corners of the image and utilize both vertical and
horizontal patterns, resulting in a total of eight patterns.
Nonetheless, this approach has a drawback: it only utilizes
one round of Zigzag transformations for diffusion, and the
key space of the encryption scheme is not sufficiently large
to withstand brute force attacks. Effectively breaking down
the high correlation between adjacent elements is also a
challenge for the encryption scheme.

Introducing a modified Zigzag fold transform allows us
to tackle these challenges and obtain more randomized out-
comes. In contrast to the existing Zigzag variation, which
arranges each pixel in a fixed order based on its Zigzag on the
new coordinates, the modified Zigzag transform determines
the transformation pattern based on the initial coordinates
determined by the chaotic sequence. After a single round of
alterations, the next initial point and transformation mode are
determined using the chaotic sequence. The cycle involves
three rounds of transformations since the position of the
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TABLE 3. Scan map.

p q

1 2
1 mode 1 mode 5
2 mode 2 mode_6
3 mode 3 mode_7
4 mode 4 mode 8

initial coordinates is random in each round, and each change
has eight modes. Thus, the overall change employs a power-
increasing mode, resulting in an extensive key space. The
enhanced Zigzag transform is governed by a parameter that
alters only the pixel positions, considerably enhancing the
transform’s efficiency and security level. The chaotic system
used in this approach is the enhanced two-dimensional logis-
tic chaotic map introduced in the preceding section.

We divide the modified Zigzag transform into five steps to
operate on a matrix D of size m X n:

Step 1: Eq. (8) is used to generate four chaotic sequences
with a length of L, and each chaotic sequence is sorted to
obtain the corresponding index vector. Ry, Ry, C1 and C»
are used as row indexes, and Ry and R, are used as col-
umn indexes, which can generate the coordinate matrices
C1 and C, respectively, to generate the coordinate matrices
01 and 02.

Step 2: Set g(i) = (R;(1) mod 2) + 1, p(i) = (C;(1) mod
H+1, x(1) = RiQ2), (1) = CIN), x(2) = Ra(2), ¥(2) =
C>(N), where p is the control parameter, p € [1, 2, 3, 4]. p(i)
and g(i) are used to determine the scan selection mode of O;
shown in Fig.10. Determination of the starting point for each
scan is based on x(7) and y(i). Correspondence between p, g,
and scan mode O; is illustrated in Table 3.

Step 3: Perform scanning on O and O; using the selected
scan method from Step 2, as illustrated in Fig.10-(a). Then,
record each coordinate on their scan paths into the cache
matrices ¢ and cj.

Step 4: Swap the elements in matrix M with coordinates
c1(@) and ¢ (i).

Step 5: Repeat Step 2 and scan Fig.10-(b),10-(c) in turn.

According to the above steps, we provide an original matrix
of size 5 x 5 to demonstrate the process of three scans and
further illustrate the revised Zigzag changes, allowing us to
understand the details more intuitively. First, according to
the coordinate matrix, (a) scan with mode_1, (b) scan with
mode_8, and (c) scan with mode_5. After three rounds of
scanning, we can get the final coordinate map as (1,1) —
4,1), (1,2) - (3,1), (1,3) — (3,2), (1,4) — (2,3), (1,5) —
4,3), 2,1) — (2,4), 2,2) — (1,5), 2,3) — (1,3), (2,4) —
(3,3) and (2,5) — (2,1).

To obtain the final swap matrix W, pixel swapping is
performed on the matrix D based on the coordinate map.

In order to test the advantages and disadvantages of the
proposed zigzag transform algorithm, as shown in Table 4
we use a 6 x 6 pixel digital model using correlation analysis
and other methods to compare and test the four characteristics
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FIGURE 10. Three scans of the diffusion process.

TABLE 4. Comparative analysis of Zigzag diffusion methods.

Zigzag Transformation Method Ours Guo.[37] Zheng.[38]
Diffusion effect 0.9515 0.8132 0.7527
Diffusion efficiency 0.0032s  0.0028s 0.0025s
Diffusion quality 1 1 1
Security 0.9846 0.8527 0.7641

of Guo et al. [37] and Zheng and Lv [38] Zigzag transform
methods. From the data in Table 4, it can be obtained that the
encryption efficiency and encryption security of the proposed
Zigzag algorithm is higher than the other two algorithms.

