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ABSTRACT Envisioned future wireless gives rise to the possibility of exploiting underwater applications
with high spectral efficiency and reliable communication. This paper presents a method to combine
channel estimation in the time domain with neural networks and supervised learning to improve orthogonal
frequency-division multiplexing (OFDM) systems in underwater communications. The pilot structure is
designed in such a way that the propagation channels are tracked from symbol to symbol. Moreover, the
low-density parity-check code (LDPC) channel coding method is applied to overcome the severe fading and
attenuation effects in underwater acoustic environments. We consider this proposed system’s performance in
a measurement-based channel model to evaluate it. In particular, the system’s performance is evaluated for
different levels of channel mobility. Numerical results show that, with the assistance of deep learning, the
channel estimation performance can be improved, depending on how fast the channel changes. Compared
with state-of-the-art benchmarks, our proposal offers better system performance in terms of bit error ratio
and normalized mean square error.

INDEX TERMS UWA communications, supervised learning, frequency selective channels, OFDM, channel
estimation.

I. INTRODUCTION
With the advent of the sixth generation (6G) communi-
cation networks, it will be possible to deploy underwater
applications using fast and reliable acoustic connections [1],
[2]. Thanks to the rapid development of new technologies,
underwater acoustic (UWA) communication has attracted
considerable recent attention from both academia and
industry [3], [4]. UWA communication is more challenging
than conventional radio communication in part because
the propagation speed of acoustic waves in water, roughly
1500 [m/s] is much slower than that of radio waves [5]. For
UWA propagation environments, this low speed of sound
in water causes a significant delay spread, making the loss
high and thus requiring a considerable guard length to com-
pensate for the maximum delay and protect data over long
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propagation distances [6], [7]. The spectral efficiency and
reliability of UWA communication systems are affected by
the randomness of the underwater environments with various
types of noises created by underwater animals. Consequently,
the communication systems should be designed in such a way
to cope with such fluctuations [8]. Therefore, analyzing a
UWA communication system is usually tricky, especially in
time-varying environments when the transceiver moves fast
and suffers from Doppler effects [9], [10].
Like most communication channels, UWA propagation

channels are unknown a priori and should be estimated
in advance for signal detection and other purposed; so
the role of channel estimation is of paramount impor-
tance [11]. For UWA communications, channel estimation
in a frequency-selective environment becomes challenging
due to nonstationary and impulsive noise [12], [13], [14].
In recent years, the orthogonal frequency-division mul-
tiplexing (OFDM) technique has been deployed to map

VOLUME 11, 2023
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 96603

https://orcid.org/0000-0003-1414-4032
https://orcid.org/0000-0002-5675-8414
https://orcid.org/0000-0002-9454-4919


V. D. Nguyen et al.: Deep Learning-Assisted Channel Estimation

frequency-selective channels into the corresponding static
and frequency-flat ones with multiple subcarriers [15],
[16]. Moreover, OFDM systems successfully eliminate
inter-symbol interference (ISI) via orthogonal subcarriers
to encode the transmitter signal and allow the subcarriers’
signal spectrum to overlap. However, if the length of a signal
sample is expanded, a time variation of the channels may
arise in the signal sample, making OFDM systems sensitive
to time-varying effects [17]. In a specific way, channel
state information must be gathered to utilize multipath
effects generated by many scatterers in the environment
for equalization, and therefore demonstrating the signal
recovery efficiently [18], [19]. Alternatively, in OFDM-based
UWA communications systems, the propagation channels are
often too complex to analyze and must be collected at the
receiver to compensate for the propagation loss. To address
this problem, pilot symbols known to both transmitter and
receiver can be used, together with interpolation techniques
to estimate the channels between the gap of two consecutive
received pilot symbols. Even though linear minimum mean
square error estimation offers channel estimates with high
quality, preliminary information on channel statistics is costly
to obtain due to high mobility [20]. In contrast, the least
squares (LS) estimation method requires low computational
complexity without any prior channel information. As a
trade-off, it provides an initial estimated version of multi-path
channels [17].
A variety of studies to improve performance, such as

channel estimation, equalization, and channel coding have
been applied for UWA systems. Some relevant channel
coding techniques have been utilized inUWAcommunication
systems to achieve specific objectives. In [21], convolu-
tional codes and Reed Solomon codes were implemented
for UWA systems by virtue of their simplicity. A turbo
code was applied for a single-carrier UWA communication
system with promising results in improving communication
reliability in [22]. A comparison among four kinds of
channel coding comprising the convolutional, turbo, polar,
and low-density parity-check(LDPC) codes exhibits that
excepting convolutional codes, the remaining channel coding
techniques perform equivalently when the length of the
data blocklength grows [23]. At a finite blocklength, LDPC
codes have received much attention due to their outstanding
performance in time and frequency selective fading channels.
More specifically, an application of Quasi-Cyclic LDPC
(QC-LDPC) codes in UWA communications was studied
in [24], which indicates that the QC-LDPC can effectively
improve the system efficiency. In addition, QC-LDPC codes
have received significant attention in terms of hardware
implementations of the encoding and decoding procedures.
The 3GPP process has accepted theQC-LDPC as the standard
channel coding scheme for 5G enhanced mobile broadband
(eMBB) data channels [25].

