
Received 13 July 2023, accepted 24 August 2023, date of publication 1 September 2023, date of current version 21 September 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3311350

Robustness Analysis of a Fixed-Time Convergent
GNN for Online Solving Sylvester Equation and
Its Application to Robot Path Tracking
ZHIGUO TAN AND ZHENLUN YANG
School of Information Engineering, Guangzhou Panyu Polytechnic, Guangzhou 511483, China

Corresponding author: Zhiguo Tan (tanzhiguo136@163.com)

This work was supported in part by the Guangdong Innovative Projects with Characteristics in Colleges and Universities under Grant
2022KTSCX292, in part by the Scientific Research Project of Guangzhou Panyu Polytechnic under Grant 2022KJ03, and in part by the
Guangzhou Municipal Science and Technology Bureau of China under Grant 202002030133.

ABSTRACT It is shown in a recently published work that the GNN (gradient-based neural network)
model activated by the msbp (modified sign-bi-power) function exhibits superior fixed-time convergence
for solving the Sylvester equation in the noise-free case. Encouraged by this point, in this paper, we study
its robust performance when it is disturbed by three kinds of noises, i.e., dynamic bounded vanishing noise,
dynamic bounded non-vanishing noise, and constant noise. Detailed mathematical analyses are conducted
to show the robustness properties (e.g., convergence property, the upper bound of steady-state solution error)
of the GNN model, which are further verified by two simulation examples. Ultimately, the GNN model is
applied to the path tracking of a planar four-link redundant robot arm.

INDEX TERMS Gradient-based neural network, Sylvester equation, robustness analysis, robot path
tracking.

I. INTRODUCTION
In the domain of scientific research and engineering,
a considerable number of applications [1], [2], [3], [4], [5],
[6], such as observer design, state estimation, commutative
rings, and pole placement, are germane to the solution to the
Sylvester equation. Mathematically, the Sylvester equation to
be investigated can be formulated as the following form [6]:

CX (t) − X (t)D+ F = 0 ∈ Rm×n, (1)

where C and D are respectively m-dimensional and
n-dimensional squarematrices,F is anm×n rectanglematrix,
and X (t) is used to stand for the unknown m × n matrix
variable that needs to find out. Because of its wide application
background, solving the Sylvester equation is of monumental
significance and has been widely concerned [7], [8], [9], [10].
Generally, two types of solving schemes are avail-

able for the Sylvester equation [6]. One is the classical
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numerical algorithms with diverse forms, e.g., the Bartels-
Stewart algorithm [11], skew-Hermitian splitting iteration
algorithm [12], iterative algorithms based on gradient [13],
[14]. Due to the intrinsic property of serial computing,
numerical algorithms may be short of competitiveness and
efficiency for the situation where a real-time calculation
is required, and the coefficient matrices involved are of
large dimension [15], [16]. The other is the parallel-
processing schemes, e.g., recurrent neural networks (RNNs).
In comparison to numerical algorithms, RNNs, which have
been applied to robot motion planning [17], [18], [19],
[20], [21], [22], time-varying linear system [23], nonlinear
control [24], are more appropriate and provide a puissant
alternative for large-scale and/or real-time computation due
to their two intrinsic characteristics: parallel-processing and
hardware implementability [5], [25], [26].

Gradient-based neural network (GNN) and zeroing neural
network (ZNN) are two typical representatives of RNNs [25],
[26]. For GNN and ZNN, offline training is not required,
while their convergence can be guaranteed in theory [27].
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This feature, together with the aforementioned two intrinsic
characteristics, renders GNN and ZNN to be potent com-
puting tools that can be applied to diverse scenarios. As for
the Sylvester equation solving, many ZNN models were
proposed. An integration-enhanced ZNN model activated
by nonlinear function was proposed in [9]. In [5], a ZNN
model with an exponential time-varying parameter was
designed. In [2], to solve the complex-valued Sylvester
equation, a complex-valued ZNN model was established.
These ZNN models all take advantage of the derivative
information of the time-varying coefficients and can tackle
the time-varying Sylvester equation at the cost of a relatively
complex structure. On the other hand, some GNN models
that ignore the derivative information and thus have a simple
structure were proposed to solve the static Sylvester equation.
A linear GNN model with global exponential convergence
was investigated in [15]. Note that exponential convergence
belongs to infinite-time convergence, and finite-time conver-
gence is more favorable. To achieve this goal, a GNN model
that takes the sbp (sign-bi-power) function as its activation
function was proposed in [28]. Along with the deep-going
of the research, it is found that finite-time RNNs (including
GNNs) may also be short of competitiveness and efficiency
for some real-time applications that need to meet strict time
limits [29] due to the fact that their convergence times are
dependent of the initial value of the neural states. To get
around this issue, a fixed-time convergent GNN model that
takes the modified sbp (msbp) function as its activation
function was thus proposed in [26], which is formulated as
follows:

Ẋ (t) = −ηCT9msbp(CX (t) − X (t)D+ F)

+ η9msbp(CX (t) − X (t)D+ F)DT, (2)

where scalar parameter η > 0 is germane to the convergence
time, and 9msbp(·) ∈ Rm×n is called the activation function
array with its every element being the function ψmsbp(·)
defined as

ψmsbp(x) = a|x|µsign(x) + bx + c|x|νsign(x). (3)

Herein, a, b, c > 0, 0 < µ < 1, and ν > 1.
In comparison to the GNN models presented in [15]

and [28], it is found that the GNN model (2) without
taking any noises into account can attain superior fixed-time
convergence [26]. It’s important to note that noises (including
external perturbation and model realization errors) exist
inevitably in real problems [30]. As a consequence, it is
desirable and of important implications to investigate the
robust performance of the GNN model (2). In view of this,
the main focus of this work is the noise-polluted GNN model
(2) formulated as follows:

Ẋ (t) = −ηCT9msbp(CX (t) − X (t)D+ F)

+ η9msbp(CX (t) − X (t)D+ F)DT
+ R(t), (4)

where R(t) ∈ Rm×n could be a time-variant or constant
bounded noise.

The main contributions and novelties of this study are
stated as follows.
1) The robust performance against three kinds of noises

of the recently-presented msbp-function-activated GNN
model (4) for solving the Sylvester equation is studied.

2) Theoretical analyses show that if disturbed by a dynamic
bounded vanishing noise, the GNN model (4) can still
achieve fixed-time convergence, and if disturbed by
a dynamic bounded non-vanishing or constant noise,
an SSSE (steady-state solution error) exists and has a
bound.

3) The convergence time of fixed-time convergence, the
SSSE bound, and the finite time and exponential
convergence rate for the solution error approaching the
bound are also estimated.

4) Two simulative examples are conducted to verify the
theoretical analysis. In addition, the GNN model (4)
is successfully applied to the path tracking of a planar
four-link redundant robot arm.

The rest of this paper is structured as follows. In Section II,
the robustness of the GNN model (4) in the presence of three
types of noises is theoretically investigated. In Section III,
Two simulation examples are provided to verify the theo-
retical results. In Section IV, a path-tracking example of a
planar four-link redundant robot arm, is provided to show
the feasibility and efficacy of the GNN model (4) to robotic
applications. Finally, some remarks are given in Section V.

II. ROBUSTNESS ANALYSIS
In this section, the robustness of the GNN model (4) in the
presence of three kinds of noises (i.e., dynamic bounded
vanishing noise, dynamic bounded non-vanishing noise, and
constant noise) is theoretically investigated. For clarity, it is
assumed that the Sylvester equation (1) admits a unique
solution. Before presenting the main results, the following
lemma is offered to facilitate the subsequent analysis.
Lemma 1 [31], [32]: If 0 < ρ ≤ 1 and ϱ > 1, then

K∑
i=1

ζ
ρ
i ≥

(
K∑
k=1

ζi

)ρ
,

K∑
i=1

ζ
ϱ

i ≥ K 1−ϱ

(
K∑
i=1

ζi

)ϱ
,

are satisfied for non-negative numbers ζi, i = 1, 2, . . . ,K .

A. DYNAMIC BOUNDED VANISHING NOISE
When R(t) is a dynamic bounded vanishing noise, we have
the following theoretical result regards the convergence of the
GNN model (4).
Theorem 1: For the Sylvester equation (1) with the unique

theoretical solution X∗, if GNN model (4) is disturbed by a
dynamic bounded vanishing noise R(t) satisfying |rij(t)| ≤

ϵ|εij(t)|, where rij(t), εij(t) are separately the ijth elements of
R(t) and matrix X (t) − X∗, and ϵ > 0 is a constant. Then,
under arbitrary initial condition X (0), the neural variable X (t)
of the GNN model (4) with ληb ≥ ϵ attains fixed-time
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convergence, and the upper bound of convergence time:

Tmax =
2

ηa(2λ)
1+µ
2 (1 − µ)

+
2(mn)

ν−1
2

ηc(2λ)
1+ν
2 (ν − 1)

, (5)

where λ > 0 denotes the minimal eigenvalue of PTP with
matrix P defined later.