In comparison to the current Zigzag algorithm for image
encryption, this paper presents an improvement in which
the scanning method is dynamically selected by altering the
initial state of the chaotic system and disrupting the order
determined by the previous scan through multiple scans. This
enhances the security of diffusion. Additionally, the scanning
diffusion process only necessitates four chaotic sequences
of length L to determine the initial position and scanning
mode. This is more efficient than most diffusion algorithms
utilizing chaos encryption that require chaotic sequences of
length L x L.

V. SIMULATION AND PERFORMANCE ANALYSIS

A comprehensive analysis of the LSHM-IES encryption
scheme’s performance is presented in this section, consid-
ering several perspectives. To assess the algorithm’s effec-
tiveness, speed, and flexibility, various tests are conducted,
including pixel distribution, histogram, information entropy,
local information entropy, NPCR, UACI, image sensitivity,
key sensitivity analysis, and encryption speed [39], [40]
and [41]. Moreover, robustness analysis is a critical indicator
for evaluating the algorithm’s reliability and security, and
for determining its ability to withstand various attacks. The
combination of these test methods can provide a compre-
hensive performance evaluation of the LSHM-IES encryption
scheme.

A. HISTOGRAM ANALYSIS
In image encryption, the histogram is a crucial tool for evalu-
ating the effectiveness and security of encryption algorithms.
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It displays the distribution of image brightness or color and
can detect whether the distribution of the encrypted image
is similar to that of the original image. If the encryption
algorithm effectively scrambles and obfuscates the image,
the histogram of the encrypted image should differ signif-
icantly from that of the original image. Conversely, if the
encryption algorithm has vulnerabilities or is insufficiently
secure, an attacker can use the histogram of the encrypted
image to deduce information about the image or reconstruct
the original image. Figs. 12(a)-(f) display the histograms of
the Lena, Pepper, and Baboon plaintext images, as well as
their corresponding encrypted images.

With the purpose of identifying deviations, the chi-square
examination may be employed, in which x> measures the
extent of discrepancy between the picture pixel arrangement
and the entirely even distribution. Eq. (10) outlines the defi-
nition of 2.

255

= wi=p) (10)
i=0 p

where p; is the frequency of image pixel i. p represents
the average frequency of all pixels, p = (M x N)/256.
M x N denotes the size of the image. As X2 decreases, the
pixel distribution becomes more uniform in the image, so the
closer the image is to a uniform distribution. Table 5 presents
the detection outcomes for Lena, Pepper, Baboon, Barbara,
Flintstones, black plaintext, and ciphertext images. The value
of x? for ciphertexts is considerably lower than that of plain-
texts, indicating that the pixel values in each ciphertext image
are more uniformly distributed. Cardinality testing results
demonstrate the uniform pixel value distribution in ciphertext
images, thereby affirming the feasibility and effectiveness of
LSHML-IES in safeguarding image privacy information.

B. ADJACENT PIXEL POINT CORRELATION ANALYSIS

To enhance resistance to statistical analysis, a reliable encryp-
tion algorithm must effectively minimize the correlation
between neighboring pixels in the plaintext image. To eval-
uate the algorithm’s security in this aspect, we conduct tests
on the plaintext and ciphertext images in the horizontal, ver-
tical, and diagonal directions, using the calculation method
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illustrated in Eq. (11). It’s important to exclude the first row
and column in the calculation.