Artificial intelligence has attracted considerable attention
from academia and industry [26], [27] with its main purpose
being introducing intelligence into systems via machine

learning. In recent years, variousmachine learning algorithms
have been introduced in wireless communication systems
to solve critical problems [28], [29]. More specifically,
deep learning methods have been introduced to enhance
wireless communication systems’ channel estimation and
detection performance [30], [31]. In acoustic propagation
environments, transmitted waves are absorbed by various
factors through multi-path channels, obstacles, and animals.
In practice, the channel impulse responses must be estimated
precisely at the receiver to decode the transmitted signals.
Note that minimummean square error estimation is nontrivial
to apply for acoustic environments with complex charac-
teristics and lacking channel statistics given high mobility
conditions. The other channel estimation methods are sub-
optimal, which may produce high channel estimation errors
as the received signal-to-noise ratio (SNR) is low. In order to
improve the estimated quality of channel state information
deep neural networks based on measurement data have
been integrated into a canonical framework. As demon-
strated in [32], the propagation channels themselves create
certain patterns that match well with convolutional neural
network (CNN) architectures. Consequently, CNNs have
been deployed as one of the most common neural networks
for channel estimation in UWA communications [33].
The correlation among channel coefficients brings superior
advantages such as weight sharing, feature extraction and
dimension reduction. CNNs can extract useful information
from datasets in an input-to-output relation to predict desired
results. Up to now, a few related works have been exploited
data-driven approaches in general and CNN architectures for
channel estimation purposes in UWA-OFDMcommunication
systems [34], [35], [36]. However, to the best of our
knowledge, no related work in the literature has investigated
the support of CNNs for channel estimation in UWA-OFDM
systems with the presence of channel coding.

This paper considers UWA-OFDM systems based on
channel measurements comprising various characteristics
and distortions. Even though it is difficult to simulate the
channel as a probability distribution, the channel model can
be mathematically approximated as in [37] that is effectively
employed. Furthermore, LDPC coding is deployed to mod-
erate the channel fading and attenuation effects in UWA
communications. In principle, our main contributions are
established in the system design and system performance
evaluation, which are summarized as follows:

• The measurements take into account the effects of
Doppler, propagation loss, and phase shifts. Using
these perspectives, we develop a channel model based
on measurements, aiming to minimize computational
complexity while accurately representing the key char-
acteristics of real propagation channels. Additionally,
we propose a hybrid channel estimation approach
that combines the efficiency of machine learning with
traditional time domain channel estimation. Thismethod
involves training a CNN architecture to map channel
estimates to their corresponding true channels.
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• To compensate for propagation loss and frequency selec-
tive fading in UWA communications, we employ LDPC
channel coding. By adopting the LDPC channel coding
structure recommended by 3GPP, we not only enhance
the receiver’s ability to decode the intended signals but
also ensure that the computational complexity remains
within acceptable limits.

• Numerical results demonstrate the efficacy of the
system design that combines channel coding and deep
neural networks, evaluating its performance based
on mean square error (MSE) and bit error ratio
(BER). Additionally, we analyze the system’s perfor-
mance across various Doppler frequencies to show-
case the robustness of the hybrid channel estimation
method.

The rest of this paper is organized as follows: Section II
presents in detail the considered UWA-OFDM system
model over frequency-selective channels. In Section III,
we describe the support of deep neural networks in improving
the model-based channel estimation method, namely least
squares. Section IV gives extensive numerical results to
assess the system performance. Finally, Section V draws the
main conclusions.

Notations: The regular transpose is denoted by the
superscript (·)T . The notation mod (·, ·) is the modulo
operation. Pr(·) is the probability of an event. CN (·, ·)
denotes the circularly symmetric Gaussian distribution. O(·)
is the big-O notation that denotes the order of computational
complexity. Moreover, ∥ · ∥F denotes the Frobenius norm of
a matrix.

II. UWA-OFDM SYSTEM
This section presents a UWA system model, where a
transmitter communicates with a receiver over a broad-
band time-frequency selective propagation environment. The
transmitter and the receiver are equipped with a single
antenna, and the signal processing architecture is illustrated
in Fig. 1.

A. TRANSMITTER
In the data transmission phase, the data bit stream is divided
into portions at the transmitter, each comprising K bits.
Mathematically, let us denote each data portion as c =

[c1, . . . , cK ], where ck ∈ {0, 1} is the k-th bit information
of c. The data bit portion ck is fitted into the LDPC encoder
to generate a vector s of N bits. Mathematically, we have the
following relations

N = K/CR, (1)

K ≤ αZc. (2)

whereCR is the code rate; the constantα represents the coding
scheme suggested by the 3GPP [38]; and Zc is denoted as the
lifting size. Specifically, the two suggested schemes for the
LDPC encoder are the first base graph (BG1) and the second
base graph (BG2) with the detailed parameter settings:

BG1 has CR with 1/3 ≤ CR ≤ 8/9 and α = 22; and BG2
with 1/5 ≤ CR ≤ 2/3 and α is

α =


10, if K > 640,
9, if 560 < K ≤ 640,
8, if 192 < K ≤ 560,
6, elsewhere.

(3)

For the given length of data portions K and the LDPC coding
scheme, i.e., either BG1 or BG2, we formulate the parity
check matrix H based on the following steps
1) For given K and α, Zc is approximately selected, which

is closest to K/α, by utilizing [38, Table 5.3.2-1] and
then the set index iLS is further defined.

