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ABSTRACT Event logs play a crucial role in monitoring the status of IT systems. These logs contain
text that describes how a system operates using natural language, which can be associated with sentiment
polarity. When a system is functioning correctly, event logs generally convey positive sentiment. However,
if unexpected behaviors like errors or failures occur, negative sentiment can be detected. In order to identify
anomalies in individual log messages without the need for log parsing, we propose TranSentLog. This
method combines Transformer and sentiment analysis, leveraging the sentiment polarity of event logs.
To gain a better understanding of the model predictions, we employ Integrated Gradients, an attribution
method that extracts important features from the model inputs. Through extensive experimentation on
public system log datasets, we demonstrate that our proposed method overcomes the limitations of existing
approaches and achieves F1 scores of 99.73% on trained datasets and 94.99% on untrained datasets.

INDEX TERMS Log anomaly detection, transformer, sentiment analysis, system log, integrated gradients.

I. INTRODUCTION
In IT system monitoring, logs serve as records that are
generated by different components, including hardware,
databases, networks, and applications. These logs are crucial
for monitoring and understanding the behaviors of the
system. However, as systems evolve, the types of logs
and the volume of data generated from them increase
significantly, making it impractical to manually examine
and identify system issues. Furthermore, system failures can
lead to substantial losses in terms of revenue, time, and
overall performance. Therefore, it is imperative to design an
automated method for detecting anomalies in logs, enabling
early detection of issues in IT systems.

Anomalies refer to patterns that deviate from well-defined
norms or expected behaviors. The determination of normal
and anomalous behaviors is typically based on various
characteristics specific to the application domain, as defined
by the analyst’s interests. Anomalies are commonly classified
into three types: point, contextual, and collective [1]. A point

The associate editor coordinating the review of this manuscript and

approving it for publication was Muhammad Asif .

anomaly is an individual observation that stands out from
the rest of the data, making it suspicious. On the other
hand, contextual anomalies are more challenging to detect
as they depend on specific contexts. An observation may be
considered anomalous in one context but normal in another.
In contrast to the first two anomaly types, a collective
anomaly refers to a group of related observations that
are considered anomalous when they occur together but
are deemed normal when each observation is evaluated
independently.

In log anomaly detection, log messages exhibit various
abnormal patterns during system incidents. Two common
abnormal patterns: keywords (point anomaly) and template
sequence (collective anomaly) are presented in the study [2].
In the case of keywords, a log event is considered abnormal
if it contains negative keywords such as ‘‘fatal’’, ‘‘disk
failure’’, or ‘‘failed to connect’’, etc. Although manu-
ally defining keywords is traditional and labor-intensive,
it is still necessary due to its interpretability. Unlike the
keyword-based method that mainly identifies anomalies
in individual event logs, the template sequence [3], [4]
examines consecutive logs to identify abnormalities in task
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execution when the log order deviates from the expected
sequence.

The primary focus of this study is to enhance the
performance of log anomaly detection specifically for point
anomalies, which are represented by keywords. Based on
our observations, we have identified several key points
that highlight the importance of exploring the detection
of anomalies in individual log events. Firstly, applying
keywords without considering the context of the surrounding
words within a log event can result in false positives.
Secondly, as data volumes increase, certain keywords may
be missed or system operators may not be aware of which
keywords to define, leading to false negatives. Thirdly,
through the analysis of various types of system log data
in [5], we have discovered that the majority of system
incidents can be detected just by examining single log events.
Lastly, incident diagnosis for each individual log is relatively
straightforward, especially when it comes to revising false
alarm log messages.

Basically, log events use textual and natural language
to describe the activities within a system. Therefore, it is
possible to examine logs by examining the sentiment
expressed. For system incidents such as warnings, errors,
and failures, log entries typically include negative words
alongside contextual elements (system, device, router, etc.).
Otherwise, log events are categorized as positive when the
systems are functioning normally. Figure 1 demonstrates the
difference between normal and abnormal log messages based
on their positive and negative sentiment polarity, respectively.