- 1Y
E() =+ > % D) = & > (6 — E)?
cov(x. y) =l

SN SN/
cov(x,y) = E((x — Ex))(y — E(y)))
(1D)

The correlation distribution of adjacent pixels in plaintext
and ciphertext images is presented in Fig. 13, indicating
that the correlation is more concentrated and stronger in the
plaintext image, whereas the distribution is more uniform in
the ciphertext image. Table 6 displays the numerical repre-
sentation of the correlation between adjacent pixels in each
direction of the image, revealing that the correlation of the
ciphertext image is almost zero. The comparison results are
shown in Table. 7, the APC value of the encrypted image is
closer to O than the original image, but it is in the middle of
the range compared to other encryption schemes in this test.
These findings demonstrate the effectiveness of the proposed
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FIGURE 11. Image encryption and decryption. (a) Lena, (b) Peppers, (c) Baboon.

encryption algorithm in resisting statistical analysis, and indi-
cate that the chaotic system employed is well-suited for image
encryption. In short, LSHM-IES is able to protect the image
security well.

While the pixel distribution of the encrypted image is more
uniform. In Fig.12(a), the distribution of pixel values in the
plaintext image is more prominent, whereas the distribution
of pixels in the encrypted image in Fig.12(b) is more uniform
and lacks distinctive features. This uniform pixel distribution
helps prevent attacks aimed at obtaining the plaintext infor-
mation of the image.

Figures that are meant to appear in color, or shades of
black/gray. Such figures may include photographs, illustra-
tions, multicolor graphs, and flowcharts.

C. INFORMATION ENTROPY

To evaluate the randomness and uniformity of the pixel
value distribution in the encrypted image, we can compute
its information entropy. A higher information entropy of
pixel values indicates that the encryption algorithm intro-
duces sufficient randomness and noise, thereby enhancing the
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FIGURE 12. Histograms of plaintext and ciphered images.

TABLE 5. x2 test results.
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(f) Histogram of ciphered Baboon

Image Lena Pepper Baboon Barbara Flintstones Black
Plaintext 160001 204333 180257 95549 790768 66846720
Ciphered 259.2266 278.0703 261.7754 255.9199 252.0762 251.2148

Change P(1,1) 229.1523 219.6133 252.5820 275.7559 237.7969 272.0430

difficulty of cracking the image and improving the security
of the encryption algorithm. The formula for information
entropy is provided in Eq. (12).
2N -1 1
H(S) ;O Plsilogs (12)
In Eq. (12), S represents the image, s; represents the pixel
in image S, and p(s;) represents the probability of occurrence
of pixel s;. The ideal information entropy of a grayscale
image is 8, indicating a more uniform pixel distribution as it
approaches 8. Table 8 shows that the information entropy of
the ciphertext images is close to the ideal value of 7.99, indi-
cating that the encryption effect is satisfactory. This suggests
that the encryption algorithm has effectively introduced suf-
ficient randomness and noise to enhance the image security.
As shown in Table 9, the H (S) value of the encrypted image is
larger in our proposed scheme compared to other encryption
schemes, indicating that our scheme is more secure.

D. LOCAL INFORMATION ENTROPY

The local information entropy evaluates the distribution state
of the local information of the ciphertext image and is defined
as Eq. (13).

N k H(C;
Hiy(C) = % (13)
i=1
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where C represents the ciphertext image, k and Tp represent
the random selection k groups of T pixels from C. H(C;)
represents the information entropy of C; composed of Tp
pixels. when k = 30, Tp = 1936 and confidence level o =
0.001, the local information entropy of ciphertext image is
located at [7.901902305, 7.903036329], then the algorithm
passes the test and is secure. Table 10 shows the test results of
Lena, Pepper and other cipher images, all the local informa-
tion entropy values of cipher images are within the required
interval, all pass the test, so the encryption scheme proposed
in this paper is secure.

E. IMAGE SENSITIVITY ANALYSIS

To measure the sensitivity of the encryption algorithm to
slight changes in the plaintext image, we define image sen-
sitivity as the degree of difference in the ciphertext image
produced by slightly different plaintext images under the
same key encryption. A higher degree of difference indi-
cates higher sensitivity of the image to small changes in the
plaintext. To quantify this difference, we use two metrics,
NPCR and UACI, which respectively measure the number of
adjacent pixel changes and the average intensity of pixel value
changes. These metrics assist in evaluating the sensitivity
and reliability of the encryption algorithm to image changes
and enhancing its security and robustness. The calculation of
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FIGURE 13. Correlation coefficients of Pepper.

TABLE 6. Correlation coefficients.