2) From the value of iLS, the lifting matrix HBG can be
defined as

[HBG]ij =

{
−1, if Vij = −1,
Pij, elsewhere.

(4)

where [HBG]ij denotes the (i, j)-th element of matrix
HBG; Vij is the lifting coefficient, which is defined
by utilizing [38, Table 5.3.2-2] for BG1 and by
utilizing [38, Table 5.3.2-3] for BG2; and Pij =

mod (Vij,Zc), ∀i, j satisfied Vij ̸= −1. We note that the
matrix HBG is of size mb × nb, which depends on the
LDPC coding scheme either BG1 or BG2.

3) The parity check matrix H of size mbZc × nbZc is
extended from HBG by: i) replacing each element
with value −1 by a zero matrix of size Zc × Zc; and
ii) replacing each element with value Pij by a cicular
permutation matrix Cij of size Zc × Zc, where Cij is
attained by circularly shifting the identity matrix Iij of
size Zc × Zc to the right Pij times. We note that the size
of the parity checkmatrixH satisfies nbZc = K+mbZc.

4) For the sake of convenience in encoding, the parity
check matrix is decomposed into as

H =

[
A B 000
D E I

]
. (5)

where the matrix A and I is of size oZc × αZc with o
being a portion of the number of parity bits; the matrix
B is of size oZc × oZc; the matrix 000 is of size oZc ×

(mb − o)Zc; the matrix D is of size (mb − o)Zc × αZc;
the matrix E is of size (mb − o)Zc × oZc; and I is the
identity matrix of size (mb − o)Zc × (mb − o)Zc.

Let us denote the vector s = [c,pa,pc]T of size K +mbZc
with c = [c1, . . . cK ]T , pa = [pa1, . . . , pao]T , and pc =

[pc1, . . . , pc(mb−o)]
T . Here, the vectors pa and pc involve the

parity bits, which are designed by the following equation
Hs = 0. From (5), we obtain a system of equations as
follows

Ac + Bpa + 000pc = 0, (6)

Dc + Epa + Ipc = 0. (7)
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FIGURE 1. The considered system model over a UWA communication environment.

Conditioned on the full rank of matrix B, the solution to
pa and pc is respectively expressed as

pa = B−1Ac, (8)

pc = Dc + EB−1Ac. (9)

After that, the vector s is processed by the low density
parity check coding algorithm [38, Section 5.3.2] so that the
encoded codeword is u = [c2Zc−1, . . . , cK ,pa,pc]T of size
(mb − 2)Zc + K . Hence, from (1), we obtain N = (mb −

2)Zc + K = K/CR. The encoded codeword u is fed into
the modulation module, say M-QAM (quadrature amplitude
modulation). This module will convert the binary bits into
modulated signals by a finite constellation set comprising the
M points. In order to handle the frequency selective issue, the
system divides the given system bandwidth B into Nc sub-
carriers where the channels are frequency flat. The codeword
u is converted from frequency domain to time domain by
exploiting inverse fast Fourier transform (IFFT) with the
support of the serial-to-parallel (S/P) and parallel-to-serial
(P/S) modules. Mathematically, let us define Ñ the number
of OFDM symbols, then it holds that

N = ÑNc log2 M . (10)

The n-th OFDM symbol in the frequency domain, denoted by
xn is constructed as

xn = [xn0 , x
n
1 , . . . , x

n
Nc−1]

T . (11)

then the IFFT module will transform this signal to the time
domain, following by the pilot insertion module, which is
later utilized for the channel estimation at the receiver. The
pilot signal, denoted by p̃n, includes 2NG+1 samples, which
is constructed as

p̃n =

0, · · · , 0︸ ︷︷ ︸
NG zeros

, p̃n, 0, · · · , 0︸ ︷︷ ︸
NG zeros


T

. (12)

where p̃n is the complex pilot samples allocated to the n-th
OFDM symbol. In (12), the first NG zero samples contribute
as the guard interval, while the last NG zero samples will

TABLE 1. UWA channel parameter measurements provided in [37] with
the 30 path gains.

be utilized to cope with the multipath effects. Note that
NG should be larger than the number of multipaths, i.e.,
alternatively called the length of channel impulse response.
Let us denote x̃n = [x̃n0 , x̃

n
1 , . . . , x̃

n
Nc−1]

T is the n-th OFDM
symbol in time domain, then the represented signal after the
pilot & guard insertion module is [p̃n, x̃n]T with the size
Nsym = Nc + 2NG + 1.