Proof: For the convenience of expression, let X∗
∈

Rm×n indicate the theoretical solution of the Sylvester
equation (1), and two vector variables are defined, i.e.,
w(t) := vec(X (t)) ∈ Rmn and w̃(t) := w(t) − w∗, where
w∗

:= vec(X∗) ∈ Rmn and vec(·) is the vectorization
operator [33], [34]. In view of the property of the Kronecker
product ⊗: vec(AXB) = (BT ⊗ A)vec(X ), the following
equivalent vector-form of the matrix-form GNN model (4)
is handily gained.

˙̃w(t) = ẇ(t)

= −η(In ⊗ CT
− D⊗ Im)vec(9msbp(CX (t) − X (t)D

+ F)) + vec(R(t))

= −η(In ⊗ CT
− D⊗ Im)9v

msbp(vec(CX (t) − X (t)D

+ F)) + r(t)

= −ηPT9v
msbp((In ⊗ C − DT

⊗ Im)(w(t) − w∗)) + r(t)

= −ηPT9v
msbp(Pw̃(t)) + r(t), (6)

where In stands for the n-by-n unit matrix, 9v
msbp(·) =

vec(9msbp(·)) ∈ Rmn, r(t) = vec(R(t)), and matrix P :=

In ⊗ C − DT
⊗ Im.

In view of (6), a Lyapunov function based on
Euclid-norm ∥ · ∥2 is defined as ϖ (t) = ∥w̃(t)∥22/2 [26],
[33]. The conclusions that ϖ (t) is of positive definiteness
andϖ (t) → +∞ provided w̃(t) → ∞ are clear. Now, we are
going to compute the time derivative ofϖ (t) as follows:

ϖ̇ (t) = w̃T(t) ˙̃w(t)

= −η(Pw̃(t))T9v
msbp(Pw̃(t)) + w̃T(t) · r(t)

=

mn∑
i=1

(
− ηa(|[Pw̃(t)]i|2)

1+µ
2 − ηb|[Pw̃(t)]i|2

− ηc(|[Pw̃(t)]i|2)
1+ν
2

)
+

mn∑
i=1

[w̃(t)]i · ri(t)

≤ −ηa(
mn∑
i=1

|[Pw̃(t)]i|2)
1+µ
2 − ηb

mn∑
i=1

|[Pw̃(t)]i|2

− ηc(mn)
1−ν
2 (

mn∑
i=1

|[Pw̃(t)]i|2)
1+ν
2

+

mn∑
i=1

|[w̃(t)]i| · ϵ|[w̃(t)]i|

= −ηa(w̃T(t)PTPw̃(t))
1+µ
2 − ηb(w̃T(t)PTPw̃(t))

− ηc(mn)
1−ν
2 (w̃T(t)PTPw̃(t))

1+ν
2 + 2ϵϖ (t)

≤ −ηa(2λ)
1+µ
2 ϖ

1+µ
2 (t) − 2(ληb− ϵ)ϖ (t)

− ηc(mn)
1−ν
2 (2λ)

1+ν
2 ϖ

1+ν
2 (t)

≤ −ηa(2λ)
1+µ
2 ϖ

1+µ
2 (t) − ηc(mn)

1−ν
2 (2λ)

1+ν
2 ϖ

1+ν
2 (t)

= −k1ϖ
1+µ
2 (t) − k2ϖ

1+ν
2 (t)

≤ 0, (7)

where λ > 0 is the minimal eigenvalue of the real symmetric
matrix PTP, k1 = ηa(2λ)

1+µ
2 , and k2 = ηc(mn)

1−ν
2 (2λ)

1+ν
2 .