Image plain image ciphered image
Horizontal Vertical Diagonal Horizontal Vertical Diagonal
Lena 0.9742 0.9872 0.9624 —-0.0012 6.1635e-04 8.0547¢-05
Pepper 0.9384 0.9723 0.9233 —-0.0026 —2.1149¢-06 1.5492¢-04
Baboon 0.8628 0.7532 0.7238 0.0025 —-0.0033 —9.8454e-04
Barbara 0.8947 0.9579 0.8837 —-0.0032 1.3354¢-06 —0.0015
Flintstones 0.9502 0.9437 0.9072 0.0024 7.5727¢-05 0.0012

TABLE 7. The APC under different encryption schemes (Using the average value of “Baboon.’).

Method Cao.[8] Zhang.[28] Teng.[29] Wei.[26] Ours
Cipher image -0.0082 -0.0009 -0.0039 -0.0020 -0.0029
TABLE 8. Information entropy comparison. TABLE 9. The H(S) under different encryption schemes (Using the
average value of “Baboon.’).
Images Lena Pepper Baboon Barbara Flintstones Black
Plain image 7.4575 7.3964 7.3833 7.6353 6.5786 - Method H(S)
Proposed 7.9993 7.9991 7.9993 7.9992 7.9992 7.9994 Cao.[8] 79896
Change P (1, 1) 7.9992 7.9993 7.9992 7.9991 7.9993 7.9993 ’ ’
Zhang.[28] 7.9992
Teng.[29] 7.9913
. . Wei.[26 7.9993
NPCR and UACI is presented in Eq. (14). [26]
Ours 7.9993
2.d(i.))
_ i
NPCR = L x 100%

(14) while F is the ciphertext image generated after changing a

single plaintext pixel. Table 11 displays the average NPCR
and UACI of each image, while Table 12 compares the results

We conducted 100 sets of tests, where each set comprised with other algorithms. The experimental findings reveal that
two images, F; and F». F is the original ciphertext image, the NPCR and UACT values of all tested images are close

UACI = L | 3 2@l 1009
i
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(a)Encrypt with X,

FIGURE 14. Key sensitivity analysis.

TABLE 10. Local entropy of different images.

(b)Decrypt with X,

(c)Decrypt with X,

TABLE 12. Comparison of NPCR and UACI.

Image Lena  Pepper Baboon Barbara Flintstones Black
Local entropy 7.902439 7.901972 7.902347 7.903196 7.902073 7.902238
Fail or Pass  Pass Pass Pass Pass Pass Pass

TABLE 11. NPCR and UACIL.

Change Change Change
P, 1) P(256, 256) P(512, 512)
NPCR (%)UACI (%)NPCR (%)UACI (%)NPCR (%)UACI (%)
Lena  99.5957 33.4762 99.6214 33.4505 99.6023 33.4664
Pepper  99.5963 33.4578 99.6056 33.5174 99.5934 33.4523
Baboon 99.6182 33.4963 99.6063 33.5012 99.5942 33.4458
Barbara  99.6313 33.4962 99.6165 33.4724 99.6159 33.4365
Boat  99.6107 33.4746 99.5973 33.4228 99.6163 33.4585
Flintstones 99.6115 33.4474 99.6102 33.4450 99.6224 33.4357
Black  99.6083 33.4959 99.5975 33.4632 99.6269 33.5325
House256 99.6276 33.4404 99.6302 33.4294 - -
Object256 99.6364 33.4532  99.5928 33.4518 - -
fabio256 99.6123 33.4346 99.6122 33.4263 - -
Pass 10 10 10 10 7 7

to the ideal values, indicating that the LSHM-IES algorithm
is relatively effective in protecting against selected plaintext
attacks.

F. KEY SENSITIVITY ANALYSIS

In chaotic encryption, the key plays a vital role as it is
the key information used to encrypt and decrypt the data.
For chaotic encryption algorithms, a small change in the
key may lead to completely different results. For key sen-
sitivity, we take Fig. 14(a) as an example and change
xo = 0.677615301413672 to x; = 0.677615301413673 and
then decrypt the ciphertext image, the decrypted image is
Fig. 14(b), and the decrypted image using xq is Fig. 14(c).
It can be observed that even with extremely small changes
in the key, the block disambiguation and diffusion strategies
change dramatically and the algorithm is highly sensitive to
the key.