B. UWA CHANNEL MODEL
In this paper, we exploit the time-variant channel impulse
response model [39] to acquire the channel as follows

g(τ, t) =
1

√
L

L−1∑
l=0

1
√
Nl

Nl∑
n=1

cn,lej(2π fn,l t+θn,l )δ(τ − τl). (13)

where τ and t denote the delay spread and time instance,
respectively; L is the number of propagation paths, each
having a separate delay τl ; Nl is the number of paths with
the same delay spread τl . In the Nl paths, the n-th path is
characterized by the Doppler frequency fn,l , the path gain
cn,l , and the phase shift θn,l . We stress that the channel
impulse response in (13) can be applied for variouswide-band
propagation environments with different mobility and phase
shifts. For a specific UWA propagation environment, the set
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of parameters Al = {Nl, cn,l, fn,l, θn,l} can be determined by
matching the model (13) with the measurement data. For the
l-th path, let us define the time-complex channel ul(t) as

ul(t) =

Nl∑
n=1

cn,lej(2π fn,l t+θn,l ). (14)

then the optimized set Al is attained as the solution of the
following optimization problem

minimize
{Nl ,cn,l ,fn,l ,θn,l }

(
1
tmax

∫ tmax

0
|ul(t) − ûl(t)|pdt

)1/p

subject to 0 ≤ θn,l ≤ 2π, ∀n,

fn,l ≤ 0, ∀n,

0 ≤ cn,l ≤ 1, ∀n,

Nl ∈ N. (15)

where p represents the ℓp-norm, tmax is the maximum
time instance, and ûl(t) represents the measurement of the
time-complex channel ul(t), which is shown in Table 1. The
practical aspects of problem (15) are given in Remark 1.
Remark 1: Unlike most previous works in the literature,

our work investigates the system performance based on
channel modeling with practical features. Specifically, the
time-variant channel model is matched to real UWA prop-
agation environments by considering problem (15) over a
sufficiently large dataset comprising many different propa-
gation paths. One can obtain the solution to problem (15) by,
for example, the ℓ-norm optimization approach.

C. RECEIVER
After the signals are transmitted over the UWA environment,
the received signal yn(i), ∀i = 1, . . . ,Nsym − 1 related to
the n-th OFDM symbol and the i-th sampling interval is
formulated as

yn(i) =

L−1∑
l=0

gn(l, i)xn(i− l) + wn(i). (16)

where g(n)(l, i) is the corresponding channel impulse
response; and wn(i) is additive white Gaussian noise dis-
tributed aswn(i) ∼ CN (0, σ 2) with σ 2 being the noise power.
By removing the guard interval and pilot signals, the received
signal in the frequency domain is given as follows

Y n(k) =
1
Nc

Nc−1∑
i=0

yn(i)e−j2πki/Nc

(a)
=

Nc−1∑
m=0

L−1∑
l=0

Xn(m)Gnl (m− k)e−j2π lm/Nc

+W n(k), k = 0, · · · ,Nc − 1. (17)

where (a) is obtained by exploiting yn(i) in (16). Moreover,
W n(k) and Gnl (k) are the Fourier transform of the noise
wn(i) and the channel impulse response gn(l, i), respectively.

In more detail, Gnl (k) is mathematically formulated as

Gnl (k) =
1
Nc

Nc−1∑
m=0

gn(l,m)e−j2πmk/Nc . (18)

Consequently, the received signal in the frequency domain,
denoted by Yn

∈ CN
c is defined as

Yn
= GnXn

+ Wn. (19)

where the following definitions hold

Yn
= [Y n(0),Y n(1), . . . ,Y n(Nc − 1)]T , (20)

Xn
= [Xn(0),Xn(1), . . . ,Xn(Nc − 1)]T , (21)

Wn
= [W n(0),W n(1), . . . ,W n(Nc − 1)]T . (22)

which is the vector of received signal, transmitted signal, and
noise, respectively. Meanwhile, the channel matrix of the n-th
OFDM symbol, denoted by Gn

∈ CNc×Nc , is

Gn
=


b0,0 b0,1 · · · b0,Nc−1
b1,0 b1,1 · · · b1,Nc−1
...

... · · ·
...

bNc−1,0 bNc−1,1 . . . bNc−1,Nc−1

 . (23)

where the (m, k)-th element of matrixGn, say bm,k , is defined
as follows

bm,k =

L−1∑
l=0

Gnl (k − m)e−j2πml/Nc ,m, k = 0, 1, · · · ,Nc − 1.

(24)

We note that if the channel impulse responses are static,
i.e., time-invariant in each OFDM symbol, then the channel
matrix Gn in (23) is approximately a diagonal matrix. For
the time-invariant channels, the ICI components disappear
as the off-diagonal elements bm,k , ∀m ̸= k, are zeros. The
orthogonality of the sub-carriers is preserved and the desired
signal is obtained at the receiver as follows

Xn
= (Gn)−1Yn. (25)

which is low computational complexity since it is straight-
forward to obtain the inversion of a diagonal matrix.
Nonetheless, in UWA communications, the channel impulse
responses are time-variant due to, for example, the fast
movement of the transceiver. For such, the channel matrix
in (23) is nondiagonal. Besides, the orthogonality of the
subcarriers is broken down because of the rapid change
of the propagation channels in the time domain and the
Doppler shifts. The nondiagonality of the channel matrix
Gn introduces inter-carrier interference. It is nontrivial to
compute the matrix inverse in this phenomenon, especially
it becomes problematic with a rapid change of the channel
impulse responses, which require a large number of sub-
carriers. There are fortunately a small number of non-zero
elements inGn, while most of its elements are zeros due to the
finite value of the maximumDoppler frequency. The sparsity,
which Gn creates, makes a banded matrix and acquires an
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opportunity to compute the matrix inverse with a low cost.1