Inspired by Pylogsentiment [6], the state-of-the-art
approach utilizes a deep learning model for log anomaly
detection through sentiment analysis. Although the method
performs well, it still has some limitations that hinder
its practical deployment. Primarily, Pylogsentiment heavily
relies on Nerlogparser [7] during the log preprocessing stage.
Figure 2 illustrates an example of event log parsing from
a syslog file, the ‘‘message’’ is further used for sentiment
classfication. However, this log event parser, based on a
bidirectional LSTM network, is time-consuming during
inference and cannot effectively handle a large volume of
log events in real-world scenarios. Additionally, retraining
the log parser is needed when the systems encounter new log
structures to avoid parsing errors. Basically, Pylogsentiment
employs GRU [8] for training and classifying log events as
normal or abnormal based on sentiment analysis. Because
GRU is a variant of the recurrent neural network, it requires
substantial time for the learning process due to sequential
dependencies [9]. Lastly, returning only classification results
make it difficult to understand the reasoning behind themodel
predictions.

To solve the above-mentioned limitations, our proposed
approach introduces a log anomaly detection method that
relies on sentiment analysis. Applying sentiment analysis to
log data can offer several benefits for anomaly detection.
First, logs expressing errors, issues, unauthorized access,
or system failures can be triggered by negative polarity.
Second, it is able to detect unknown anomalies when

combining sentiment analysis with word embedding such as
GloVe. For instance, the word ‘‘error’’ has a close meaning
to ‘‘failed’’, and ‘‘error’’ appears in the training dataset while
‘‘failed’’ is not. After training the model, the model can
still detect ‘‘failed’’ as anomalous because of the semantic
similarity between ‘‘error’’ and ‘‘failed’’.

By eliminating the need for the log parser, we redesign
the log preprocessing step and ensure that the processed
logs contain sufficient details for subsequent training and
detection. To enhance training speed and detection perfor-
mance, we derive the Transformer architecture, a powerful
method for natural language processing, for classifying log
events. The foundation of the Transformer is the self-attention
mechanism, which allows the model to weigh the importance
of different parts in the input. Furthermore, it also enables the
model to capture relevant context regardless of the distance
between positions. Based on that, we expect this mechanism
can capture the relationship between negative words and
contextual elements in log data. In order to interpret themodel
predictions, we adopt the Integrated Gradients attribution
method, which is applied to alarm log events, thus filtering
out false positives effectively.

The contributions of the paper are listed as follows:
• We propose a practical approach called TransSentLog
for log anomaly detection, which is derived from the
Transformer architecture. Unlike the existing method,
this approach does not rely on the log parser, yet it
achieves comparable performance results

• The proposed approach is extensively evaluated using
public system log datasets. The evaluation provides
insights into the model performance, allowing for a
better understanding of its effectiveness in log anomaly
detection

• We uncover the black box of the model by applying
the Integrated Gradients (IG) method. This may reduce
investigation time and alleviate alarm fatigue experi-
enced by system operators. Moreover, applying this
technique enables a clearer understanding of the reasons
behind the model predictions.

• To facilitate reproducibility and further research,
we publish the code implementation and details of
evaluation results on Github repository.

The structure of the remaining sections in this paper
is organized as follows. Section II introduces existing
studies that employ sentiment analysis for anomaly detection.
Section III represents the overall architecture of the proposed
method and the details of its components. The experimental
setup is described in Section IV. Then, the extensive
evaluation of model performance is discussed in Section V.
Finally, we summarize the key points of the paper, main
findings, and discuss future works in Section VII.

II. RELATED WORKS
Anomaly detection based on sentiment analysis has gained
significant attention, particularly in the context of social
media networks and product reviews. A study [10] proposes
an enhanced lexicon-based text classifier that incorporates
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FIGURE 1. Illustration of sentiment polarity in OS kernel log messages.

FIGURE 2. Example of event log parsing from syslog file.

target objects to identify unusual opinions or sudden changes
in the sentiment expressed in Twitter tweets. Similarly, [11]
employs a support vector machine (SVM) to classify tweet
sentiment after aggregating tweets within specific time
windows. The resulting counts of positive, neutral, and
negative tweets in each window are then transformed into
time-series data for detecting anomalies. To detect potential
insider threats within a company, [12] analyzes the sentiment
expressed in employee emails based on specific aspects.
Initially, various aspects such as business, contract, work,
etc., are extracted from the emails. Subsequently, the email
contents and their corresponding aspects are inputted into
BiGRU (Bidirectional Gated Recurrent Unit) for sentiment
classification.

