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ABSTRACT The traditional detection process of deformation or crack of crane main girder structure is
tedious, inefficient and difficult to control safety risk. In this work, combining unmanned aerial vehicle
(UAV) images with photogrammetry technology, an efficient and high-precision method for crane main
girder defect detection and identification based on UAV 3D reconstruction is proposed. Firstly, the flight
path, suitable for the chamfered rectangular section is selected, according to the structural characteristics of
the main girder and the flight requirements of the UAV photography, and the calculation equation of flight
strategy parameters is deduced. Secondly, based on 3D reconstruction methods and crucial techniques, the
influence of image number, marker points and structure size effects on the accuracy of the 3D reconstruction
model are investigated, separately, thus comprehensively verifying the accuracy of the 3D reconstructed
model. Finally, the proposed method is tested and evaluated by the experiments for deformation detection
of crane main girder structure and crack identification of scaled carton, obtaining millimeter-level accurate
results, and the high precision deformation detection and crack identification using non-contact 3D recon-
struction are realized. The results demonstrate that the combination of UAV and photogrammetry show
potential in the deformation detection of crane main girder structure, it also has a prospect in accurately
evaluating the geometry of cracks and helping structural engineers to assess the health status of structures.

INDEX TERMS Crane, UAYV, 3D reconstruction, point cloud model, deformation, crack identification.

I. INTRODUCTION

Crane, common special equipment in engineering construc-
tion, is employed in work scenarios such as lifting and
moving heavy goods. The main girder structure, as the critical
load-bearing structure, is subject to structural damage such
as significant deformation and crack initiation and expan-
sion, which can lead to catastrophic safety failures if the
deformation and initial cracking that occurs in the early
stages of structural performance degradation is not detected
in time. The traditional crane structure detection methods,
such as pulling the wire method and level method, belong to
contact detection, which requires manual climbing with dan-
ger, and manual reading of the measurement error is bigger.
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In addition, optical detection methods, such as theodolite [1],
total stations [2] and laser rangefinders [3], can only measure
a single point, which is too inefficient and cumbersome to
meet the demand for convenient, efficient and automated
real-time monitoring of crane safety detection. Therefore,
it is critical to find a large area, non-contact and efficient
detection approach for crane main girder structure health
monitoring [4].

At present, camera and computer vision-based sensors
have emerged as promising tools for the non-contact re-
mote measurement of structural responses [5]. With the
increase in camera resolution and computing power, vision-
based technology is considered an efficient method [6] in
structural health monitoring, where deep learning algorithms
such as convolutional neural networks enable real-time struc-
tural damage detection of concrete [7], steel cracks [8] and
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masonry historic walls [9] based on visual data including
images and videos, to carry out real-time structural safety
inspections and prevent catastrophic accidents [10]. Whereas
detection accuracy and model robustness require substan-
tial samples with real-world possible forms of damage to
be added to the training database. This method, despite its
shortcomings, has demonstrated high accuracy and detection
performance and is the direction of the future.

Image-based 3D reconstruction technology has become
a trend in structural inspection in the 21st century. UAVs
equipped with cameras are suitable for foundation integrity
assessment and damage detection [11] of large structures due
to their ability to generate high-resolution structural pho-
tographs and record real-time structural surface features, and
have been widely used in the structural inspection of ancient
towers [12], terrain mapping [13], structural modeling [14] of
civil and bridge structures, and power inspections [15]. In the
aspect of structural deformation detection, Massimo et al.
proposed digital photogrammetry combined with the reverse
modeling method to analyze the deformation of ancient
ships [16]. Singh et al. used computer vision technology to
process UAV shooting data to determine the health status
of the track [17]. Similarly, Zhou et al. explored image-
based 3D reconstruction for damage assessment of residential
buildings after hurricanes and compared the generated point
clouds with moving light detection and distance data [18].
In terms of structural surface crack detection, Liu et al.
proposed a method combining 2D image processing and 3D
scene reconstruction to obtain 3D location information of
crack edges on the surface of concrete bridge piers [19].
Ioli et al. present a method for precise assessment of crack
geometry based on UAV photogrammetry to accurately esti-
mate, through crack 3D reconstruction, the crack width [20].
Cha et al first presented a Faster Region-based Convolutional
Neural Network (Faster R-CNN) for the quasi-real-time
simultaneous detection of multiple damage types [8]. Fur-
thermore, Ali et al used a modified Faster R-CNN with
ResNet-101 as the base network combined with an
autonomous UAV was developed for the automatic detection
of multiple types of structural damage, and also offered a
solution called UBS system for the autonomous navigation of
a UAV in a GPS-denied area, which greatly facilitates infras-
tructure monitoring and inspection based on autonomous
UAVs [21], and following on from this, Zhou et al applied
the Faster R-CNN for crane surface crack image recogni-
tion captured by UAVs [22], but it failed accomplish the
detection of structural deformation. In all of these deep
learning algorithms based structural surface crack detection,
hundreds or even thousands of photographs are required for
training, whereas defect recognition using images to build
3D point cloud models requires fewer photographs, and the
photography workload is mitigated.

From the above study, it is clear that UAV-based 3D recon-
struction technology can detect not only the deformation of
the structure but also the cracks on the surface of the structure.
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However, model accuracy is an extremely sensitive factor
in the reliability of structural defect detection results. The
number of images taken by the UAV, the number of pre-set
control points and their distribution position, determine the
accuracy of the 3D point cloud model. Among these sensitive
factors, the number and location of ground control points are
particularly significant [23], [24], and diverse combinations
are exploited to optimize the accuracy of UAV photogram-
metry. Zhao et al. studied the influence of different numbers
of marker points on the accuracy of the established dam
model, characterizing the model accuracy in terms of point
cloud distance errors in the three directions of X, Y and Z
axes to guarantee the reliability of 3D model accuracy [25].
Al-Halbounia et al. proved that setting ground control points
at the edge of the measured area is favorable for acquiring
more accurate topographic information [26]. Additionally,
Image registration and acquisition of more redundant image
information are also approaches to improve model accu-
racy. Li et al. proposed a non-rigid registration method,
NRLI-UAV, for the registration of images collected by
low-cost UAV systems, which also aims to improve the
quality of LiDAR point cloud models [27]. He et al. chose
to use a multi-camera system from the point of view of
acquiring redundant data and producing real scale models, for
which a three-point closed solution was provided to obtain a
more accurate indoor 3D model [28]. Moreover, high image
overlap is beneficial for model accuracy [29]. Therefore, the
optimal UAV photography strategy applicable to the crane
main girder structure is required to be investigated to warrant
the 3D model accuracy.

Currently, few studies have been conducted to simultane-
ously detect both deformation and cracking defects in large
mechanical structure, especially crane steel structures. In this
study, a defect detection method based on UAV 3D recon-
struction is proposed to achieve non-contact high-precision
detection and identification of the main girder structure.
Firstly, the overlap calculation formula, which applies to the
chamfered rectangular section structure, is derived, and the
UAV flight strategy is customized to gain sequential image
sequences of the main girder structure. Secondly, on the basis
of the 2D images of the main girder, the point cloud model
of the main girder structure is established by combining the
3D reconstruction theory and crucial technologies. Then,
the model accuracy analysis process is raised, combined with
the M3C2 algorithm [30] and error evaluation indexes, to ana-
lyze the influence of image overlap, working distance, num-
ber and location of marker points, and structural size-effect
on the point cloud model accuracy, respectively. Finally, the
accuracy and effectiveness of the proposed method are veri-
fied with experiments.

The organizational structure of this study is shown in
Figure 1, and the remainder of this study is organized as
follows: Sequential image sequences acquired from UAV
are conducted in Section II. Image-based 3D reconstruction
approach is described in detail in Section III. Section IV

VOLUME 11, 2023



Z. Liu et al.: Defect Detection and Recognition of Crane Girder Structure

IEEE Access

Sequential image sequences acquired from UAV i N —
) L . | ® Deformation detection of main |
® Flight path selection for main girder of the crane girder structure

® Flight strategy customization

I
; Measurement result
I
|
I

ation

Image-based 3D reconstruction approach

® The basic principle ® The main technology

maodel

and identifi

I
I
[}
Measurement result I
I
I

I_Lﬁ

Accuracy evaluation of point cloud model 1
JUAV-point cloud  True valuc of eracky
-

® The M3C2 algorithm ® Error evaluation index ‘
@ Influence of Number of images, marker points and 1

structural size effects

FIGURE 1. Methodology framework of this study.

conducts a point cloud model accuracy evaluation. Experi-
ment on structural defect detection and identification of crane
main girder in Section V. Finally, Section VI discusses the
findings and concludes the study.
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FIGURE 2. Flight path comparison based on structural characteristics.