Therefore, according to Lemma 2 of [33], w̃(t) is fixed-time
convergent to the equilibrium point w̃(t) = 0. This fact,
together with w̃(t) = w(t) − w∗

= vec(X (t) − X∗),
demonstrates that neural stateX (t) is fixed-time convergent to
the exact solution X∗ of the Sylvester equation (1). Moreover,
according to Lemma 2 of [33], the upper bound of fixed-time
convergence is estimated as

Tmax =
1

k1(1 −
1+µ
2 )

+
1

k2( 1+ν2 − 1)

=
2

ηa(2λ)
1+µ
2 (1 − µ)

+
2(mn)

ν−1
2

ηc(2λ)
1+ν
2 (ν − 1)

,

which completes the proof. ■
Remark 1: A similar result is obtained by ZNN

(Theorem 2 of [7]). The main difference between them is
that Tmax obtained by ZNN model in [7] is irrelevant to the
eigenvalue of matrix PTP.

B. DYNAMIC BOUNDED NON-VANISHING NOISE
When R(t) is a dynamic bounded non-vanishing noise,
we have the following result regards the steady-state solution
error (SSSE) bound of the GNN model (4).
Theorem 2: For the Sylvester equation (1) with the unique

theoretical solution X∗, if GNN model (4) is disturbed
by a dynamic bounded non-vanishing noise R(t) satisfying
∥R(t)∥F ≤ σ with σ > 0 being a constant. Then, under
arbitrary initial condition X (0), the SSSE of the GNN model
(4) is given as

lim
t→+∞

∥X (t) − X∗
∥F <

( σ

ηaλ
1+µ
2

)1/µ
, (8)

where λ > 0 denotes the minimal eigenvalue of PTP with P
defined the same as that in Theorem 1. It follows from (8) that
the SSSE approaches 0 as ηa → +∞.

Proof: It follow from (7) that

ϖ̇ (t) = w̃T(t) ˙̃w(t)

= −η(Pw̃(t))T9v
msbp(Pw̃(t)) + w̃T(t) · r(t)

≤ −ηa(
mn∑
i=1

|[Pw̃(t)]i|2)
1+µ
2 − ηb

mn∑
i=1

|[Pw̃(t)]i|2

− ηc(mn)
1−ν
2 (

mn∑
i=1

|[Pw̃(t)]i|2)
1+ν
2 + ∥w̃(t)∥2 · σ

= −ηa(w̃T(t)PTPw̃(t))
1+µ
2 − ηb(w̃T(t)PTPw̃(t))

− ηc(mn)
1−ν
2 (w̃T(t)PTPw̃(t))

1+ν
2 + ∥w̃(t)∥2 · σ

VOLUME 11, 2023 101875



Z. Tan, Z. Yang: Robustness Analysis of a Fixed-Time Convergent GNN

≤ −ηa(λ∥w̃(t)∥22)
1+µ
2 − ηbλ∥w̃(t)∥22

− ηc(mn)
1−ν
2 (λ∥w̃(t)∥22)

1+ν
2 + ∥w̃(t)∥2 · σ

≤ −ηaλ
1+µ
2 ∥w̃(t)∥1+µ2 + ∥w̃(t)∥2 · σ

= −∥w̃(t)∥2(ηaλ
1+µ
2 ∥w̃(t)∥µ2 − σ ). (9)

Then, according to the sign of ηaλ(1+µ)/2∥w̃(t)∥µ2 − σ ,
we make the following theoretical analysis.
1) If in the time interval [t0, t1], ηaλ(1+µ)/2∥w̃(t)∥

µ
2 − σ >

0 holds, it follows from (9) that ϖ̇ (t) < 0, which
indicates that ϖ (t) tends to 0. That is to say, X (t) tends
to the theoretical solution X∗ over time. Therefore, the
solution error ∥w̃(t)∥2 = ∥X (t) − X∗

∥F will approach
the upper bound (σ/(ηaλ(1+µ)/2))1/µ over time once it
exceeds the upper bound;

2) For any time t, if ηaλ(1+µ)/2∥w̃(t)∥µ2 − σ = 0 holds,
then ∥w̃(t)∥2 > 0, it follows from (9) that ϖ̇ (t) <
0, which indicates that the solution error ∥w̃(t)∥2 =

∥X (t) − X∗
∥F continues to fall and ∥X (t) − X∗

∥F <

(σ/(ηaλ(1+µ)/2))1/µ holds;
3) For any time instant t, if ηaλ(1+µ)/2∥w̃(t)∥µ2 − σ <