Log anomaly detection based on individual log events and
sentiment analysis has not received much attention. However,
with some benefits of detecting anomalies in individual
events, several studies have aimed to enhance detection per-
formance. In an effort to combine sentiment and aspect terms
within a log event, [13] introduces two attention mechanisms:
context attention and content attention, along with a GRU
network, for sentiment classification of log events. In order
to develop a generic model, SentiLog [14] extracts logging
statements obtained from various source codes of parallel
file systems for training purposes. Although this approach
demonstrates promising results, accessing source codes to
collect logging statements is not feasible in practice. Similar
to SentiLog, which uses multiple log sources, ADLILog
collects source codes from over 1000 Github projects and
extracts event descriptions from logging statements. It is
assumed that normal logs are categorized under the log
level ‘‘INFO’’, while abnormal logs fall under ‘‘ERROR’’,
‘‘CRITICAL’’, and ‘‘FATAL’’ log levels. Then, ADLILog
applied a Transformer network for log anomaly detection.

Pylogsentiment [6] uses sentiment analysis and individual
log events for anomaly detection. Initially, a log parser called
Nerlogparser is applied to extract structured information
from log events. Subsequently, the message part which
conveys sentiment information is converted into numerical
embedding vectors to enhance the representation of log
events using GloVe word embedding [15]. Since Pylogsen-
timent is a supervised learning model, an imbalanced dataset
can significantly impact its performance. To address this,
an under-samplingmethod known as Tomek-link is employed
to eliminate data points from the majority class that are close

to the borderline with the minority class. Finally, a GRU
network is employed to classify log events as either normal
or abnormal.

III. PROPOSED METHOD
The overall architecture of TransSentLog is presented in
Figure 3, the architecture consists of training and inference
phases. During the training phase, the model is trained using
various system log data to create a more generalized model
capable of effectively detecting new types of log data. The log
events are then preprocessed to eliminate noise, and GloVe
word embeddings are utilized to represent each log event
as a numeric embedding vector. To address the impact of
padding and unknown tokens on model training, a masking
layer is applied to instruct the attention layers to disregard
these irrelevant tokens. Additionally, SpatialDropout1D is
employed to drop entire one-dimensional feature maps,
aiding the model in learning meaningful features. The
embedding vectors are combined with positional encoding
vectors and passed through Transformer blocks. Positional
encoding ensures that the order of words in a log event is
preserved. Furthermore, an average pool layer with masked
inputs aggregates and computes the context embedding
vector of a log event using word encoding vectors retrieved
from the last Transformer block. Finally, a log event is
classified as either positive or negative, indicating normal or
abnormal, respectively.

In the inference phase, a raw log event is preprocessed and
transformed into an embedding vector same as in the training
process. Later, if the log event is classified as an anomaly,
the integrated gradient method is applied directly to interpret
the reason why the model gives that prediction. Based on the
prediction, system operators can decide to update the trained
model if the prediction is a false positive.

A. LOG PREPROCESSING
Unlike Pylogsentiment, our approach does not apply the log
parser for log event preprocessing due to its time-consuming.
To demonstrate the inefficiency of Pylogsentiment, Table 1
presents a comparison of preprocessing times between
Pylogsentiment and TransSentLog. The table reveals that
Pylogsentiment can only process an average of 150 logs
per second, which is exceptionally slow and impractical for
real-world system development. Consequently, we design a
series of steps to process raw logs and ensure the processed
logs are of sufficient quality for subsequent detection.

The proposed steps are as follows. Firstly, we address
the issue of negative contractions by expanding them into
their regular forms. This expansion enables the model to
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FIGURE 3. Overall architecture of TransSentLog.

capture negative verbs that are not contained in the GloVe
dictionary. For example, ‘‘isn’t’’ becomes ‘‘is not’’ and
‘‘hasn’t’’ becomes ‘‘has not’’.

Next, we truncate words surrounded by special characters.
By removing these characters, we extract the essential words
from log events. For instance, ‘‘driver:’’ becomes ‘‘driver’’
and ‘‘?terminate’’ becomes ‘‘terminate’’.

We exclude log levels such as ‘‘info’’ and ‘‘warning’’ from
the log events while retaining levels such as ‘‘error’’, ‘‘fatal’’,
and ‘‘critical’’. This step prevents the model from focusing on
‘‘info’’ and ‘‘warning’’ levels during training and forces it to
learn from other words within the log events. Even if the log
level is ‘‘info’’, the log event still might be an abnormal log
event [16].
Furthermore, we eliminate months of the year and days of

the week using regular expressions, as these words are not
useful to describe the sentiment of log events.