Il. SEQUENTIAL IMAGE SEQUENCES ACQUIRED

FROM UAV

A. FLIGHT PATH SELECTION

There are two general types of UAV flight paths, circular and
rectangular [18], and structures such as crane main girder
and common carton, which have a large ratio of the long
side (e.g. the a side of carton) to the short side (e.g. the b or
c side of carton), and when photographed according to the
traditional circular flight path with the center of the circle
as the target, as shown in Figure 2(a), the working distance
of the camera from the target object varies too drastically, i.e.
the working distance of the UAV at position A is much greater
than that at position B, which can cause terrible accuracy of
the 3D reconstructed model. In contrast, for structures such
as crane main girder, where the length in the span direction is
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much greater than the height or width direction, a flight path
applicable to the chamfered rectangular section, as shown in
Figure 2 (b), is more preferable to be chosen.

B. FLIGHT STRATEGY CUSTOMIZATION
Upon selecting the shape of the UAV flight path, a reason-
able flight strategy is determined, i.e., the overlap, working
distance, camera horizontal angle of view, lateral translation
distance, film width and lens focal length, as well as the
number of shots.

3D reconstructions based on UAV photography are
required to have a minimum overlap of 50%. This study takes
the overlap of 50% as an example to analyze the factors
influencing the flight path applicable to chamfered rectan-
gular section structures. As shown in Figure 3, the blue line
between points S1 and S2 is the overlap area of the adjacent
images, whose length d is calculated by Eq. (1), u is the
working distance from the UAV to the surface of the structure
under measurement, and « is the camera horizontal angle of
view, which can be calculated from Eq. (2), v is the film width
and f is the lens focal length. The overlap ¢ can be calculated
from Eq. (3), and z is the lateral translation distance obtained
by the UAV for each shot. The number of shots N can be
calculated from Eq. (4), and L is the length of the rectangle.
In addition, for the requirement of image capture at corners,
three images are taken to realize full coverage of the corner
region of the crane main girder.

d tan = (1)
=u-tan —
uetany
2 arctan | — @)
= Zarctan { —
o 2f
d
p=2 g & 3)
2d 2d
L
N=2-=+10 (4)
Z

To meet the requirements of 3D scene reconstruction and
crack detection, the flight path and the photographing strategy
of UAV should follow three principles: clear image, sufficient
overlap, and sufficient resolution. The proposed measures
and procedures are as follows:

(1) Multiple images that should be captured in the same
shooting position with the UAV to minimize blurring of the
captured image.
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FIGURE 3. The flight path for the chamfered rectangular section and
minimum 50% overlap.
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(2) Adequate shooting points were required to be identified
on the flight path to ensure at least 50% overlap. As shown
in Figure 3, at 50% overlap, the edge of the camera view
angle intersects the optical axis of the next image exactly.
In detail, the line P S, is the edge of the camera view when
the UAV is shooting from Pp, and intersects the optical axis
P>S,> when shooting from P,, with the intersection point
located exactly at point S; on the surface of the chamfered
rectangular section. The lateral translation distance z for each
shot by the UAV is controlled to be equal to d, allowing a
50% overlap to be maintained. To achieve an overlap higher
than 50%, a smaller lateral translation distance z than d can be
chosen.

(3) Given camera and lens parameters, a shorter working
distance will generate a higher resolution. If the detection
resolution is provided, the working distance of the UAV can
be calculated via the resolution to determine the flight path
and photography strategy.

Ill. IMAGE-BASED 3D RECONSTRUCTION APPROACH

A. BASIC PRINCIPLE

The original steps of 3D reconstruction include image acqui-
sition, camera calibration, feature extraction, stereo match-
ing, and model reconstruction.

In this study, structure from motion (SFM) [31] is added
to the image-based 3D reconstruction step, and model opti-
mization is performed after acquiring the initial reconstructed
model to obtain a realistic and accurate 3D reconstruction
model. While SFM, as the core technology, obtains the 3D
coordinates of the scene in the image through a series of 2D
images, to reconstruct the 3D scene of the unknown structure.
The 3D reconstruction process of the structure adopted in this
study is shown in Figure 4.

B. THE CRUCIAL TECHNIQUES

After obtaining high-quality images through pre-processing,
the following four main techniques are still needed for 3D
reconstruction tasks, such as feature point extraction and
matching, camera motion estimation, sparse 3D reconstruc-
tion, as well as model optimization, so that the real scene can
be highly reconstructed.

1) FEATURE POINT EXTRACTION AND MATCHING

The extraction of image feature points is a crucial part of
image processing, which directly determines the quality and
accuracy of the reconstruction results. Scale-invariant fea-
ture transform (SIFT) is an algorithm widely used in the
field of image feature detection [32], with the invariance of
scale, rotation and luminance changes, as well as excellent
stability. As shown in Figure 5, the feature matching of the
SIFT algorithm consists of the following three main steps:
(1) detecting feature points from the image. (2) local fea-
tures [33], i.e., feature vectors, are extracted from each feature
point. (3) comparing each feature vector to find mutually
matching pairs of feature points [34], to establish the corre-
spondence between objects.
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2) CAMERA MOTION ESTIMATION

Camera motion parameter estimation aims to gain an extrinsic
camera matrix that describes the position and directional
relationships of the camera optical center. By shooting the
target object from multiple views, the geometric relation-
ships between the multiple images obtained are employed to
recover the 3D shape and pose of the object.

Two important matrices are involved in the two-view
geometry, as follows: (1) foundation matrix F, and (2) essen-
tial matrix E. These two matrices are the crux of what is
needed to get the extrinsic camera.

The foundation matrix F, the mathematical description,
is the epipolar geometry relationship between the imaging
models of the two images covering the same scene, as shown
in Figure 6. It has seven degrees of freedom (DOF) and can
be estimated by at least seven points correspondences using

XTFx =0 5)

where x’ and x are the homogeneous pixel coordinate of a
pair of feature points from the two images. Figure 6 shows
the relationship of the point correspondences o and o are
the optical centers of two cameras, where, x” and x are the
photographed points from point X onto the images of the two
cameras.

The essential matrix E is the specialization of the fun-
damental matrix in the case of normalized image coordi-
nates. It could be obtained from the foundation matrix F
using

E =KTFK (6)
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FIGURE 5. Flow chart of SIFT algorithm.

where, K and K’ are the intrinsic camera matrices of the
two cameras, respectively. The essential matrix E is utilized
to calculate the extrinsic camera matrices, which depict the
camera motion. The estimated camera location is in relative
positions, which can be scaled using any known absolute
distance in the scene.

FIGURE 6. Epipolar geometry restriction in two-view geometry.

3) SPARSE 3D RECONSTRUCTION
To minimize the distance between the projected and observed
image points, an optimization approach, Bundle Adjust-
ment [35], is used over the collective set of camera and scene
parameters, which is expressed as:

n m
9(C,X) =D > wy |y — PCi, X

i=1 j=1

(N

where w;; is an indicator variable, w;; = 1 if the camera i
observes a point j, otherwise, w;; = 0. C is the collection of
camera parameters for a single camera C; = {M, R, t, k1, k2},
M 1is the inner parameter matrix of the camera, R and t are
the rotation matrix and translation vector of the camera’s
position, respectively, k| and k; are the distortion coefficients.
x;; is the observed image point, and P(C;, X;) is the projected
image point.

The objective function g is the sum of squared projection
errors. The purpose of bundle adjustment is to calculate the
camera calibration parameters and posture of images that
minimize this objective function. This process is repeated
until the parameters are appropriate for all images. The result
of this function can be used to generate a relatively sparse set
of 3D points.

VOLUME 11, 2023

4) MODEL OPTIMIZATION

Sparse point cloud models cover only partial points on the
surface of an object’s 3D model, which is too sparse to show
the real appearance of the object. Dense point cloud recon-
struction is imperative for the high-precision reconstruction
of the complete shape of an object in 3D space. Adjusting the
pixel points in the image by rectification [27], all the epipolar
lines are parallel and the searching space is reduced to one
dimension. Meanwhile, the epipolar equation is no longer
needed to be calculated each time. The search efficiency
was enhanced and also further reduced the computational
effort. Combined with triangular surface mesh and refine-
ment operation, a comprehensive 3D reconstruction model is
obtained by Agisoft Metashape Pro 1.7.4 modeling software.
As an example, the carton is shown in Figure 7, which shows
the sparse, dense point cloud models and comprehensive 3D
reconstruction model, respectively.

(a) Sparse point cloud (b) Dense point cloud (c¢) Comprehensive 3D
model model reconstruction model

FIGURE 7. Comparison of models before and after optimization.