G. ENCRYPTION SPEED ANALYSIS
The encryption speed is a critical metric for evaluating the
performance of a chaotic image encryption algorithm, and
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Lena Ours Chen.[34] Cao. [8] Liu. [35]
NPCR (%) 99.6074 99.23 99.25 99.46
UACI (%) 33.4645 33.48 36.35 33.34

TABLE 13. Time analysis of the proposed and existing algorithms.

Image size Algorithms
Ours Chen.[34] Cao.[8] Liu[35] N.[41]
128%128  0.0164 0.0201 0.0199  0.1934  0.1253
256x256  0.0673 0.0791 0.0832 07314  2.3261
512x512  0.3382 0.3706 03778  2.8625  10.8785

it is also a key factor in determining its suitability for
widespread use. Typically, the speed of encryption is deter-
mined by the design of the algorithm and the software and
hardware employed.

We performed a test by encrypting ““Peppers (128 x 128)”,
“Lena (256 x 256)”, and “Cameraman (512 x 512)” plain-
text images 100 times and computed the average encryption
time. Table 13 presents a comparison of our algorithm’s
encryption speed with those of algorithms from the liter-
ature [8], [34], [35], and [41]. Table 13 analysis indicates
that LSHM-IES is more appropriate for real-time applications
due to its shorter encryption time in comparison to other
algorithms.

Additionally, algorithm complexity has a significant
impact on speed performance. In our proposed algorithm,
the alignment diffusion phase is the primary factor affecting
computational complexity. This phase involves moving pixels
a maximum of 3 x (M x N) times. Thus, the computa-
tional complexity of the LSHM-IES algorithm in this paper is
O (M x N).

H. ROBUSTNESS ANALYSIS

During image transmission, noise or data loss may corrupt

the image, making it necessary for the encryption algorithm

to possess robustness. The algorithm’s robustness is evaluated

through simulation experiments with shear and noise attacks.
Figures 15(a) and (c) depict intercepted ciphertext images,

while Figures 15(b) and (d) display the corresponding
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(a) Clipped cipher Barbara

(e) 0.02 salt & piper noise cipher
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' (f) Decryption (e) A

FIGURE 15. Anti-noise and data loss analysis.

decrypted intercepted ciphertext images. These images serve
as an example of an interception attack. Taking pepper
noise as an example, Figures 15(e) and (g) show the pep-
per noise with 0.02 and 0.2 ratio added respectively, and
Figures 15(f) and (h) show the decrypted images after adding
noise. Even when ciphertext is subjected to varying degrees
of attacks and noise, the decrypted image remains visible.

Additionally, algorithm complexity has a significant
impact on speed performance. In our proposed algorithm,
the alignment diffusion phase is the primary factor affecting
computational complexity. This phase involves moving pixels
a maximum of 3 x (M x N) times. Thus, the computa-
tional complexity of the LSHM-IES algorithm in this paper
isO M x N).

VI. CONCLUSION

This paper proposes a novel two-dimensional Logistic-Sine
hyperchaotic map (2D-LSHM) that incorporates classical
one-dimensional maps via cosine variation. It features more
parameters and stronger sensitivity. The chaotic properties are
evaluated using LE indices and outperform the current 2D
chaotic system. Based on this, we propose a dislocation-based
encryption scheme (LSHM-IES) comprising convolutional
altered pixel values and an improved Zigzag variation diffu-
sion method. To begin with, the initial state and parameters
of 2D-LSHM are generated using a 256-bit binary key. Then
the image is encrypted by this system generating chaotic
sequence combined with the algorithm of permutation and
diffusion. Through simulation performance analysis, LSHM-
IES has good encryption performance and the encryption
time is better than other algorithms under the same con-
ditions. By security performance analysis, LSHM-IES has
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strong robustness against data missing attacks and noise
effects.