0 holds, it follows from (9) that ϖ̇ (t) ≤ c, where c is a
positive number. In this situation, we have ϖ̇ (t) ≤ 0 or
0 < ϖ̇ (t) ≤ c. If ϖ̇ (t) ≤ 0 still holds, then the
solution error ∥w̃(t)∥2 = ∥X (t)−X∗

∥F continues to fall
or keeps unchanged within the so-called ball ∥X (t) −

X∗
∥F = (σ/(ηaλ(1+µ)/2))1/µ; if 0 < ϖ̇ (t) ≤ c, then

the solution error ∥w̃(t)∥2 = ∥X (t)−X∗
∥F will increase

with time. However, it can never exceed the upper bound
(σ/(ηaλ(1+µ)/2))1/µ since ϖ̇ (t) ≤ 0 as analyzed above.

The proof is completed by summing up the above analysis.■
It is noteworthy that according to the above analysis, the

solution error ∥X (t) − X∗
∥F approaches the upper bound

(σ/(ηaλ(1+µ)/2))1/µ in an asymptotic way, which could be
slow and unsatisfactory in practice [35]. Therefore, it is
necessary to make a further analysis of this issue, which leads
to the following results.
Theorem 3: In addition to Theorem 2, if GNN model

(4) is disturbed by a dynamic bounded non-vanishing noise
R(t) satisfying ∥R(t)∥F ≤ σ with σ > 0 being a
constant. Then, under arbitrary initial condition X (0), the
solution error ∥X (t) − X∗

∥F of GNN model (4) globally
exponentially approaches and then stays within the upper
bound

(
σ

ηaλ(1+µ)/2
)1/µ, or always stays within the upper bound(

σ

ηaλ(1+µ)/2
)1/µ. Furthermore, the exponential convergence

rate is ηbλ, and the convergence time is at most:

tc=
µ ln∥X (0)−X∗

∥F+ln η + ln a+ 1+µ
2 ln λ−ln σ

µηbλ
(10)

Proof: For any time t, if the solution error ∥X (t)−X∗
∥F

is not less than the upper bound (σ/(ηaλ(1+µ)/2))1/µ, it follow
from (9) that

ϖ̇ (t) ≤ −ηa(λ∥w̃(t)∥22)
1+µ
2 − ηbλ∥w̃(t)∥22

− ηc(mn)
1−ν
2 (λ∥w̃(t)∥22)

1+ν
2 + ∥w̃(t)∥2 · σ

≤ −ηaλ
1+µ
2 ∥w̃(t)∥1+µ2 + ∥w̃(t)∥2 · σ − ηbλ∥w̃(t)∥22

= −∥w̃(t)∥2(ηaλ
1+µ
2 ∥w̃(t)∥µ2 − σ ) − 2ηbλϖ (t)

≤ −2ηbλϖ (t), (11)

which leads to ϖ (t) ≤ ϖ (0) exp(−2ηbλt). In view of
ϖ (t) = ∥w̃(t)∥22/2 and w̃(t) = vec(X (t)) − vec(X∗),
we have ∥X (t) − X∗

∥F ≤ ∥X (0) − X∗
∥F exp(−ηbλt),

which indicates that the exponential convergence rate is
ηbλ. Let ∥X (0) − X∗

∥F exp(−ηbλt) equal the upper bound
(σ/(ηaλ(1+µ)/2))1/µ, the finite convergence time is thus
derived as

tc =
µ ln∥X (0) − X∗

∥F + ln η + ln a+
1+µ
2 ln λ− ln σ

µηbλ
.

On the other hand, for any time t, if the solu-
tion error ∥X (t) − X∗

∥F is less than the upper bound
(σ/(ηaλ(1+µ)/2))1/µ, according to the analysis presented in
Theorem 2, it will always keep within the upper bound
(σ/(ηaλ(1+µ)/2))1/µ. The proof is completed. ■

C. CONSTANT NOISE
When R(t) is a matrix-form constant noise, we have
the following results regards the SSSE bound and the
corresponding convergence time of the GNN model (4).
Theorem 4: For the Sylvester equation (1) with the unique

theoretical solution X∗, if GNN model (4) is disturbed by
a constant noise R(t) = R satisfying ∥R(t)∥F ≤ δ with
δ > 0 being a constant. Then, under arbitrary initial condition
X (0), the SSSE of the GNN model (4) is given as

lim
t→+∞

∥X (t) − X∗
∥F <

( δ

ηaλ
1+µ
2

)1/µ
, (12)

where λ > 0 denotes the minimal eigenvalue of PTP with P
defined the same as that in Theorem 1. It follows from (12)
that the SSSE approaches 0 as ηa → +∞.