IV. ACCURACY EVALUATION OF POINT CLOUD MODEL
The accuracy of the 3D reconstruction model determines
the precision of the defect recognition results of the mea-
sured structure, and ensuring the accuracy of the model is
a prerequisite for carrying out defect recognition. For a 3D
model based on UAV photogrammetry, the most critical fac-
tors affecting its accuracy are the number of images and the
number and distribution of control points. For this Section,
a self-made box is applied to simulate the main girder of
a crane. Combined with UAV close-range photogrammetry,
the box is modeled in 3D and the accuracy of the model
is analyzed by changing the number of images, the number
and location of control points, respectively; moreover, the
influence rule of structure size effect on the accuracy is
also explored. Model accuracy analyses are carried out in
CloudCompare software.
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A. MODEL ACCURACY ANALYSIS PROCESS

The accuracy analysis process of the 3D reconstruction model
based on UAV images is shown in Figure 8. It mainly involves
marker point layout, initial image acquisition, image pre-
processing, 3D reconstruction, point cloud model compar-
ison and marker point precision analysis. In which, image
pre-processing is to eliminate noise interference generated
by uncontrollable factors such as human operation and envi-
ronment during the shooting process. Point cloud model
comparison is to evaluate the error distribution by comparing
the point cloud distance graph with the M3C2 algorithm,
which is a comparison between the established model and
the reference model, the reference model is the model with
the highest accuracy under the same conditions or the actual
real model. The difference in coordinate values is to evaluate
the error magnitude by comparing the spatial position coordi-
nates with the root mean squared error (RMSE) index, which
quantifies the error magnitude between the actual coordinates
and the measured coordinates of the marker points in the 3D
model.

B. M3C2 ALGORITHM
The point cloud distance is a fundamental index of the accu-
racy of a point cloud model, and the M3C2 algorithm is
adopted to calculate the distance between the established
point cloud model and the reference ones, which enables the
calculation of the distance between two point cloud mod-
els [36]. The flow of the M3C2 algorithm is shown in Figure 9
and it mainly involves core point calculation, point cloud
normal vector fitting, point cloud distance calculation and
roughness analysis calculation. See ref [37] for details.
Point cloud model to be evaluated is established under
different conditions (different number of images or marker
points), which is compared with a reference model using the
M3C2 algorithm to determine the distances in the horizontal
and height directions, and the results are shown in different
colors in a point cloud distance graph to indicate the error
trend. In the point cloud distance graph, different values
correspond to different colors, for example: when the distance
is 0, the color is green. When the distance is greater than 0,
the color is more towards blue, and conversely, the color is
towards red, as shown in Figure 10.
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C. EVALUATION INDEX

Root mean squared error (RMSE), which represents the sam-
ple standard deviation of the deviation between the predicted
and actual values, reflects the degree of dispersion of the
sample; the smaller the RMSE, the better the result. In this
study, the RMSE was employed to assess the precision of
individual marker points in the 3D model, i.e., the difference
between the coordinates of the marker points in the 3D model
and the actual measurements. The actual measurements are
obtained from high-precision measuring instruments and are
considered to be the actual values. The coordinate errors in
the horizontal direction are denoted as RMSEyx, RMSEy and
RMSEyy, and in the height direction as RMSEz, which are
calculated by Eq. (8)-(11).

1
RMSEx = 25 (i)~ X, 02 ®)
1
RMSEy = 25 (o)~ ¥, ©
RMSExy

1
- \/ N Zil |Xuav () = X, () + Yuav (i) — Y,()?|
(10)

1 N . .
RMSEz = \/ v 2y G = Z:())? (11)

where Xyay, Yyay and Zpyay denote the two horizon-
tal and height coordinates in the 3D model based on
the UAV image, X,, Y, and Z, denote the two horizon-
tal coordinates and one height coordinate measured by the
measuring instrument, and N is the number of marker
points.
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D. FACTORS INFLUENCING MODEL ACCURACY

1) NUMBER OF IMAGES

The number of images has a significant influence on the
model accuracy, while the overlap ¢ and the working distance
u are the two major factors for image number. The carton
150cm * 30cm * 30cm was taken as the object of study
and a 3D model was reconstructed, combined with different
overlaps and working distances, by using the flight paths of
section II. The 3D reconstructed model was compared with
the reference model and the relationship between overlap,
working distance and accuracy was analyzed separately. and
this relationship may be utilized in the subsequent shooting
of the original image of the crane’s main girder.

a: IMAGE OVERLAP

The basic demand of image overlap is 50%, adjust the size of
lateral translation distance z and overlap area d to set different
overlap € (50%, 60%, 70%, 80%), under the condition that the
UAV working distance u is kept constant at 30cm, the lateral
translation distance z of the UAV is obtained from Eq. (1)
and (3) as 0.18m,0.144m,0.108m and 0.072m, respectively.
Considering the convenience and feasibility of the experi-
ment, two valid decimals are retained for z, and four groups of
shooting schemes are acquired. See Table 1, where Test 4 was
the reference model.

TABLE 1. Image shooting schemes (different overlaps).

Symbols Test Test Test Test
Parameters and
. 1 2 3 4
units
Focal length f /mm 15 15 15 15
Camera horizontal al® 6193 6193 6193 61.93
angle of view
Working distance u /em 30 30 30 30
Lateral translation
distance z /em 18 14 10 7
Overlap & /% 50 60 70 80
Number of images Nlpieces 54 63 80 106

The 3D point cloud models corresponding to Test1 to Test4
are shown in Figure 11 (a-d). The point cloud models can all
show the appearance of the carton, but the point cloud model
in Figure 11 (a) has obvious missing points, while the point
cloud model in Figure 11 (b) also has partially missing points,
the point cloud models in Figure 11 (c) and Figure 11 (d) have
no missing points, and both can show the actual box structure
better, However, the point cloud model in Figure 11 (c) has a
few black stray dots compared to Figure 11 (d), which is the
fullest and smoothest point cloud model. Figure 11 (e-h) show
the local detail of the same location (marked by red circles)
on each 3D point cloud model, which shows the differences
between each point cloud model more clearly, thus it can be
concluded that the higher the overlap, the denser the point
cloud, and the more comprehensive the model.

Test4, the point cloud model at 80% overlap, was taken as
the reference point cloud model. The point cloud models of
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FIGURE 11. Point cloud model and local details under different overlap.
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FIGURE 12. Point cloud distances between the model to be evaluated
and the reference model (under different overlap).

each other group (Testl, Test2, Test3) were compared with
the reference model (based on the point cloud distance of the
M3C2 algorithm), and the comparison results are shown in
Figure 12. Figure 12(a) to Figure 12(c) show the point cloud
models with 50%, 60% and 70% overlap versus the reference
model. Compared to Figure 11(b), (c), it can be found that
the point cloud model at 50% overlap (Figure 12(a)) has more
red and green regions. However, the point cloud model at 60%
overlap (Figure 12(b)), whose regions of red and green, is less
than Figure 12(a) but more than Figure 12(c), The point cloud
model at 70% overlap (Figure 12(c)) has only few red regions
and is better overall than the first two.

Figure 12(d) to Figure 11(f) show the point cloud distance
histograms of the point cloud models with 50%, 60% and
70% overlap respectively versus the reference point cloud
model. From Figure 12(d)(e)(f), it can be seen that the point
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cloud distances are concentrated between -0.2cm and 0.2cm,
but the point cloud model with 50% overlap still exists with
some point clouds in the interval of -1.2cm to -0.4cm, i.e.,
the red and light red areas in Figure 12(a). The point cloud
model with 60% overlap shows relatively few distances in
the -1.2cm to -0.4cm range, while the point cloud model with
70% overlap shows a more concentrated distribution of point
cloud distances compared to the previous two. This reveals
that the higher the overlap, the denser the point cloud.

b: WORKING DISTANCE

With the same degree of overlap, the further the distance
between the subject and the camera, the more content there
will be per image, and for the same object, the further the dis-
tance, the fewer images there will be needed, but the images
will be less sharp. Maintaining the overlap constant at 80%,
the working distance u from the carton surface was 30cm,
40cm, 50cm and 60cm respectively, and the correspondent
UAV lateral translation distances z were calculated by Eq. (1)
and (3) as 0.072m, 0.096m, 0.12m and 0.144m, and four
groups of shooting schemes are acquired. See Table 2, where
Testl was the reference model.

TABLE 2. Image shooting schemes (different working distances).