This paper focuses on examining the encryption process of
a single grayscale image. Nevertheless, in real-world scenar-
ios, it is often necessary to transmit multiple images simulta-
neously. So how to transmit multiple images efficiently and
securely with encryption becomes an important issue. The
next work plan is to study the encryption process of multi-
ple images in depth, including how to manage and encrypt
multiple images in a unified way, and how to improve the
efficiency and security of transmission of multiple images.

REFERENCES

[1]1 Y. Wu and X. Dai, “Encryption of accounting data using DES algorithm
in computing environment,” J. Intell. Fuzzy Syst., vol. 39, no. 4,
pp- 5085-5095, Oct. 2020.

[2] C.-H. Yang and Y.-S. Chien, “FPGA implementation and design of a
hybrid chaos-AES color image encryption algorithm,” Symmetry, vol. 12,
no. 2, p. 189, Jan. 2020.

[3] S.D. Watt, H. S. Sidhu, A. C. MclIntosh, and J. Brindley, “Chaotic flow in
competitive exothermic—endothermic reaction systems,” Appl. Math. Lett.,
vol. 115, May 2021, Art. no. 106960.

[4] D. Ghosh and J. Singh, “Spectrum-based multi-fault localization using

chaotic genetic algorithm,” Inf. Softw. Technol., vol. 133, May 2021,

Art. no. 106512.

P. Paknejad, R. Khorsand, and M. Ramezanpour, ‘“Chaotic improved

PICEA-g-based multi-objective optimization for workflow scheduling in

cloud environment,” Future Gener. Comput. Syst., vol. 117, pp. 12-28,

Apr. 2021.

[6] G. Qi, L. Xu, and X. Yang, “Energy mechanism analysis for chaotic
dynamics of gyrostat system and simulation of displacement orbit using
COMSOL,” Appl. Math. Model., vol. 92, pp. 333-348, Apr. 2021.

[71 M. Z. Talhaoui, X. Wang, and A. Talhaoui, “A new one-dimensional
chaotic map and its application in a novel permutation-less image encryp-
tion scheme,” Vis. Comput., vol. 37, no. 7, pp. 1757-1768, Jul. 2021.

[8] C.Cao, K. Sun, and W. Liu, “A novel bit-level image encryption algorithm
based on 2D-LICM hyperchaotic map,” Signal Process., vol. 143,
pp. 122-133, Feb. 2018.

[5

—

VOLUME 11, 2023



D. Zou et al.: Image Encryption Based on Hyperchaotic System and Improved Zigzag Diffusion Method

IEEE Access

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

W. J. Jun and T. S. Fun, “A new image encryption algorithm based
on single S-box and dynamic encryption step,” IEEE Access, vol. 9,
pp. 120596-120612, 2021.

X. Q. Zeng and R. S. Ye, “Chaotic image encryption algorithm based on
improved logistic map,” Comput. Eng., vol. 47, no. 11, pp. 158-165,2021.
Z.Hua, Y. Chen, H. Bao, and Y. Zhou, “Two-dimensional parametric poly-
nomial chaotic system,” IEEE Trans. Syst., Man, Cybern., Syst., vol. 52,
no. 7, pp. 4402-4414, Jul. 2022.

J.Liu, Y. Wang, Z. Liu, and H. Zhu, ““A chaotic image encryption algorithm
based on coupled piecewise sine map and sensitive diffusion structure,”
Nonlinear Dyn., vol. 104, no. 4, pp. 4615-4633, Jun. 2021.

J. Fridrich, “Symmetric ciphers based on two-dimensional chaotic maps,”
Int. J. Bifurcation Chaos, vol. 8, no. 6, pp. 1259-1284, Jun. 1998.

Z. Man, J. Li, X. Di, Y. Sheng, and Z. Liu, “Double image encryption
algorithm based on neural network and chaos,” Chaos, Solitons Fractals,
vol. 152, p. 111318, Nov. 2021, doi: 10.1016/j.chaos.2021.111318.

J. S. Muthu and P. Murali, “A novel DICOM image encryption
with JSMP map,” Optik, vol. 251, p. 168416, Feb. 2022, doi:
10.1016/j.ijle0.2021.168416.