Lastly, any numbers or words containing numbers and
special characters are removed. The scope of our study is
system logs and these steps are proposed by analyzing various
types of logs from Loghub repository [5].

B. SENTIMENT TRANSFORMER
Initially, we define a fixed log message length, denoted as L.
After preprocessing the raw log messages, a processed log
message is either truncated if its length exceeds L or padded

TABLE 1. Comparision between the preprocessing time of
Pylogsentiment and TransSentLog.

with zeros if its length is smaller thanL. A set of processed log
messages is defined as M = {M1,M2, . . . ,M|M|} and Mi =

{wi1,wi2, . . . ,wiL} whereM is total number of logs and w is
a word in a processed log messageMi.

To capture the semantic meaning of log events, we employ
GloVE word embedding to represent log events as embed-
ding vectors. GloVe performs statistical analysis of word
co-occurrence, resulting in similar words having similar
embedding vectors. This similarity can be measured using
techniques such as cosine similarity. For our study, we uti-
lize a pre-trained word embedding called Glove version
glove.6B.50d.txt. This version of GloVe is trained on a
corpus comprising 6 billion tokens fromWikipedia 2014 and
Gigaword 5. It contains a vocabulary of 400,000 words, with
each word vector having a dimension of 50.

To train the network, we load all the word embedding
vectors from the provided.txt file into an embedding layer.
This layer acts as a fixed dictionary, where the word indices
serve as keys and their corresponding word embeddings
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as values. Therefore, the input format of the embedding
layer should be a vector of integer numbers. We define
M ′
i = {wi1,wi2, . . . ,wiL}, 1 ≤ wi ≤ 400000 as

a word index vector for a log message Mi. Similar to
Pylogsentiment, we address the class imbalance issue by
applying the under-sampling method Tomek link [17] to the
word index matrixM′

= {M ′

1,M
′

2, . . . ,M|M′|}.
Subsequently, we employ a masking layer to ignore

padding and unknown tokens. Additionally, we use the Spar-
tialDropout1D layer, which drops entire one-dimensional
features, promoting feature independence and facilitating the
detection of new types of log data.

The position encoding layer and Transformer encoder are
derived from the original Transformer model [18]. To encode
the information of word order of a log event in the model, the
position encodingmatrix PE ∈ RL×d is calculated as follows:

PE[pos, 2i] = sin (
pos

10000
2i
d

)

PE[pos, 2i+ 1] = cos (
pos

10000
2i
d

) (1)

where pos is the position index of a word in a log event
(1 ≤ pos ≤ L), 2i denotes the even position in the embedding
dimension (0 ≤ i < d

2 ), d represents the embedding
dimension (d = 50 in this case). The matrix PE is then added
to the input embeddings and fed into Transformer blocks.

The model consists of N identical blocks, each contain-
ing two sublayers: multi-head attention and position-wise
fully connected feed-forward network. Both sublayers are
augmented with a residual connection followed by layer nor-
malization. Themulti-head attentionmechanism incorporates
self-attention layers called heads, which run in parallel. The
self-attention layer can be defined as a scaled dot product
function:

Attention(Q,K ,V ) = softmax(
QKT
√
dk

)V (2)

where Q, K , V ∈ RL×dk are query, key and value matrices,
respectively. In this case, these inputs are the same because
of self-attention. The scaling factor

√
dk normalizes the dot

product and dk is the feature dimension of the input matrix.
Multi-head attention helps the model explore the infor-

mation from different representation subspaces at different
positions. The output of the multi-head attention layer is
obtained by concatenating the outputs of each head. Denote
h is the number of heads and multi-head attention is:

MultiHead(Q,K ,V ) = Concat(head1, . . . , headh)WO

where headi = Attention(QWQ
i ,KWK

i ,VWV
i ) (3)

where WQ
i ,WK

i ,WV
i ∈ Rd×dk and WO

∈
d×d are parameter

matrices. Note that d = dk × h and the output of the
multi-head layer will have the same shape as the input
embedding (L × d).
The second sublayer, the position-wise feed-forward

network, consists of two linear transformations with a ReLU
activation function in between:

FeedForward(x) = max(0, xW1 + b1)W2 + b2 (4)

To capture the contextual information of each log event as
a whole, we employ an average pooling layer with masked
values propagated from the upstream layers. The contextual
vector is calculated as follows:

x̄ =
1

L ′ + ϵ

L ′∑
i=1

xi (5)

where ϵ is a very small number to avoid division by zero,
xi ∈ Rd is a word encoding vector retrieved from the last
Transformer block, L ′ is the number of masked words in a
log event.