Parameters Symbols Test Test Test Test
and units 1 2 3 4

Focal length S /mm 15 15 15 15

Camera horizontal - 6193 6193 6193 61.93

angle of view

Working distance u /em 30 40 50 60

Lateral translation

distance z/cm 7 10 12 14

Overlap & /% 80 80 80 80

Number of images N / pieces 106 80 70 63

Test1, the point cloud model at a working distance of 30cm,
was taken as the reference point cloud model. Similarly, the
comparison results are shown in Figure 13. Figure 13(a) to

Yot oo s o Gm oure
(d) Point cloud distance histogram_40cm

M distance (998533 values) [256 clusses]

(a) Comparison of models with 40c¢m and 30em

% " Tia ows & ome 0T 0
-0.02 () Comparison of models with 60cm and 30cm (f) Point cloud distance histogram_60cm

FIGURE 13. Point cloud distances between the model to be evaluated
and the reference model (under different working distances).
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Figure 13 (c) show the point cloud models with 40cm,50cm
and 60cm working distance versus the reference model,
respectively. The point cloud model with a working distance
of 60 cm (Figure 12(c)) shows more dark regions compared
to the other point cloud models, while the point cloud model
with a working distance of 40 cm shows fewer dark regions.

Figure 13(d) to Figure 13(f) show the point cloud dis-
tance histograms of the point cloud models with 40cm,50cm
and 60cm working distance respectively versus the reference
point cloud model. The point cloud distances in Figure 13(d)
and Figure 13(e) are concentrated between —0.4cm and
0.4cm, while Figure 13(f) is distributed between —1.6cm and
1.6cm, which is more dispersed compared to the first two.
Overall, the distribution of point cloud distances gradually
disperses as the working distance increases, i.e., the smaller
the working distance, the denser the point cloud and the more
accurate the point cloud model is.

The above analysis shows that model accuracy becomes
more accurate as the number of images increases. The reason
for this is that smaller numbers of images contain less feature
information about the target object, which results in a lack
of detail of the reconstructed 3D point cloud model and
might cause the subsequent measurement results to be poorly
precise. Nevertheless, over-increasing the model accuracy
will also incur computational costs and inefficiencies, and
the detection purpose should be taken into account to set a
reasonable shooting scheme.

2) MARKER POINT

For UAV photogrammetry, marker points should be widely
distributed and cover the whole region, however, the mas-
sive layout of marker points costs much time, especially
for large-scale and medium-sized mechanical equipment like
cranes, and special consideration must be made for personnel
safety during the marker point layout work. Thus, how to
guarantee the accuracy of the 3D reconstruction model based
on fewer marker points is a fundamental issue.

There are two types of marker points, control points and
check points. Control points are used to fix the coordinate
positions of the 3D model and calibrate the dimensional
scale of the model for reliable data of the 3D reconstructed
model. Check points serve two purposes, on the one hand
for assessing the accuracy of single marker points on the
3D model, on the other hand for the detection of structural
defects, such as deformation, and crack parameters.

In this Section, different point cloud models are con-
structed by changing the number and location of control
points. On the basis of the point cloud distance graph, the
model errors under different shooting scenarios are evaluated,
and then the RMSE index is utilized to evaluate the difference
between the coordinates of the check points in the model and
the actual coordinate values to verify the model accuracy.

a: NUMBER OF MARKER POINTS
The rectangular carton was taken as the experimental
object, and the flight path was consistent with the previous
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FIGURE 14. The reference point cloud model constructed under full
control and marker point layout.

experiment. The image Overlap was set to 80% and the work-
ing distance was 30cm. Twelve marker points were laid out
in the structure to be measured (full control). As 12 marker
points are dense enough to cover the whole carton uniformly,
they are used as the reference model. The reference point
cloud model and marker point layout constructed under full
control are shown in Figure 14.

To investigate the influence of different numbers of marker
points on the accuracy of the model, the numbers of control
points were set as 4, 6, 8 and 12, the location distribution
of which is shown in Figure 15, and the point cloud mod-
els under the corresponding control points were established
respectively. The unused marker points in the model were
treated as check points. Taking control point 8 as an example,
marker points 5, 6, 7 and 8 of the point cloud model were the
check points of the model.

4 control points 6 control points

8 control points 12 control points

FIGURE 15. Different number of control points and location distribution.

Figure 16(a) to Figure 16(c) show the comparison between
the point cloud model under the number of control points of 4,
6 and 8, respectively, and the reference point cloud model, and
Figure 16(d) to Figure 16(f) show the corresponding point
cloud distance distribution histograms. A large proportion
of dark regions exist in Figure 16(a) and Figure 16(b), with
the green and red regions gradually decreasing as the control
points increase, which suggests that the model accuracy has
been enhanced. The majority of the point cloud distances
in Figure 16(d) are biased by 2mm in the positive direction
(greater than 0), i.e., the overall error is around 2mm. The
point cloud distance in Figure 16(f) shows a concentrated dis-
tribution between -1mm and Imm. The point cloud distance
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FIGURE 16. Histogram comparison of the distance distribution between
the point cloud model and the reference model under different numbers
of control points.

in Figure 16(f) is concentrated between -lmm and lmm,
the error is smaller compared to the previous two, and the
accuracy of the model is better, which shows that the more
the number of control points, the more concentrated the point
cloud distance distribution is, and the higher the accuracy
of the model. the point cloud distances created by 4 control
points are mostly stable in the range of 0 to 2 mm, except for
a few deviations, which proves the stability of the point cloud
model with 4 control points.

The accuracy of the marker points in the model under
different numbers of control points was evaluated by cal-
culating the root mean square error of the check points in
three directions, and the results are shown in Table 3. The
synthetic errors RMSEs for each point cloud model were
4.006 mm, 2.838 mm and 1.987 mm, respectively. For the
point cloud model with four control points, the RMSEs in the
X, Y and Z directions are 2.858mm, 2.318mm and 1.585mm
respectively, which are the maximum errors compared to the
rest of the point cloud models. The point cloud model with
8 control points shows relatively minimal unidirectional and
synthetic errors. The RMSE of the check points demonstrates
again that the more the number of marker points, the higher
the accuracy of the point cloud model.

TABLE 3. RMSE of check point in each direction (different number).

No. of control RMSEx RMSEy RMSE;, RMSEs
points (mm) (mm) (mm) (mm)
4 2.858 2.318 1.585 4.006
6 1.991 1.17 1.648 2.838
8 0.583 1.572 1.065 1.987

Note: RMSEX, RMSEy and RMSEz are errors in a unidirectional direction,
and RMSEs is a synthetic error in three directions.

b: LOCATION OF MARKER POINTS

As the 3D point cloud model under 4 control points shows
the same high accuracy (2mm) and stability, and its recon-
struction efficiency is significantly enhanced compared to
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the 12 control points. In this Section, four vertices on
the front (back), left (right) side and positive oblique and
antioblique surfaces are treated as control points to establish a
three-dimensional model to study the influence of the marker
point location on the accuracy of the model, and the distribu-
tion of control point locations is shown in Figure 17.

(a) Front (b) Back

(c) Left side (d) Right side

(e) Positive oblique ( ') Antioblique

FIGURE 17. Histogram the distribution of control point locations.

The RMSE of the check points in the model at differ-
ent locations of the control points are shown in Table 4.
The RMSEs of the point cloud model at different locations
are 4.006mm, 4.145mm, 14.055mm, 12.89mm, 3.044mm
and 2.235mm respectively. The RMSE of the checkpoints
under locations Figure 17(a) and Figure 17 (b) are found
to be similar, and this rule is also followed between
Figure 17(c) and Figure 17 (d), this is also applicable in
Figures 17 (e) and 17 (f).

TABLE 4. RMSE of check point in each direction (different location).

Type RMSEx RMSEy RMSE; RMSEs
(mm) (mm) (mm) (mm)

a 2.858 2318 1.585 4.006
b 0.968 1.546 3.722 4.145
c 2.618 13.772 1.008 14.055
d 2.238 12.527 2.039 12.89
e 1.024 2.275 1.744 3.044

f 0.416 1.693 1.398 2.235

When the four vertices on the two oblique surfaces are
treated as control points (Figure 17(e) and Figure 17 (f)), the
RMSE of the check points is relatively small, while when
the four vertices on both sides are treated as control points
(Figure 17(c) and Figure 17 (d)), the RMSE of the check
points is bigger. In addition, the areas of the two oblique
surfaces are equal and are bigger than those of the sides. The
following assumptions might be made: (1) When the four
vertices on the faces with equal areas are treated as control
points, the errors of the check points are close to each other.
(2) The bigger the area of the surface on which the control
points are located, the smaller the error.
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FIGURE 18. Comparison of model point cloud distances under different
schemes.