We set bm,k = 0 at for the elements distant from the main
diagonal of the channel matrix Gn as defined in (26), as
shown at the bottom of the next page. The expression in (26)
indicates that bm,k = 0 if |k − m| ≥ q/2, where q is
the size of the banded matrix Gn. We emphasize that the
banded size q represents the number of dominant inter-carrier
interference terms. The inverse matrix of the banded matrix
can be obtained by applying, for example [40] with the
computational complexity in the order of O(2qN 2

c ).
2 The

signal Xn is then demodulated to obtain the output data Dn

comprising both the information of data bits and parity bits.
We now borrow the generalized minimum-sum decoding

algorithm using a linear approximation (LAMS) [41] to
construct the LDPC decoder. Note the parity check matrix H
is sparse in the sense that it only includes the binary elements
and the number of ones, denoted by J̃ , is much less than
mbnbZ2

c . The matrix H is presented by a bipartite graph
comprising nbZc variable nodes, νj, ∀j = 0, . . . , nbZc − 1;
mbZc check nodes, ci, ∀i = 0, . . . ,mbZc − 1; and J̃ edges
ej̃, ∀j̃ = 0, . . . , J̃ − 1. In principle, the i-th check node is
connected to the j-th variable node by the j-th edge if the
(i, j)-th element of the matrixH equals to one. The following
definitions hold
i) The neighbors of the variable node νj include the check

nodes ci, ∀i ∈ C(j), where the set C(j) comprises the
indices of all the check nodes that connect to the variable
node νj.

ii) The neighbors of the check node ci include the variable
nodes νj, ∀j ∈ V(i), where the set V(i) comprises the
indices of all the variable nodes that connect to the check
node ci.

Based on the minimum-sum method, which is a simplified
version of the belief propagation, the initialization of the
channel log-likelihood ratio (LLR) of the j-th bit, denoted
by L(0)j , is defined as follows

L(0)j = log

Pr
(
u(0)j = 0|d

)
Pr

(
u(j)j = 1|d

)
 = d . (27)

where d is a data symbol belonging to the output dataDn, ∀n;
the data symbol d involves several bits that are related the
encoded bits, defined at the initial stage {u(0)j }; Pr(u(0)j = 0|d)

and Pr(u(0)j = 0|d) are the conditional probabilities that

decide u(0)j = 0 or u(0)j = 1 for given d . We use the LLR
expression in (27) to design a belief propagation decoding in
an iterative manner. In particular, the LLR propagates from
the variable node νj to its neighbor check node ci, ∀i ∈ C(j),

1A banded matrix is a sparse matrix, whose non-zero elements are on the
diagonal band that are main diagonal elements and off-diagonal elements on
the either sides.

2By exploiting the Cholesky decomposition, computing the inversion of
matrix Gn

∈ CNc×Nc requires the computational complexity in the order of
O(0.5N3

c ), and therefore the banded matrix reduces the cost significantly as
Nc is large or q is small.

is initially given as L(0)j→i = L(0)j . At iteration v, the check

node ci receives the LLR information L(v)j→i from the neighbor
nodes νj, ∀j ∈ V(i). In the minimum-sum (MS) algorithm, the
backward LLR from the check node ci to its neighbor variable
node νj is formulated as follows

L(v)i→j =

 ∏
j′∈V(i)\{j}

sign
(
L(v)j′→i

) min
j′∈V(i)\{j}

(∣∣∣L(v)j′→i

∣∣∣) . (28)

where sign(·) is the function that obtains the sign of a number.
In order to yield a better performance than the MS algorithm,
one can introduce the nomalized MS (NMS) algorithm as

L(v)i→j = α(v)

 ∏
j′∈V(i)\{j}

sign
(
L(v)j′→i

)
× min

j′∈V(i)\{j}

(∣∣∣L(v)j′→i

∣∣∣) . (29)

where α(v) is the normalized factor. Alternatively, we can
introduce the offset MS (OMS) algorithm that can also boost
the performance of the MS algorithm by an offset factor β(v)

as follows

L(v)i→j =

 ∏
j′∈V(i)\{j}

sign
(
L(v)j′→i

)
× max

(
min

j′∈V(i)\{j}

(∣∣∣L(v)j′→i

∣∣∣) + β(v), 0
)

. (30)

Combining (28)–(30), a linear approximation of the ampli-
tude |L(v)j′→i| can be obtained. Accordingly, the backward LLR
from the check node ci to its neighbor variable node νj is
formulated as follows

L(v)i→j =

 ∏
j′∈V(i)\{j}

sign
(
L(v)j′→i

)
× max

(
α(v) min

j′∈V(i)\{j}

(∣∣∣L(v)j′→i

∣∣∣) + β(v), 0
)

. (31)

After that, the current channel LLR at iteration v is computed
as follows

L(v)j = sign
(
L(0)j

)
max

(
α̃(v)

∣∣∣L(0)j

∣∣∣ + β̃(v), 0
)

+

∑
i∈C(j)

L(v)i→j.

(32)

where α̃(v) and β̃(v) are the adjusting factors that can be
adaptive to the iterations. The LLR information from the
check node ci to the neighbor node νj is updated for the next
iteration as follows

L(v+1)
j→i = L(v)j − L(v)i→j. (33)

The encoded bits u(v)j , ∀j, are defined at iteration v as follows

u(v)j =

{
1, if L(v)j ≤ 0,

0, if L(v)j > 0.
(34)
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We stress that the LPDC decoding process will be terminated
if Hu(v) = 0, where u(v) is the vector gathering all the
decoded bits u(v)j . In this case, there are no bit errors. Oth-
erwise, the LPDC decoding process reaches the maximum
number of iterations and the system suffers from the error
decoding.