Lastly, a linear layer followed by a softmax activation
function is applied to classify the sentiment type of the log
events. Normal log messages are classified as positive, while
abnormal log messages are classified as negative.

C. INTEGRATED GRADIENT
Predicting the sentiment of a log event as either positive
or negative is insufficient in practical scenarios, particularly
when negative predictions are made. It is crucial for the
model to have a mechanism that clarifies the factors
influencing its decisions based on the input. This is beneficial
for system operators as it allows them to quickly assess
anomalous logs and verify the model functionality. To meet
this requirement, we have employed an Explainable AI
technique called Integrated Gradients (IG) [19], which
enables the interpretation of feature importance on the model
predictions. In the context of sentiment classification for a log
message, IG helps system operators identify the words within
the message having the greatest impact on the predicted
sentiment.

The underlying concept of IG involves computing the
integral of the model’s output gradients with respect to the
input features along a path from a baseline input to the actual
input. This path is a series of points called interpolated inputs
and these interpolated inputs are obtained by calculating
small increments with the difference between the actual and
baseline input.

Suppose that a function F : RL×d
−→ {0, 1} represents

a deep network. In our study, the deep network is the
TransSentLog model, 0 and 1 are abnormal and normal
predictions, respectively. Because the IG method cannot
process a text message as input, the message should first be
mapped to an embedded matrix x ∈ RL×d . For sentiment
analysis, the baseline input is defined as a zero embedding
matrix.

To avoid numerical integration issues, we approximate the
numerical value of IG rather than relying on the integral itself.
The approximation is calculated by the following equation:

IntegratedGradsapproxi (x)

≈ (xi − x ′
i ) ×

1
m

×

m∑
k=1

∂F(x ′
+

k
m × (x − x ′))

∂xi
(6)

where x, x ′ are actual and baseline inputs, respectively. m
denotes the number of steps in the sum approximation, xi
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corresponds to the ith feature of the input, and x ′
+

k
m×(x−x ′)

is an interpolated input. The final score vector s ∈ RL which
implies the importance of each word in a log message is
summarized along the embedding dimension.

IV. EXPERIMENTAL SETTINGS
A. DATASETS
To assess the detection performance of TransSentLog, we uti-
lized 9 publicly available system log datasets, which were
identical to those used in Pylogsentiment. A comprehensive
overview of these datasets is presented in Table 2.

TABLE 2. Log dataset details.

The Casper dataset [20] consists of operating system logs
extracted from a disk image collected by Digital Corporal.
These logs originated from the ext3 file system of Ubuntu
8.10. The Jhuisi and Nssal datasets [21] were obtained
from the Digital Forensic Research Workshop challenge.
This challenge involved investigating the traces of attackers
using various Linux OS log files. Additionally, we also
used datasets from forensic challenges, namely Honey5
Marty et al. [22] and Honey7 Arcas et al. [23], which were
collected from compromised Linux servers where unautho-
rized access to server resources and data had been obtained
by attackers.

The log data from the Zookeeper service, an open-
source distributed coordination service, was aggregated by
the laboratory of the Chinese University of Hong Kong
over a span of 26 days [24]. As for Hadoop, a framework
for processing large datasets across computer clusters, the
logs were generated from a Hadoop cluster comprising five
machines with a total of 46 cores [25]. Spark is a managerial
tool designed for processing large volumes of data. The
logs were collected from the Spark system which comprises
32 machines [24]. Lastly, the Windows dataset consists of
logs obtained from Component-Based Servicing (CBS) in
Windows 7.

To verify the ability of the proposed model on detecting
new types of log data, we only train the first six datasets,
reserving the remaining ones for inference. Since our
approach operates as a supervised learning method, labeling
the data poses a challenge for system operators. Therefore,
we aggregate the count of unique processed logs and present
them in the table. The number of unique logs is relatively
small in comparison to the total number of logs, which
significantly reduces the effort required for reviewing log
labels.

B. EXPERIMENTAL SETUP
The experiments are evaluated in a PC with Windows
10, Intel(R) Core(TM) i7-10700(16 CPUs), NVIDIA RTX
2060, and 16GB of RAM. The environment is set up
with Anaconda 4.11.0, Python 3.8.16, and Tensorflow 2.8.4.
Our code and details of evaluation results are released at
https://github.com/tuananhphamds/TransSentLog.