According to the size of the area, three sets of comparisons
were made, i.e., front and back, left and right sides, and
oblique and antioblique sides, to establish point cloud models
and compare the point cloud distances respectively. Apart
from a slight fluctuation in the error of the model based on the
marker points on the sides, the general error for all three sets
of comparisons is small, as shown in Figure 18, As shown in
Figure 18(d)(e)(f), the values of the point cloud distances are
concentrated around O, which verifies that the model errors
are very close to each other when 4 vertices on a face of equal
area are treated as control points.

To demonstrate that the bigger the area of the surface where
the control points are located, the smaller the error of the
established point cloud model, the point cloud model under
8 control points was considered to be highly accurate, so it is
taken as the reference model, The point cloud model under
4 control points was compared with the reference model, i.e.
the front (back) and left (right) side of the model, for the point
cloud distance, and the results are shown in Figure 19.

(b) Comparison of models between right side
and reference control points

(a) Comparison of models between front and
reference control points
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(c) Point cloud distance histogram_ front and
reference

(d) Point cloud distance histogram_ right side
and reference

FIGURE 19. The point cloud distance comparison of the model under the
four control points and the reference model (the front and back of the
carton).
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The former shows little or no red or green areas compared
to Figure 18(a) and Figure 18(b), while the latter shows many
red or green regions. In addition, comparing Figure 18(c)
and Figure 18(d), it can be seen that the global point cloud
distance of the former is concentrated around O, while the
point cloud distance of the latter is distributed in the interval
from —0.04m to 0.04m. As a result, the point cloud model
with four control points on the front (back) side is more
accurate than the point cloud model with four control points
on the left (right) side, which means that the bigger the area of
the surface where the control points are located, the smaller
the error of the point cloud model.

To further verify the relationship between the area of the
surface on which the control points are located and the accu-
racy of the point cloud model, the carton in Figure 20 is taken
as an example whose surfaces 1, 2 and 3 differ in area, where
surface 1 is the smallest, while surfaces 3 and 4 are equal in
area and these two surfaces are the largest. The experiment
set up to investigate is as follows:

FIGURE 20. Comparison Model marker point and surface serial number
illustration.

Step 1: Set 8 marker points, located at the 8 vertex positions
of the carton.

Step 2: Establish the point cloud model of the box using
the four vertices of faces 1, 2, 3 and 4 as control points and
the rest of the vertices as check points, respectively.

Step 3: RMSE is utilized to measure the difference between
the coordinates of the check points in the point cloud model
and the actual measurements, which characterize the model
accuracy.

Step 4: Based on the principle of control variables, com-
pare the RMSE values of the point cloud models established
by the control points under each of the four surfaces.

The RMSE of the check points of each model in each direc-
tion are shown in Table 5. The RMSE of the four point cloud
models (a, b, ¢, d) are 5.473mm, 4.539mm, 2.731mm and
3.079mm respectively. The point cloud model under face 1
(the smallest area) shows the maximum RMSE and the worst
accuracy, the point cloud model under face 3 (the biggest
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area) shows the minimum RMSE and the best accuracy, and
the point cloud model under face 4 (equal in area to face 3)
gives a close RMSE to the one under face 3, both of which are
at the same level of accuracy. The above relationship between
the area of the surface where the control points are located and
the accuracy of the model is again verified.

TABLE 5. RMSE of check point in each direction (different areas).

T RMSEx RMSEy RMSE; RMSESs
pe (mm) (mm) (mm) (mm)
a 3.398 3.406 2.609 5.473
b 2.423 2.492 2.92 4.539
c 1.569 2.015 0.969 2.731
d 2.582 1.548 0.644 3.079

E. STRUCTURAL SIZE EFFECTS
Since the carton model differs significantly in size from the
main girder structure of the crane, which is the key research
object of this study. The investigation experiment set up to
investigate the relationship between the size of the structure
to be measured and the accuracy of the model is as follows:
Step 1: Five cartons were prepared in the ratio of length,
width and height, as shown in Figure 21, and 11 marker points
were laid out in the same locations in each carton.

(d) 100=20=20cm

(e) 150=30=30cm

FIGURE 21. Five equal scale carton 3D models.

Step 2: In the above study on the factors affecting the
accuracy of the model, it was found that when the overlap
was 70% and the working distance was 40cm, the accuracy
of the model was virtually the same as that of the reference
model. Therefore, in this investigation experiment, the over-
lap degree was set at 70% and the shooting distance was
40cm, and image acquisition and 3D reconstruction were
carried out for cartons of different sizes, and the efficiency of
the reconstructed model was improved under the condition of
guaranteeing accuracy.

Step 3: Establish a point cloud model of the box by using
the 8 vertices of the box as control points and the marker
points 5, 6 and 7 on the upper surface as check points.
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Step 4: RMSE is utilized to measure the difference between
the check point coordinates and the actual measurements in
point cloud models of different size cartons, which character-
izes the model accuracy.

Step 5: The RMSE of each 3D model check point is fit-ted
linearly to the length characteristics of the carton structure,
and the point cloud model error of the crane main girder
structure is estimated.

In addition, as the object of study was a box, the flight path
was only shot around the main body of the box, so the clarity
and accuracy of the outrigger part of the point cloud model
was lower.

RMSE of check point in each direction are shown in
Table 6, The fitting results are shown in Figure 22, which is
a potential relationship between the RMSE of the check point
and the length characteristics of the carton structure, which
are related as in Eq. (12):

y = 0.00071x + 1.4173 12

TABLE 6. RMSEof check point in each direction (different structural sizes).

T RMSEx RMSEy RMSE; RMSEs
ype (mm) (mm) (mm) (mm)
a 0.683 0.925 0.895 1.457
b 0.721 0.946 1.334 1.787
c 0.902 0.84 1.482 1.928
d 1.714 0.942 1.236 2.227
e 1.619 1.634 0.998 2.412

R-Square indicates the overall fitting of the regression
equation, and from Figure 22, the value of the fit R-Square
is 0.9601, which is very close to 1, which indicates that the
regression equation fits the error values extremely well.
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FIGURE 22. Results of fitting carton length to model error.

It can be found from the fitting curve that the model error
is positively correlated with the length characteristics of the
measured structure, and the model error gradually grows as
the length of the structure increases, and the model error
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is deduced to be 22.7173mm for a crane structure size of
30*6*6m. However, according to the structural characteristics
of the crane main girder, it is known that the web spacing
(width) and web height (height) of a main girder of equal
span (30m) is hardly possible to 6m, and the comprehensive
analysis shows that the main girder model of 30m span is
much less than 22.7173mm.

V. EXPERIMENT ON STRUCTURAL DEFECT DETECTION
AND IDENTIFICATION

A. PREPARATION

The DJI M200 UAV used in this experiment, shown in
Figure 23(a), was paired with a ZenmuseX5S camera with a
15mm focal length. The total station version adopted was the
Leica TZ05, as shown in Figure 23(b). The main parameters
of the DJI M200 UAV and the Leica TZ05 total station are
presented in Tables 7 and 8 respectively.

(b) Leica TZ05 total station

FIGURE 23. Experimental equipment.

TABLE 7. DJI M200 UAV main parameters.

Parameter Value
Weight of UAV under no-load (kg) 3.75
Maximum load (kg) 2.3

Vertical: 0.1

Hovering accuracy (m) Horizon: < 0.3

Pixel resolution 4608%3456
The focal length of the lens (mm) 15
Minimum focal length (m) 0.2
TABLE 8. Leica TZ05 total station main parameters.
Parameter Value
Measuring range with prism (m) 500
Accuracy with prism (mm) +(Imm+1.5x10-6D)
Prism-free measuring ranges (m) 500
Prism-free accuracy (mm) +(2mm+2x10-6D)
Angle measurement accuracy (') 2

Note: D is the distance measured by the total station (km)

B. STRUCTURAL DEFORMATION DETECTION

1) EXPERIMENTAL PROCESS

The process of crane main girder deformation detection based
on a 3D reconstruction of UAV images to carry out experi-
ments is shown in Figure 23. The detailed steps are as follows:
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Step 1: Prepare the equipment needed for the experiment,
including the UAV, total station and marker points.

Step 2: Layout marker points, as shown in Figure 25,
with several uniformly laid out at the end-span of the main
girder and the edge of the lower flange plate. In which, the
red marker points are taken as control points to correct
the coordinates of the 3D model and to determine the scale of
the model based on the distance between the control points
and the actual distance in the model. The blue marker points
on the main girder are taken as check points for the evaluation
of the main girder model accuracy. In addition, the position
of the check point changes with the deformation of the main
girder, so it is possible to measure the deformation of the
crane main girder according to the change in coordinate data
of the check point.