K. U. Shahna and A. Mohamed, “Novel hyper chaotic color image
encryption based on pixel and bit level scrambling with diffusion,” Signal
Process., Image Commun., vol. 99, p. 116495, Nov. 2021.

Z.Hua,J.Li, Y. Chen, and S. Yi, ““Design and application of an S-box using
complete Latin square,” Nonlinear Dyn., vol. 104, no. 1, pp. 807-825,
Mar. 2021.

Q. Lai, Z. Wan, H. Zhang, and G. Chen, “‘Design and analysis of multiscroll
memristive Hopfield neural network with adjustable memductance and
application to image encryption,” IEEE Trans. Neural Netw. Learn. Syst.,
early access, Feb. 10, 2022, doi: 10.1109/TNNLS.2022.3146570.

Q. Lai and Y. Liu, “A cross-channel color image encryption algorithm
using two-dimensional hyperchaotic map,” Expert Syst. Appl., vol. 223,
Aug. 2023, Art. no. 119923.

Q. Lai, G. Hu, U. Erkan, and A. Toktas, “A novel pixel-split image encryp-
tion scheme based on 2D Salomon map,” Expert Syst. Appl., vol. 213,
Mar. 2023, Art. no. 118845.

Q. Lai, Z. Wan, and P. D. K. Kuate, ““‘Generating grid multi-scroll attractors
in memristive neural networks,” IEEE Trans. Circuits Syst. I, Reg. Papers,
vol. 70, no. 3, pp. 1324-1336, Mar. 2023.

K. Qian, W. Feng, Z. Qin, J. Zhang, X. Luo, and Z. Zhu, “A novel image
encryption scheme based on memristive chaotic system and combining
bidirectional bit-level cyclic shift and dynamic DNA-level diffusion,”
Frontiers Phys., vol. 10, Aug. 2022, Art. no. 963795.

W. Feng, X. Zhao, J. Zhang, Z. Qin, J. Zhang, and Y. He, “Image encryp-
tion algorithm based on plane-level image filtering and discrete logarithmic
transform,” Mathematics, vol. 10, no. 15, p. 2751, Aug. 2022.

W. Feng, Z. Qin, J. Zhang, and M. Ahmad, “Cryptanalysis and improve-
ment of the image encryption scheme based on Feistel network and
dynamic DNA encoding,” IEEE Access, vol. 9, pp. 145459-145470, 2021.
W. Feng and J. Zhang, “Cryptanalzing a novel hyper-chaotic image
encryption scheme based on pixel-level filtering and DNA-level diffu-
sion,” IEEE Access, vol. 8, pp. 209471-209482, 2020.

W. Feng, J. Zhang, and Z. Qin, “A secure and efficient image transmission
scheme based on two chaotic maps,” Complexity, vol. 2021, pp. 1-19,
Nov. 2021.

Z. Hua and Y. Zhou, “Exponential chaotic model for generating
robust chaos,” IEEE Trans. Syst., Man, Cybern., Syst., vol. 51, no. 6,
pp. 3713-3724, Jun. 2021.

S. N. Zhang and Q. M. Li, “Color image encryption algorithm based on
logistics-sin-cosine mapping,” Comput. Sci., vol. 49, no. 1, pp. 353-358,
2022.

L. Teng, X. Wang, and Y. Xian, “Image encryption algorithm based on
a 2D-CLSS hyperchaotic map using simultaneous permutation and diffu-
sion,” Inf. Sci., vol. 605, pp. 71-85, Aug. 2022.

J. Yu, W. Xie, Z. Zhong, and H. Wang, “Image encryption algorithm based
on hyperchaotic system and a new DNA sequence operation,” Chaos,
Solitons Fractals, vol. 162, Sep. 2022, Art. no. 112456.

J. Zheng and T. Bao, “An image encryption algorithm using cascade
chaotic map and S-box,” Entropy, vol. 24, no. 12, p. 1827, Dec. 2022.

W. Cao, Y. Mao, and Y. Zhou, “Designing a 2D infinite collapse map for
image encryption,” Signal Process., vol. 171, p. 107457, Jun. 2020, doi:
10.1016/j.sigpro.2020.107457.