Proof: It can be generalized from the proof of
Theorem 2. ■
Theorem 5: In addition to Theorem 4, if GNNmodel (4) is

disturbed by a constant noiseR(t) = R satisfying ∥R(t)∥F ≤ δ

with δ > 0 being a constant. Then, under arbitrary initial
condition X (0), the solution error ∥X (t) − X∗

∥F of GNN
model (4) globally exponentially approaches and then stays
within the upper bound

(
δ

ηaλ(1+µ)/2
)1/µ, or always stays within

the upper bound
(

δ

ηaλ(1+µ)/2
)1/µ. Furthermore, the exponential

convergence rate is ηbλ, and the convergence time is at most:

tc=
µ ln∥X (0)−X∗

∥F+ln η+ln a+ 1+µ
2 ln λ−ln δ

µηbλ
(13)

Proof: It can be generalized from the proof of
Theorem 3. ■

III. SIMULATION VERIFICATIONS
In this section, to verify the above theoretical results, two
illustrative examples are considered.
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FIGURE 1. Neural state X (t) and solution error ∥X (t) − X∗∥F of GNN model (4) disturbed by a dynamic bounded vanishing noise.

A. EXAMPLE 1
We firstly take into consideration the same example illus-
trated in [26], of which the coefficient matrices are as follows:

C =

[
2 1

−1 1

]
, D =

[
2 3
4 5

]
, F =

[
10 2
1 0

]
. (14)

The exact solution is X∗
= [−1, 2; −2, 1]. In addition,

it is easy to obtain the minimal eigenvalue of matrix PTP as
λ = 2.3020. Three types of noises will be considered for
the noise-polluted GNN model (4), and the following five
randomly generated matrices are used as the initial value
X (0):

X (0)1 =

[
−4.6740 3.8187
0.6120 1.6918

]
,

X (0)2 =

[
−3.0957 −0.3927
−1.3108 4.8164

]
,

X (0)3 =

[
−3.4360 1.4476
3.5552 −1.2373

]
,

X (0)4 =

[
−3.0908 −0.1798
−0.7175 −3.7939

]
,

X (0)5 =

[
0.8951 −1.1538

−2.7381 0.8299

]
.

In the following simulations, the parameters are set as η =

a = b = c = 1, µ = 0.8, ν = 2. Firstly, we consider
the situation where R(t) is a dynamic bounded vanishing
noise, i.e., R(t) = ϵ(X (t) − X∗) with ϵ = 2.3 < ληb. The
convergence curves of neural state X (t) and solution error
∥X (t) − X∗

∥F are shown in Fig. 1. It can be concluded from
this figure that X (t), starting from the above five different
initial values, is convergent to the exact solution X∗ within
Tmax = 2.9353 s computed by the formula (5).

Secondly, we consider the situation where R(t) is the
following dynamic bounded non-vanishing noise

R(t) =
√
2
[
sin(2t) cos(2t)
cos(2t) sin(2t)

]
. (15)

TABLE 1. Upper bound of time for the solution error of GNN model (4)
approaching the upper bound under five different initial values when
disturbed by the dynamic bounded non-vanishing noise (15).

Simulation results are shown in Fig. 2. It can be seen that
the solution error ∥X (t) − X∗

∥F approaches the upper bound
within the time presented in Table 1 and then stays within the
upper bound.

Finally, we consider the situation where R(t) is a constant
noise with each element being 1. Simulation results are shown
in Fig. 3, from which we can draw the same conclusion as the
second situation.

B. EXAMPLE 2
Let us take into consideration another Sylvester equation:

C =

2.6136 0.1955 0.0082
0.1931 3.5120 1.1712
1.1734 1.7351 3.7144

 ,
D =

3.3480 2.1092 2.9538
4.5623 3.1340 2.9342
0.2822 3.8121 1.7524

 ,
F =

5.9603 1.2454 1.5647
4.6199 2.1198 1.9252
5.2646 0.3684 2.5287

 ,
X∗

=

−0.6290 1.3900 0.5481
0.3390 1.1834 0.9103
0.9409 1.1522 0.7180

 , (16)

of which the minimal eigenvalue of matrix PTP can
be obtained as λ = 2.6569, and the following five
randomly-generated matrices are used as the initial value
X (0):

X (0)1 =

−1.7740 1.2096 −0.9995
−1.8798 1.5877 −0.3560
−0.0169 −2.5120 1.0187

 ,
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FIGURE 2. Neural state X (t) and solution error ∥X (t) − X∗∥F of GNN model (4) disturbed by a dynamic bounded non-vanishing noise.