III. CNN-AIDED CHANNEL ESTIMATION
This section first exploits the least squares channel estimation
to obtain initial channel estimates. After that, the channel
estimation errors are reduced by utilizing supervised learning
to train a convolutional neural network.

A. PILOT STRUCTURE IN TIME DOMAIN CHANNEL
ESTIMATION
In order to decode the desired signals sent by the transmitter
over the UWA environment, the system should estimate
the propagation channels. In this paper, we apply the pilot
structure in Fig. 2, each OFDM comprising the NG zero
symbols dedicated to the guard interval to mitigate inter-
symbol interference, one pilot symbol, and NG zero symbols
to compensate the multi-path effects from channel impulse
responses. We stress that these zero symbols protect the
received pilot signal not overlapped with the data symbols.
Mathematically, the guard interval, denoted by TG, is selected
so that TG ≥ τmax, where τmax is the maximum propagation
delay. As a consequence, the received pilot symbols are
located in the pilot guard interval as shown in Fig. 2.
The pilot signal in a received OFDM symbol is observed at

the sampling index np with NG ≤ np ≤ NG+ l, where l is the
multiple-path index satisfied 0 ≤ l ≤ L − 1. Corresponding
to the n-th transmit OFDM symbol, the received pilot signal
at the np sampling index is formulated as follows

yn(np) =

L−1∑
l=0

gn(l, np)p̃n + wn(np). (35)

where p̃n is the complex pilot sample defined in (12); and
wnp(np) is AWGN at this sampling index. As illustrated in
Fig. 2, each transmitted OFDM symbol has one non-zero
pilot symbol and 2NG zero samples in the pilot structure,
which protect the non-zero pilot symbol from the multi-path
effects. The information of scattering paths are evaluated
from the received pilot signals. The interpolation is utilized
to reconstruct the channel information from the received pilot

FIGURE 2. The visualization of the pilot structure in each OFDM utilized
for UWA environment.

symbols. After estimating the propagation channels in time
domain, the estimated channel matrix is of size L × Nsym
defined as follows

g̃n =
g̃n(0, 0) g̃n(0, 1) . . . g̃n(0,Nsym − 1)
g̃n(1, 0) g̃n(1, 1) . . . g̃n(1,Nsym − 1)

...
... . . .

...

g̃n(L − 1, 0) g̃n(L − 1, 1) . . . g̃n(L − 1,Nsym − 1)

 .

(36)

where g̃n(l, n) is the channel estimate of the true channel
gn(l, n), ∀l = 0, · · · L − 1, n = 0, · · · ,Nsym − 1. The matrix
Gn in frequency domain, formulated in (26), is computed by
exploiting the FFT transform ofmatrix g̃n after removed pilot.
From the matrixGn, we borrow the suggested method in [42]
to mitigate inter-carrier interference.

In this paper, we interpolate the propagation channels for
all the subcarriers by the curve fitting technique as illustrated
in Fig. 3. From (35), in the n-th OFDM symbol, the channel
impulse response regarding the l-th scattering path and the
np-th sampling index can be obtained by using the least
squares estimation as follows

g̃n(l, np) = yn(np)/p̃n. (37)

We notice that the channel estimate g̃n(l, np) in (36) obtained
by the least squares estimation contaminated by noise. For the
sake of simplicity and for a low computational complexity
design, we utilize the linear interpolation in time domain so
that the channel impulse response of the ninter-th sampling

Gn
=



b0,0 b0,1 . . . b0,q/2 0 0 0

b1,0 b1,1 . . . . . . . . . 0
...

...
... . . . . . . . . . . . . 0

bq/2,0 . . . . . . . . . . . . . . . bNc−1−q/2,Nc−1

0 . . . . . . . . . . . . . . .
...

...
... . . . . . .

... bNc−2,Nc−2 bNc−2,Nc−1
0 0 0 bNc−1,Nc−1−q/2 . . . bNc−1,Nc−2 bNc−1,Nc−1


. (26)
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FIGURE 3. All the channel impulse responses are obtained by the curve
fitting technique.

FIGURE 4. The proposed CNN structure for channel estimation in UWA
environment.

index with np ≤ ninter ≤ np+1 and np+1 implying the index
of the non-zero pilot symbol of the (n+1)-th OFDM symbol,
is computed as follows

g̃n(l, ninter) = g̃n(l, np) +

(
g̃n+1(l, np) − g̃n(l, np)

)
×

(ninter − np)
Nsym

. (38)

where g̃n+1(l, np) is the channel estimate of the true version
gn+1(l, np) in the (n+ 1)-th OFDM symbol.