N. Tsafack, S. Sankar, B. Abd-El-Atty, J. Kengne, K. C. Jithin, A. Belazi,
I. Mehmood, A. K. Bashir, O.-Y. Song, and A. A. A. El-Latif, “A new
chaotic map with dynamic analysis and encryption application in Internet
of Health Things,” IEEE Access, vol. 8, pp. 137731-137744, 2020.

VOLUME 11, 2023

(34]

(35]

(36]

(371

(38]

(391

[40]

(41]

H. Chen, E. Bai, X. Jiang, and Y. Wu, “A fast image encryption algorithm
based on improved 6-D hyper-chaotic system,” IEEE Access, vol. 10,
pp. 116031-116044, 2022.

S. Liu, C. Li, and Y. Li, “A novel image encryption algorithm based on
exponent-cosine chaotic mapping,” J. Electron. Inf. Technol., vol. 44, no. 5,
pp. 1754-1762, 2022.

Z. Hua, J. Li, Y. Li, and Y. Chen, “Image encryption using value-
differencing transformation and modified ZigZag transformation,” Non-
linear Dyn., vol. 106, no. 4, pp. 3583-3599, Dec. 2021.

Z. Guo and P. Sun, “Improved reverse ZigZag transform and DNA diffu-
sion chaotic image encryption method,” Multimedia Tools Appl., vol. 81,
no. 8, pp. 11301-11323, Mar. 2022.

J. Zheng and T. Lv, “Image encryption algorithm based on cascaded
chaotic map and improved zigzag transform,” IET Image Process., vol. 16,
no. 14, pp. 3863-3875, Dec. 2022.

S. Zhu, X. Deng, W. Zhang, and C. Zhu, “Image encryption scheme based
on newly designed chaotic map and parallel DNA coding,” Mathematics,
vol. 11, no. 1, p. 231, Jan. 2023.

J. Wang, X. Song, and A. A. A. El-Latif, “Single-objective particle
swarm optimization-based chaotic image encryption scheme,” Electronics,
vol. 11, no. 16, p. 2628, Aug. 2022.

N. Charalampidis, C. Volos, L. Moysis, H. E. Nistazakis, and I. Stouboulos,
“A novel piecewise chaotic map for image encryption,” in Proc. 11th
Int. Conf. Modern Circuits Syst. Technol. (MOCAST), Bremen, Germany,
Jun. 2022, pp. 1-4.

DONGYAO ZOU received the Ph.D. degree in
circuits and systems from the Beijing Univer-
sity of Posts and Telecommunications, in 2008.
He is currently an Associate Professor with the
Zhengzhou University of Light Industry. He has
published more than ten research papers in
journals and conferences. His research interests
include chaotic image encryption, artificial intel-
ligence, and indoor positioning technology.

TENGDA PEl received the bachelor’s degree
in the Internet of Things engineering from the
Zhengzhou University of Light Industry, China,
in 2019, where he is currently pursuing the degree
with the School of Computer and Communica-
tion Engineering. His research interests include
information security, chaotic systems, and chaotic
image encryption.

GUANGYONG XI received the Ph.D. degree
in engineering surveying from Hohai University,
in 2011. He is currently an Associate Professor
with the Zhengzhou University of Light Industry.
He has published more than ten research papers
in journals and conferences. His research inter-
ests include information security, artificial intelli-
gence, and indoor positioning technology.

LIPING WANG received the Ph.D. degree in
electronic technology from the Huazhong Uni-
versity of Science and Technology, Wuhan,
Hubei, in 2016. Since 2017, she has been teach-
ing and conducting research with the School
of Computer and Communication Engineering,
Zhengzhou University of Light Industry. Her
research interests include embedded systems and
artificial intelligence.

95409


http://dx.doi.org/10.1016/j.chaos.2021.111318
http://dx.doi.org/10.1016/j.ijleo.2021.168416
http://dx.doi.org/10.1109/TNNLS.2022.3146570
http://dx.doi.org/10.1016/j.sigpro.2020.107457