The details of hyperparameters are described in Table 3.
The learning rate warmup has proved to achieve suc-
cess in stabilizing Transformer training [26], we utilized
AdamW [27] as the optimization algorithm for the model
parameters, setting an initial learning rate of 0.0001 and
allocating 20% of the training steps for the warmup phase.

TABLE 3. Hyperparameter values used in experiments.

For evaluating the model, we employ the F1 Score
metric, which is derived from precision and recall. Precision
quantifies the ratio of true positives to the total positives
predicted by themodel, while recall assesses themodel ability
to correctly classify positive cases. The F1 Score represents
the harmonic mean of precision and recall, providing a
balanced measure of the model performance. To test the
stability of the proposed model, we conduct 20 trials of
experiments and calculate the average results.

Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)

F1 =
2 × Precision × Recall
Precision + Recall

(9)

To calculate these metrics, we utilize the ‘‘macro average’’
option from the sci-kit-learn library, which computes the
unweighted mean per class.

V. EXPERIMENT RESULTS AND ANALYSIS
A. EVALUATION OF THE DETECTION PERFORMANCE OF
PYLOGSENTIMENT AND TRANSSENTLOG WITH AND
WITHOUT THE LOG PARSER
To examine the impact of the proposed log preprocessing
step, we compare the detection performance of Pylogsenti-
ment and TransSentLog with and without the log parser. The
comparison results of the F1 score among different datasets
are presented in Table 4.
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TABLE 4. Performance comparison F1 Score between Pylogsentiment
and TranSentLog with and without the log parser.

TABLE 5. Performance detection of machine learning and deep learning
approaches.

With the log parser, we expect to verify whether the
proposed architecture is able to improve the F1 score
compared to Pylogsentiment. It is shown that TranSentLog is
not overperformed Pylogsentiment in the trained datasets but
it achieved better results in the untrained datasets, specifically
5.46% for Spark and 2.85% for Windows.

The log parser is beneficial to ignore several unnecessary
fields in a log event such as timestamp, hostname, service, etc.
Thus, it is very crucial to design the log preprocessing step to
not degrade the model performance. Without the log parser,
TransSentLog still outperforms in detection performance
compared to it with the log parser. The largest improvement
is the Spark dataset with 20.34%, and 2.25% on average
(95.90%−→ 98.15%). While the TransSentLog can overcome
the limitations of not using the log parser, the performance
of Pylogsentiment is much affected by that. Specifically, the
F1 score of the Windows dataset decreased by 23.13%, and
0.84% on average (94.99% −→ 94.15%).

B. COMPARISION OF VARIOUS MACHINE LEARNING AND
DEEP LEARNING APPROACHES
To assess the effectiveness of the proposed work, we compare
TransSentLog to machine learning methods such as SVM
and Decision Tree, as well as deep learning approaches like
CNN [28], Pylogsentiment, and a variant of Pylogsentiment
(GRU+Masking+Attention layer). The comparison results
in terms of trained datasets, untrained datasets, and overall are
presented in Table 5.

For the SVM and Decision Tree methods, we first
flatten the embedding matrix of a log event and then use
the embedded vector for classification. We also created a
modified version of Pylogsentiment by adding a masking
layer and dot-product attention layer to learn important words
in log events.

FIGURE 4. Effect of different GloVe word embedding sizes on model
performance.

It can be seen that the F1 score of various methods on
the trained datasets is comparable, the highest F1 score is
99.86% by the variant of Pylogsentiment. That demonstrates
the effectiveness of the masking and attention layers. On the
other hand, TransSentLog outperforms other methods on the
untrained datasets, with 8.13% improvement compared to
86.86% of the SVM method.

We observe that the F1 score of TransLogSent on
trained datasets can be improved by setting a larger
initial learning rate, removing the SpatialDropout1D layer,
or adding more TransformerBlock. However, there is a
trade-off between the F1 Score of trained and untrained
datasets. Increasing the F1 score of trained datasets
leads to a decrease in untrained datasets, and vice
versa.

C. EFFECT OF DIFFERENT WORD EMBEDDING VECTORS
ON MODEL PERFORMANCE
The GloVe word embedding 6B tokens has four dimension
versions: 50d, 100d, 200d, and 300d. Therefore, we make
a comparison between them in order to choose the best
version. The effect of different GloVe embedding sizes on the
proposed model is illustrated in Figure 4.