B. CNN-AIDED CHANNEL ESTIMATION
It should be emphasized that the propagation paths in (13)
are complex numbers, and we must point out that the channel
gains are bounded from above to exploit a neural network to
boost the channel estimation quality. By using the frequency
selective channel model in (13), it holds that

|g(τ, t)| =

1
√
L

∣∣∣∣∣
L−1∑
l=0

1
√
Nl

Nl∑
n=1

cn,lej(2π fn,l t+θn,l )δ(τ − τl)

∣∣∣∣∣
(a)
≤

1
√
L

L−1∑
l=0

1
√
Nl

Nl∑
n=1

∣∣∣cn,lej(2π fn,l t+θn,l )δ(τ − τl)
∣∣∣

(b)
=

1
√
L

L−1∑
l=0

1
√
Nl

Nl∑
n=1

∣∣cn,l ∣∣ , (39)

where (a) is obtained due to the triangle inequality, and (b)
is because the unit modulus, i.e., |ejx | = 1, ∀x. From (39),
it manifests that |g(τ, t)| is bounded, and therefore one can
design a neural network for learning and supporting the
channel estimation module as a consequence of the universal
approximation theorem.

Each estimated channel matrix g̃n constructs the correla-
tion in the time domain and when the paths are close to each
other. Observing that a fully-connected neural network does
not capture such correlation. Consequently, many weights
and biases must be trained, requiring high computational
complexity. Furthermore, a neuron in each hidden layer of
fully-connected neural networks should regularly connect
all the neurons in the previous layer. This neural network
easily suffers from the overfitting issue. Thanks to the matrix
structure constructed in (36), in this paper, we construct and
train a CNN after exploiting time domain channel estimation
to minimize mean square error (MSE) between the channel
estimates and the original channels. The CNN structure
used for our purposes is illustrated in Fig. 4. The proposed
neural network includes the four different kinds of layers:
the input layer, the convolutional layers, the rectified linear
unit (ReLU) activation layer, and the linear layer. The model
includes L̃ convolutional layers. Each layer l ∈ L̃ includes zl
sliding window kernel of size kl × kl will be convolutioned
with the Input Layer I ∈ Rxl−1×yl−1×zl−1 , where xl−1 × yl−1
are the size of the convolutional layer l − 1. After each
convolutional layer, we use activation function ReLU. Each
matrix g̃n ∈ CL×Nsym is considered to formulate the input.
Neural networks are canonically constructed for real data,
so the channel estimate g̃n is split into the real and imaginary
parts as follows

T =
(
Re[g̃n], Im[g̃n]

)
. (40)

where Re[·] and Im[·] yield the real and imaginary part of
a complex number. Similarly, the corresponding output is
defined as

O =
(
Re[ĝn], Im[ĝn]

)
. (41)

where ĝn is the output of the CNN. The training process
performs the following mapping(

Re[g̃n], Im[g̃n]) → (Re[ĝn], Im[ĝn]
)
. (42)

with g̃n being the time domain channel estimation produced
by the least squares method in (36) and ĝn is its refined
version by the CNN.

Since the ultimate goal of our CNN is to minimize theMSE
between the channel estimates and their true versions, the loss
function is defined as

L(W ,B) =
1

Ñ

Ñ∑
n=1

∥∥ĝn − gn
∥∥2
F . (43)

where W and B are the weights and bias, respectively. Due
to [43], the complexity of the convolutional layers can be
calculated as O(

∑
l∈L̃ xlylk

2
l zlzl−1). Therefore, the linear

layer will compute xLyLzlxlinearylinear multiplications with
xL × yL and xlinear × ylinear are the size of the last convolution
layer and the linear layer. Note that we apply the CNN for the
sequential OFDM symbols, so the sizes of the convolutional
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FIGURE 5. The properties of the channel measurements: (a) The channel impulse response h(τ, t) with the maximum Doppler frequency
fD,max = 2 [Hz]; (b) The channel in frequency domain H(f , t) with the maximum Doppler frequency fD,max = 2 [Hz]; (c) The channel impulse
response h(τ, t) with the maximum Doppler frequency fD,max = 8 Hz; and (d ). The channel in frequency domain H(f , t) with the maximum
Doppler frequency fD,max = 8 [Hz].

layer and the linear layer are 2L × Nsym. The computational
complexity of the proposed CNN is obtained in the order of

CCNN = O

4zLL2N 2
sym + 2LNsym

L̃∑
l=1

zlzl−1k2l

 . (44)

which unveils the quadratic order of several system parame-
ters and the neural network.
Remark 2: In this paper, we have designed a UWA-OFDM

transceiver using fundamental modules such as the
CNN-based channel estimator, the LDPC coding/decoding,
and the interpolation-based channel reconstruction to design
a transceiver for data transmission. The system design is
validated using real channel measurements, including various
losses and distortions.

IV. NUMERICAL RESULTS
The measurement data were collected from [44] and utilized
to compute the channel features by the ℓp-norm optimization
as in (15). The distance between two transducers is 100 [m],
and the depth of the water is 10 [m]. In Fig. 5, the channel
properties are visualized in both the time and frequency
domains with the Doppler frequency fD = 2 [Hz] and
fD = 8 [Hz]. We observe that all the channels are time-
varying. However, Fig. 5(a) and Fig. 5(b) show the slow
time-varying channels in the time and frequency domain,
respectively. Meanwhile, Fig. 5(c) and Fig. 5(d) indicate the
fast time-varying channels whose amplitudes are attenuated
rapidly after a few paths. Moreover, the random fluctuations
of fast time-varying channels are much more than those
of slow time-varying channels as shown in Fig. 5(b) and
Fig. 5(d).
For the evaluations of the system performance, we consider

an UWA-OFDM system with the operation bandwidth
8 [kHz]. The number of subcarriers is 256 and the guard
interval includes 60 samples. Both the Doppler frequency
and the power delay profile are based on the measurement
data. The CNN architecture is given in Table. 2. In the traing
stage, the Adam method is exploited as the optimizer with
the learning rate 0.0001. The number of epochs is 20 and
the mini-batch size is 32. The validation patience is 10.
In order to train and test the considered CNNmodel, a dataset
comprising the 12000 realizations of the instantaneous

TABLE 2. CNN Architecture model for channel estimation.