Prepare !h.cl Layout of The coordinates of control
SAReElin i landmarks | points using total station
equipment
Establish point < Image Take image of the main
cloud model preprocessing girder using UAV
Verify the accuracy Get the coordinates | Calculate the deformation
of point cloud model of the detection point of the main girder

FIGURE 24. The process of crane main girder deformation detection.

z Control point Check point

Main

et Lower flange plate
(a) Frontal plane
End span (left) End span (right)
/ _ \_\

(b) Top view

FIGURE 25. Schematic layout of crane main girder structure marker
points.

Step 3: Acquire the coordinates of all the marker points of
the main beam using the total station as the actual distance of
the crane main girder.

Step 4: Operate the UAV to shoot the main girder structure
according to the crane main girder UAV flight strategy in
Section II. Given that the flight path is a chamfered rectangle,
which is relatively simple, we used manual operation to adjust
the flight status according to the working distance and other
parameters displayed on the remote controller.

Step 5: pre-process the sequential image sequences shot by
the UAV and reconstruct the crane main girder structure in
3D to realize the conversion from a 2D image to a 3D point
cloud.
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Step 6: Verify the accuracy of the crane main girder point
cloud model and obtain the coordinate values of the check
points.

Step 7: Compare the coordinate values of the check points
before and after deformation, and evaluate the deformation of
the main girder structure.

The experiment can be performed by the coordinate change
of the check point in the main girder point cloud model to
measure the parameters such as the upper arch, lower deflec-
tion and side bending. If the inaccuracies in the manufacture
of the crane main girder are ignored and there is no side
bending, then the y-directional coordinate value of the check
point will not change; otherwise, the y-directional coordinate
value of the check point will change.

2) POINT CLOUD MODEL ACCURACY VERIFICATION
The experimental object is a 41t-25m gantry crane as shown
in Figure 26(a).

(b) The position of left (c) The position of
end-span mid-span

(d) The position of right
end-span

(a) 41t-25m gantry crane

FIGURE 26. Gantry crane and marker point layout.

In the marker point layout, considering the safety of the
experiment, the marker points are unable to be directly pasted
on the lower flange plate of the crane main girder, so the
white marker points are pasted on the yellow wooden board
and the board is attached to the main girder. Ten marker
points are laid out on the front of the main girder web, see
Figure 26(b, c, d), and the enlarged details of the marker
points are shown in Figure 26(d).

The Leica TZO0S total station provides a maximum mea-
suring distance of 500m and an accuracy of +=(2mm+2 x
10 — 6D) without external interference, which adequately
meets the engineering requirements of the measurement. The
TZO05 is used to measure the coordinate values of the marker
points on the surface of the crane main girder, and all data is
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TABLE 9. RMSE for the three sets of models in each direction (different
number).

No. of control RMSEy RMSEy RMSE, RMSEs
points (mm) (mm) (mm) (mm)
4 14.1 21.67 11.21 27.87
6 10.68 8.22 9.72 16.61
8 8.22 5.03 3.42 10.22

measured three times independently and averaged to ensure
the accuracy of the measurement, and the results are treated
as the actual coordinates of the marker points on the crane
main girder.

‘When shooting with the DJI M200 UAYV, the image overlap
was set to 70%, the working distance was Sm and the flight
path was consistent with the strategy described in Section II.
The point cloud of the crane main girder established is shown
in Figure 27, and the comprehensive 3D reconstruction model
after triangular surfaces mesh and refinement operation is
given in Figure 28.

l&w«aw -

FIGURE 27. The point cloud and local detail of the crane main girder.

FIGURE 28. The comprehensive 3D reconstruction model of the crane
main girder.

Four (No. 1, 5, 6, 10) marker points, six (No. 1, 5, 6, 7,
9, 10) marker points and eight (No. 1, 2, 4, 5, 6, 7, 9, 10)
marker points respectively are taken as control points to
establish a 3D model of the crane main girder under no load.

The balustrade part on the model was removed due to the
fact that the balustrade is irrelevant to the main girder de-
formation detection. The point cloud models under 4 and
6 control points were compared with the reference model with
8 control points for the point cloud distances respectively, and
the comparison results are shown in Figure 29.

Figure 29(a) and Figure 29(b) show the point cloud model
under 4 and 6 control points respectively compared with the
reference model (8 control points), and Figure 29(c) and
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FIGURE 29. Point cloud distance and histogram of the model under
different numbers of control points.

FIGURE 30. The location of 13 line segments in the point cloud model.

Figure 29(d) show the corresponding point cloud distance
distribution histograms. From Figure 29(c) and Figure 29(d),
one can see that the point cloud distance of the model with
4 control points is concentrated in the interval from —0.04m
to 0.04m, while the model with 6 control points is mainly
concentrated in the interval from —0.03m to 0.03m. Com-
pared with the model under 4 control points, the model under
6 control points is more accurate. It can be concluded that the
more control points, the higher the accuracy of the model.
For the accuracy assessment of individual marker points
in the model, the RMSE for the three sets of models in each
direction were gained as shown in Table 9, by taking the
marker points except for the control points as check points.
The RMSEs for each model is 27.87 mm, 16.61 mm
and 10.22 mm respectively. The RMSEs for each model are
27.87 mm, 16.61 mm and 10.22 mm respectively. For the
model under 4 control points, the RMSEs in the X, Y and
Z directions are 14.1 mm, 21.67 mm and 11.21 mm respec-
tively, with the maximum synthetic error of the check points
compared to the rest of the models, while for the point cloud
model under 8 control points, the X, Y and Z directions
RMSE are 8.22 mm, 5.03 mm and 3.42 mm respectively, with
the minimum total error and much less than the maximum
allowed for deformation (25 mm). The above conclusion is
again verified, the more the number of marker points, the
higher the accuracy of the point cloud model. It can be
concluded that the model with the number of control points
of 8 is chosen to achieve the highest accuracy and meets the
fundamental demands of main girder deformation detection.
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FIGURE 31. Point cloud model of the main girder after deformation.

TABLE 10. Comparison between actual length and measured length of
13 line segments on the main girder.

No. of the Line Actual Measured length

segment length (m) (m) Error(m)
1 5.49 5.483 -0.007
2 5.5 5.508 0.008
3 5.58 5.575 -0.005
4 5.63 5.622 -0.008
5 0.502 0.495 -0.007
6 0.502 0.496 -0.006
7 0.725 0.732 0.007
8 0.725 0.733 0.008
9 0.725 0.732 0.007
10 5.49 5.482 -0.008
11 5.49 5.485 -0.005
12 5.6 5.607 0.007
13 5.63 5.68 0.005

To further verify the accuracy of the point cloud model of
crane main girder, the coordinate data obtained from the total
station was taken as the actual value and the error analysis
was carried out on the coordinate data of the check points
obtained on the main girder point cloud model. For a clearer
visual comparison of the gaps, the actual lengths measured by
the total station were compared with the lengths in the point
cloud model for the 13 line segments as shown in Figure 30,
and the results of the comparison are shown in Table 10.

The actual measurement results show that the overall mea-
surement error is within 8 mm. The point cloud model of
the crane main girder based on the UAV 3D reconstruction
is sufficiently accurate and feasible for crane main girder
structure deformation detection.

3) DEFORMATION DETECTION RESULTS

The deflection of the crane main girder is the downward
displacement of the main girder span at full load compared
to its position at no load, i.e., the deformation of the main
girder structure which could be characterized by the change
in the position of the marker point. In this experiment, the
deformation of the main girder under full load is simulated by
moving the marker point at the mid-span position vertically
downwards by 20mm.

The same flight strategy and modeling method mentioned
above were adopted, the main girder of the crane under full
load was established, and the point cloud model of the main
girder after deformation is shown in Figure 31. Comparing
the point cloud model established under no load and rated
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FIGURE 32. Carton sizes and crack sizes.

load condition, it is found that the No. 3 marker point at the
mid-span position of the main girder, whose Z coordinates are
17.315m and 17.303m respectively, the mid-span deforma-
tion is 0.012m (12mm). Compared to the actual displacement
of 20mm, the error is 8mm and the accuracy reaches a mil-
limeter level.

C. STRUCTURAL CRACK IDENTIFICATION

There is no crack defect in the crane’s main girder structure
in this study. There is no crack defect in the crane main girder
structure itself in this study. It is difficult to manufacture
cracks on the main girder structure due to the limitation of
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TABLE 11. The specific values of the crack parameters.