FIGURE 3. Neural state X (t) and solution error ∥X (t) − X∗∥F of GNN model (4) disturbed by a constant noise.

X (0)2 =

 1.6713 −0.7689 −1.3119
2.7831 −0.0627 −0.5854

−2.7769 −2.9727 0.3185

 ,
X (0)3 =

−2.0486 2.7132 −1.1537
0.1794 −2.3786 2.4635
0.4846 0.5822 −1.7432

 ,
X (0)4 =

2.9474 −0.1606 −1.1620
1.6377 −2.3293 −0.1148
1.4724 −2.1985 2.1044

 ,
X (0)5 =

−2.2843 −1.7610 0.2064
0.6878 −0.4898 2.0148
0.6849 0.1824 −2.1099

 .
In the following simulation, the parameters of the GNN
model (4) are set the same as that of example 1. Three
different noises, i.e.,

R(t) = 2.65(X (t) − X∗), (17)

R(t) =

 sin(3t) − cos(3t) sin(3t)
cos(3t) sin(3t) − cos(3t)

− cos(3t) 0 − sin(3t)

 , (18)

TABLE 2. Upper bound of time for the solution error of GNN model (4)
approaching the upper bound under five different initial values when
disturbed by the dynamic bounded non-vanishing noise (18).

R(t) =

1 1 1
1 1 1
1 1 1

 , (19)

are investigated. The simulation results are presented in
Fig. 4 and Table 2, which are consistent with theoretical
analyses.

In short, the above simulation results verify the theoretical
analyses presented in Section II.

IV. ROBOTIC APPLICATION
In this section, we conduct a robot path tracking example with
the aid of the GNN model (4). The task of the used four-link
planar robot arm is to track an epicycloid path. The solution
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FIGURE 4. Solution error ∥X (t) − X∗∥F of GNN model (4) disturbed by three kinds of noises for example 2.

FIGURE 5. Movement tracks and end-effector positioning errors of the planar four-link robot arm.

of the minimum velocity norm scheme with feedback can be
written as [18], [36]

θ̇ = J+(ṙe + κ(re − ϕ(θ ))), (20)

where vectors θ ∈ R4 and θ̇ ∈ R4 are the joint and
joint-velocity of the planar four-link robot arm, ϕ(·) is the
nonlinear mapping function determined by the structure and
parameters of the planar four-link robot arm, J+

∈ R4×2

and ṙe are respectively used to indicate the pseudoinverse of
the Jacobian matrix J and the time derivative of the expected
end-effector path re. In addition, κ > 0 indicates the feedback
factor.

In the simulation, the parameters of GNN model (4) and
the planar four-link robot manipulator are set as η = 5 ×

104, a = b = c = 1, µ = 0.8, ν = 2, every entry
of the noise matrix R(t) is 2 sin(t), the length of every
link is li = 1 m (i = 1, 2, 3, 4), and the initial value
of θ(t) is θ (0) = [π/2; −π/2; −π/4;π/4] rad. Fig. 5
illustrates the simulation results. Given that the maximal
positioning error of the end-effector is of order 10−5m, one
can conclude that the path-tracking task has been achieved
well.

V. CONCLUSION
In this paper, the robustness against three kinds of noises
of the fixed-time convergent GNN model (4) for solving
the Sylvester equation has been investigated. Specifically,
if disturbed by a dynamic bounded vanishing noise, the
GNN model (4) can still achieve fixed-time convergence,
and if disturbed by a dynamic bounded non-vanishing or
constant noise, an SSSE exists and has a bound. Furthermore,
the convergence time of fixed-time convergence, the SSSE
bound, and the finite time and exponential convergence rate
for the solution error approaching the bound have been
estimated through theoretical analyses. Computer simulation
results have verified these facts. In addition, an example of
path tracking of redundant robot arms has also been provided
to show the feasibility and efficacy of the GNN model (4) to
robotic applications.
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