FIGURE 6. MSE of the channel estimation versus the SNR with the
maximum Doppler frequency fD,max = 8 [Hz] and and QPSK.

channels was gathered. Specifically, the 8400 realizations
utilized for the training stage, the 1800 realizations for the
validation stage, and the 1800 realizations for the testing
stage.

We plot the mean square error (MSE) of the channel
estimation with the Doppler frequency and different modu-
lation schemes as in Figs. 6–8. The results demonstrate the
effectiveness of the LPDC channel coding in providing high
channel estimation quality. For all the parameter settings,
the MSE is quite low, even with the high noise power.
Moreover, the MSE drastically increases with the modulation
index. For example, the MSE gets worse about one fold
at the SNR 0 [dB] as the modulation index increases from
4 to 16. Furthermore, our proposed deep learning estimator
yields better MSE performance than the conventional method
exploiting linear interpolation. Superior improvements are
observed, especially when the SNR grows up. The benefits of
deep learning come from the effective exploitation of channel
state information in the dataset.
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FIGURE 7. MSE of the channel estimation versus the SNR with the
maximum Doppler frequency fD,max = 8 [Hz] and 16 QAM.

FIGURE 8. MSE of the channel estimation versus the SNR with the
maximum Doppler frequency fD,max = 8 [Hz] and 64 QAM.

FIGURE 9. BER versus the SNR with the maximum Doppler frequency
fD,max = 8 [Hz] and QPSK.

In Figs. 9-11, we show the BER performance of different
modulations with two kinds of LDPC encoded schemes.
Although the MSE of the two systems with different LPDC
parameter settings is in small ranges, i.e., in the order of 10−4,
the BER of these systems is significant. The improvement
of the BER performance by increasing the signal strength
is aligned with that of the MSE performance. It means
that the BER decreases gradually when the SNR increases,
as displayed in Figs. 9-11. If the modulation level gets higher,

FIGURE 10. BER versus the SNR with the maximum Doppler frequency of
fD,max = 8 [Hz] and 16-QAM.

FIGURE 11. BER versus the SNR with the maximum Doppler frequency of
fD,max = 8 [Hz] and 64-QAM.

the BER will decrease because it is more difficult for the
receiver to separate the signal from the noise. With both
the modulation indices, the BER values of the system using
the BG2 matrix for encoding shows better performance than
what the BG1 matrix has done. This can be explained by
the code rate defined in two encoding schemes. Specifically,
the BG1 is targeted for high data rates and small code
lengths. In contrast, the BG2 matrix is targeted for low
data rates and large code lengths. The more parity bits
produce, the higher accuracy due to the LDPC decoder
module. We also observe that the effects of inter-carrier
interference are very significant in the UWA environment.
Consequently, if the system does not utilize the channel
equalizer, the BER is higher than the other benchmarks. For
the three benchmarks exploiting the inter-carrier interference
cancellation matrix, the BER of the considered system is
better than the conventional least squares.

Next, we plot the BER performance as a function of the
SNR with a lower Doppler frequency, say fD,max = 2 [Hz],
which is illustrated in Fig. 12. The BER is much better
than the scenarios fD,max = 8 [Hz]. However, there
are some significant differences: There is no difference
between the benchmarks using the inter-carrier interference
cancellation matrix. The small Doppler frequency in this
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FIGURE 12. BER versus the SNR with the maximum Doppler frequency of
fD,max = 2 [Hz] and 16-QAM.

FIGURE 13. BER versus the SNR of the scenarios with and without the
LDPC for a system having the maximum Doppler frequency
fD,max = 8 [Hz] and QPSK.

scenario makes the effects of inter-carrier interference effect
not significant. Another critical point is that the CNN model
works productively and fits the data well. Hence, the quality
of the channel estimates is very accurate and close to the true
channels. It leads to the BER of these benchmarks are almost
overlapped with each other.

In Fig. 13, we show the BER performance using
the QPSK modulations with the two considered LDPC
encoded/decoded schemes. The system exploiting the LDPC
schemes and CNN-based channel estimator performs better
than the remaining benchmarks. As the channel estimation
errors are reduced thanks to the CNN-based channel esti-
mator, the LDPC decoder will detect data symbols more
precisely. The system gains much better BER than the
system exploits only CNN-based channel estimator without
the support of the LPDC.

V. CONCLUSION
This paper has manifested the effectiveness of the data-driven
method in channel estimation for UWA communications.
Motivated by the recent report of 3GPP, the LDPC code has
been exploited to boost communication reliability. The least
squares estimation initially obtains the channel estimates in
the time domain. After that, the supervised learning and the
ℓp-norm optimization cooperated in training a CNN from real
channel measurements. We have demonstrated the superior

improvements of the proposed system model by extensive
numerical results under different system parameter settings.
Extensions of our framework to multiple-input multiple-
output (MIMO) UWA systems with different neural network
architectures are potential extensions of interest in this work.
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