Type Length/mm Width/mm Depth/mm
P Actual Measured Error Actual Measured Error Actual Measured Error
1 30 29.9 0.1 3.0 2.9 0.1 0.5 0.4 0.1
2 30 29.8 0.2 3.0 2.9 0.1 1.0 1.1 0.1
3 60 60.2 0.2 6.0 5.8 0.2 1.0 1.0 0.0
4 60 60.1 0.1 6.0 6.1 0.1 2.0 1.8 0.2
5 100 99.8 0.2 6.0 5.9 0.1 1.0 0.9 0.1
6 100 99.7 0.3 6.0 5.9 0.1 2.0 2.2 0.2

(a) Model before damage

(b) Model after damage

FIGURE 33. Carton model before and after damage.

experimental equipment and sites, for the sake of proving the
effectiveness of the method in this study, a carton is taken
as the research object, and cracks of different degrees are
manufactured on the carton structure by human means for
simulating the main girder structure crack identification.

1) EXPERIMENTAL PROCESS

Step 1: Prepare a carton with size 70cm*30cm*10cm,
as shown in Figure 32(a). The four control points required
to establish the 3D point cloud model of the carton are laid
out on the four vertices of the upper surface.

Step 2: Cracks of different sizes were artificially man-
ufactured on the carton, six types of cracks are shown in
Figure 32(b), which simulate different degrees of cracks in
the main girder structure.

Step 3: The UAV was utilized to shoot the carton before
and after the damage, and the corresponding 3D point cloud
model was established. Control points were employed to cali-
brate and fix the scale of the model, and the point cloud model
of the carton before and after the damage under 4 control
points is shown in Figure 33.

Step 4: The ICP algorithm [38] and four control points
were used to calibrate the point cloud models before and
after the damage. The locations of the two point cloud
models before the calibration were disordered, as shown in
Figure 34(a), and the point cloud model after the calibration
is shown in Figure 34(b).

2) CRACK IDENTIFICATION RESULTS

Point cloud distance comparison maps are used to identify
cracks in a structure and show the parameters and location of
the cracks by means of colors and values. When cracks appear
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FIGURE 34. Point cloud model before and after calibration.
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FIGURE 35. The point cloud distance comparison of the carton structure
before and after the damage.
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FIGURE 36. The results and error comparisons for the five cracks in each
direction.

on the surface of a structure, the damaged area is depressed to
the inside, whose color distribution will differ from the others.
The red color indicates that the region contains depressed
cracks and the darker the red color, the deeper the depression
and the more severe the damage.

The point cloud distance comparison of the carton structure
before and after the damage is shown in Figure 35. In the
depth direction, for example, depths of 0.5 mm and 2 mm
are clearly displayed in the point cloud distance comparison
(Figure 35) in the corresponding color. The length, width and
depth parameters of the cracks are obtained from the point
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cloud distance. The specific values of the crack parameters
are shown in Table 11, it can be seen that the measurement
errors of crack depth and width are within 0.2 mm, and the
maximum measurement error of length is 0.3 mm. The results
and error comparisons for the six cracks in each direction
(Iength, width and depth) are shown in Figure 36, the exper-
iment result demonstrates that by comparing the point cloud
distances of the models before and after the damage, the UAV-
based 3D reconstruction method allows the identification of
different degrees of structural crack damage.

VI. CONCLUSION

A UAV-based 3D reconstruction detection and identifica-
tion method for gantry crane main girder structural defects
is proposed in this study, which realizes non-contact 3D
reconstruction of structural deformations and cracks, thereby
reducing the costs and potential unsafe factors involved in the
manual inspection. The major conclusions are as follows:

(1) For the structural characteristics of the crane main
girder and the flight requirements of the UAV, the UAV
flight path applicable to the chamfered rectangular section
was selected, and the calculation equations for each param-
eter in the flight strategy were derived, which provided a
high-quality sequential image sequence for structural 3D
reconstruction, so as to indirectly guarantee the accuracy
of the point cloud model and the precision of the detection
results.

(2) Based on the M3C2 algorithm, the difference between
the point cloud model and the reference model was com-
pared and analyzed in conjunction with the RMSE evaluation
index. With the carton structure as the object, a series of
possible factors affecting the accuracy of the 3D point cloud
model, including the image number, the number and location
of marker points, etc. were respectively analyzed, which
improved the scientificity of parameter selection, such as
image overlap, working distance and other parameters in the
experimental scheme of crane main girder defect detection.
Furthermore, the influence of the measured structural size
effects on the model accuracy was analyzed, which proved
that the error of the 3D point cloud model, the actual crane
main girder structure, is in the millimeter range, and meets
the accuracy of experimental requirements.

(3) The defect detection and identification method pro-
posed in this study was adopted for deformation detection
of the gantry crane main girder, and the detection result of
mid-span deformation was 12mm with 8mm error, and the
measurement accuracy reached a millimeter level. Further-
more, through scaled carton crack identification experiments,
the length and depth parameters of cracks were effectively
identified with an error of about 0.2mm. The two experiments
jointly verify the accuracy and effectiveness of the method
proposed in this study, which could serve for structural health
monitoring of the crane and other large machinery equipment.

Admittedly, as a preliminary exploration of UAV-based
image 3D reconstruction technology in crane structural health
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detection, in which there are some deficiencies and limita-
tions, this study.

(1) The research object is only oriented to the main girder
of the crane, and the rest of the entire crane structure is not
considered in the scope of detection.

(2) Since the main girder structure is relatively simple com-
pared to the entire structure, there is no consideration of route
plan and obstacle avoidance in GPS-denied areas during the
UAV flight process [21], and the structural health monitoring
of infrastructure is an inevitable trend for the subsequent
development based on the autonomous UAV flight.

(3) The 3D point cloud model in this study was built offline,
so the real-time structural defect detection is poor. For future
research, the modeling software should be embedded into the
UAV system in the form of hardware so that the real-time
performance can be improved.

REFERENCES

[1] L. Kovanic, J. Gasinec, L. Kovanic, and P. Lechman, “Geodetic surveying
of crane trail space relations,” Acta Montanistica Slovaca, vol. 15, no. 3,
pp. 188-199, 2010.

[2] P.A.Krahl, D.D. O. Martins, R. Carrazedo, I. D. Silva, and M. K. E. Debs,

“Experimental and analytical studies on the lateral instability of UHPFRC

beams lifted by cables,” Compos. Struct., vol. 209, pp. 652-667, Feb. 2019.

J. M. Garcia, J. L. Martinez, and A. J. Reina, “Bridge crane monitoring

using a 3D LiDAR and deep learning,” IEEE Latin Amer. Trans., vol. 21,

no. 2, pp. 207-216, Feb. 2023.

X. Zhou, J. Wang, X. Mou, X. Li, L. Xie, and X. Feng, “Robust and high-

precision vision system for deflection measurement of crane girder with

camera shake reduction,” IEEE Sensors J., vol. 21, no. 6, pp. 7478-7489,

Mar. 2021.

[5] D.Fengand M. Q. Feng, “Computer vision for SHM of civil infrastructure:

From dynamic response measurement to damage detection—A review,”

Eng. Struct., vol. 156, pp. 105-117, Feb. 2018.

R. S. Adhikari, O. Moselhi, and A. Bagchi, “Image-based retrieval of con-

crete crack properties for bridge inspection,” Autom. Construct., vol. 39,

pp. 180-194, Apr. 2014.

[7]1 X.Ji, Y. Zhuang, Z. Miao, and Y. Cheng, ‘“Vision-based seismic damage
detection and residual capacity assessment for an RC shaking table test
structure,” Earthq. Eng. Structural Dyn., vol. 52, no. 3, pp. 806-827,
Mar. 2023.

[8] Y.-J. Cha, W. Choi, G. Suh, S. Mahmoudkhani, and O. Biiyiikoztiirk,

“Autonomous structural visual inspection using region-based deep learn-

ing for detecting multiple damage types,” Comput.-Aided Civil Infrastruct.

Eng., vol. 33, no. 9, pp. 731-747, Sep. 2018.

N. Wang, Q. Zhao, S. Li, X. Zhao, and P. Zhao, ““Damage classification

for masonry historic structures using convolutional neural networks based

on still images,” Comput.-Aided Civil Infrastruct. Eng., vol. 33, no. 12,

pp. 1073-1089, Dec. 2018.

[10] Q. Wang and Z. Zhao, “An accurate and stable pose estimation method
based on geometry for port hoisting machinery,” IEEE Access, vol. 7,
pp. 39117-39128, 2019.

[11] S. Hu, H. Qiu, X. Wang, Y. Gao, N. Wang, J. Wu, D. Yang, and M. Cao,
“Acquiring high-resolution topography and performing spatial analysis
of loess landslides by using low-cost UAVs,” Landslides, vol. 15, no. 3,
pp. 593-612, Mar. 2018.

[12] M. R. Jahanshahi and S. F. Masri, “Adaptive vision-based crack detection
using 3D scene reconstruction for condition assessment of structures,”
Autom. Construct., vol. 22, pp. 567-576, Mar. 2012.

[13] L. Cheng, Y. Wu, Y. Wang, L. Zhong, Y. Chen, and M. Li, “Three-
dimensional reconstruction of large multilayer interchange bridge using
airborne LiDAR data,” IEEE J. Sel. Topics Appl. Earth Observ. Remote
Sens., vol. 8, no. 2, pp. 691-708, Feb. 2015.

[14] X. Zheng and Y. G. Hu, “Research on the factors affecting the accu-
racy of three-dimensional reconstruction model of rotor UAV archaeo-
logical sites,” Int. Arch. Photogramm., Remote Sens. Spatial Inf. Sci.,
vols. XLITI-4/W20, pp. 111-118, Nov. 2019.

3

[4

=

[6

—

[9

—

95159



IEEE Access

Z. Liu et al.: Defect Detection and Recognition of Crane Girder Structure

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]
[32]
[33]

[34]

[35]

[36]

Z. A. Siddiqui and U. Park, ““A drone based transmission line components
inspection system with deep learning technique,” Energies, vol. 13, no. 13,
p- 3348, Jun. 2020.

M. Martorelli, C. Pensa, and D. Speranza, “Digital photogrammetry for
documentation of maritime heritage,” J. Maritime Archaeology, vol. 9,
no. 1, pp. 81-93, Jun. 2014.

A. K. Singh, A. Swarup, A. Agarwal, and D. Singh, “Vision based rail
track extraction and monitoring through drone imagery,” ICT Exp., vol. 5,
no. 4, pp. 250-255, Dec. 2019.

Z. Zhou, J. Gong, and M. Guo, “Image-based 3D reconstruction for
posthurricane residential building damage assessment,” J. Comput. Civil
Eng., vol. 30, no. 2, Mar. 2016, Art. no. 04015015.

Y. Liu, X. Nie, J. Fan, and X. Liu, “Image-based crack assessment of
bridge piers using unmanned aerial vehicles and three-dimensional scene
reconstruction,” Comput.-Aided Civil Infrastruct. Eng., vol. 35, no. 5,
pp. 511-529, May 2020.

F.Ioli, A. Pinto, and L. Pinto, “UAV photogrammetry for metric evaluation
of concrete bridge cracks,” Int. Arch. Photogramm. Remote Sens. Spatial
Inf. Sci., vols. XLIII-B2, pp. 1025-1032, May 2022.

R. Ali, D. Kang, G. Suh, and Y.-J. Cha, “Real-time multiple damage
mapping using autonomous UAV and deep faster region-based neural net-
works for GPS-denied structures,” Autom. Construct., vol. 130, Oct. 2021,
Art. no. 103831.

Q. Zhou, S. Ding, G. Qing, and J. Hu, “UAV vision detection method for
crane surface cracks based on faster R-CNN and image segmentation,”
J. Civil Structural Health Monitor., vol. 12, no. 4, pp. 845-855, Aug. 2022.
P. Martinez-Carricondo, F. Agiiera-Vega, F. Carvajal-Ramirez, F.-J. Mesas-
Carrascosa, A. Garcia-Ferrer, and F.-J. Pérez-Porras, ‘“‘Assessment of UAV-
photogrammetric mapping accuracy based on variation of ground control
points,” Int. J. Appl. Earth Observ. Geoinf., vol. 72, pp. 1-10, Oct. 2018.
F. Agiiera-Vega, F. Carvajal-Ramirez, and P. Martinez-Carricondo, “Accu-
racy of digital surface models and orthophotos derived from unmanned
aerial vehicle photogrammetry,” J. Surveying Eng., vol. 143, no. 2,
May 2017, Art. no. 04016025.

S. Zhao, F. Kang, J. Li, and C. Ma, “Structural health monitoring and
inspection of dams based on UAV photogrammetry with image 3D recon-
struction,” Autom. Construct., vol. 130, Oct. 2021, Art. no. 103832.

D. Al-Halbouni, E. P. Holohan, L. Saberi, H. Alrshdan, A. Sawarieh,
D. Closson, T. R. Walter, and T. Dahm, ‘“Sinkholes, subsidence and
subrosion on the eastern shore of the dead sea as revealed by a close-
range photogrammetric survey,” Geomorphology, vol. 285, pp. 305-324,
May 2017.

J. Li, B. Yang, C. Chen, and A. Habib, “NRLI-UAV: Non-rigid registra-
tion of sequential raw laser scans and images for low-cost UAV LiDAR
point cloud quality improvement,” ISPRS J. Photogramm. Remote Sens.,
vol. 158, pp. 123-145, Dec. 2019.

F. He and A. Habib, “Three-point-based solution for automated motion
parameter estimation of a multi-camera indoor mapping system with pla-
nar motion constraint,” ISPRS J. Photogramm. Remote Sens., vol. 142,
pp. 278-291, Aug. 2018.

O. Tziavou, S. Pytharouli, and J. Souter, “‘Unmanned aerial vehicle (UAV)
based mapping in engineering geological surveys: Considerations for opti-
mum results,” Eng. Geol., vol. 232, pp. 12-21, Jan. 2018.

V. Zahs, L. Winiwarter, K. Anders, J. G. Williams, M. Rutzinger, and
B. Hofle, “Correspondence-driven plane-based M3C2 for lower uncer-
tainty in 3D topographic change quantification,” ISPRS J. Photogramm.
Remote Sens., vol. 183, pp. 541-559, Jan. 2022.

R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision.
Cambridge, U.K.: Cambridge Univ. Press, 2000.

D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
Int. J. Comput. Vis., vol. 60, no. 2, pp. 91-110, Nov. 2004.

P.F. Alcantarilla, A. Bartoli, and A. J. Davison, “KAZE features,” in Proc.
Eur. Conf. Comput. Vis. (ECCV), 2012, pp 214-227.

C. Jian, L. Cong, J. Wu, H. Cui, and H. Lu, “Fast and accurate image
matching with cascade hashing for 3D reconstruction,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., Jun. 2014, pp. 1-8.

B. Triggs, P. F. Mclauchlan, R. I. Hartley, and A. W. Fitzgibbon, Bundle
Adjustment—A Modern Synthesis. Berlin, Germany: Springer, 2000.

R. Eker, “Comparative use of PPK-integrated close-range terrestrial pho-
togrammetry and a handheld mobile laser scanner in the measurement
of forest road surface deformation,” Measurement, vol. 206, Jan. 2023,
Art. no. 112322.

95160

[37]

[38]

D. Lague, N. Brodu, and J. Leroux, “Accurate 3D comparison of complex
topography with terrestrial laser scanner: Application to the Rangitikei
Canyon (N-Z),” ISPRS J. Photogramm. Remote Sens., vol. 82, pp. 10-26,
Aug. 2013.

J. Park, P. Kim, Y. K. Cho, and J. Kang, “Framework for automated
registration of UAV and UGV point clouds using local features in images,”
Autom. Construct., vol. 98, pp. 175-182, Feb. 2019.

ZHIPING LIU received the B.S. and M.S. degrees
from the Hubei University of Technology, in
1997 and 2000, respectively, and the Ph.D. degree
from the Huazhong University of Science and
Technology, in 2003. He is currently a Professor
and a Ph.D. Supervisor with the Wuhan University
of Technology. His main research interests include
structural health monitoring and nondestructive
testing and evaluation.

YANNAN YU received the master’s degree from
the Taiyuan University of Science and Technology,
Taiyuan, China, in 2022. He is currently pursuing
the Ph.D. degree with the Wuhan University of
Technology. His main research interests include
crane modern design theory and design method
research, structural optimization design, and struc-
tural health monitoring.

ZHUOHUI LIANG received the bachelor’s degree
from the Shandong University of Technology,
Zibo, China, in 2020, and the master’s degree from
the Wuhan University of Technology, Wuhan,
China, in 2023. His main research interests
include crane structure health monitoring and
three-dimensional reconstruction.

GUODONG HAN received the bachelor’s
degree from Yangtze University, Jingzhou, China,
in 2021. He is currently pursuing the master’s
degree with the Wuhan University of Technology.
His main research interests include crane structure
health monitoring and crane digital twin.

YAO LU received the bachelor’s degree from
Changsha University, Changsha, China, in 2021.
He is currently pursuing the master’s degree with
the Wuhan University of Technology. His main
research interests include crane structure health
monitoring and crane failure mechanism.

VOLUME 11, 2023