As the word embedding size increases, the F1 Score of
TransSentLog slightly improves on the trained datasets, while
it significantly decreases on the untrained datasets. This can
be explained by two reasons. Firstly, as the embedding size
increases, the number of model parameters also increases,
enabling the model to learn more data and resulting in a
higher F1 score on the trained datasets. For example, the
number of parameters is 400,000 for 50d, but 4 million
for 300d. Secondly, since the importance of each feature
in word embedding vectors learned by GloVe is different,
the attention heads from TransSentLog may not extract
effective features when the number of features is large,
particularly in 200d and 300d. This leads to a degradation
of detection performance on the new types of datasets
(untrained).
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FIGURE 5. Effect of different number of transformer blocks on model
performance.

D. EFFECT OF DIFFERENT NUMBER OF TRANSFORMER
BLOCKS ON MODEL PERFORMANCE
Generally, increasing the number of Transformer blocks may
enhance the model capacity. Therefore, we examined how
different numbers of Transformer blocks affect the model
performance. The evaluation results in terms of F1 scores for
various numbers of blocks are depicted in Figure 5.

Although the increase in Transformer blocks helps improve
the F1 Score on the trained datasets (99.72% −→ 99.78%),
the ability of the model to detect anomalies on new types
of log data decreases from 94.99% of 2 blocks to 92.28% of
8 blocks. This might be attributed to overfitting the training
data when the model becomes too complex and start to
memorize the training examples instead of learning general
patterns.

E. EFFECT OF THE LENGTH OF LOG EVENTS ON MODEL
PERFORMANCE
To evaluate the effect of the length of log events on the model
performance, we counted the lengths of all processed log
events in the training data. The distribution of log lengths
from the training data is presented in Figure 6.

Most log events have lengths below 20 words, which takes
98.22% of all log events. In the training data, we observed
that log events that have lengths larger than 30 words
were ‘‘ERROR’’ or ‘‘Exception’’ messages. Additionally, the
negative keywords and main words of these logs can be
determined within the first 20 words, while the remaining
words are just details of log events. Based on that, we only
choose the lengths of 5, 10, 15, and 20 for the evaluation.

Figure 7 presents the detection performance of
TransSentLog with various log lengths. The log length of
5 is insufficient to capture meaningful information for model
classification. It can be easily noticed that TransSentLog
achieved the lowest result 95.42%, among the four log
lengths. The model performance becomes more stable when
the log length is larger than 10, and there is not much
difference in the F1 score among the last three log lengths.

FIGURE 6. Log lengths counted from training data.

FIGURE 7. Effect of different log lengths on model performance.

F. EFFECT OF TOMEK-LINK, SPATIALDROPOUT, AND
MASKING LAYER ON MODEL PERFORMANCE
To examine the effectiveness of three components in
TransSentLog (Tomek link, Spatial Dropout, and Masking
layer), we sequentially remove them from the proposed
architecture and compute the F1 Score. Table 6 presents the
F1 scores of different variants of TransSentLog among nine
log datasets.

Tomek link is an undersampling method that has been
shown as an effective technique to solve imbalanced log
datasets compared to other methods such as oversampling
or random sampling [3]. The table shows that TransSentLog
performs slightly better than the variant without the Tomek
link.

For the Spatial Dropout component, it is obvious that the
F1 scores of the second variant mostly perform better than
the full version on the trained datasets. Meanwhile, for the
untrained datasets, However, the model shows signs of over-
fitting on the training data and lacks generalization ability on
new data types. For the Spark dataset, TransSentLog achieves
a significant improvement of 5.82% (82.65% −→ 88.47%)
when applying the Spatial Dropout.
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TABLE 6. Effect of Tomek link, SpatialDropout, and masking layer on
model performance.

TABLE 7. Training and inference time (second).

Lastly, the masking layer is deployed to avoid the impact of
unknown and padding tokens onmodel performance.Without
the masking layer, the model performance degrades signifi-
cantly. Specifically, the F1 score on the Spark dataset is just
70.73% compared to 88.47% of the original TransSentLog.
Similarly, the F1 score on the Windows dataset reduces from
97.41% to 77.82%. The effect of the masking layer is clearly
stated in Table 4 as well, where the F1 scores of Spark
and Windows datasets are 78.56% and 71.17%, respectively,
because Pylogsentiment does not apply the masking layer in
its method.

G. ASSESSMENT OF TRAINING AND INFERENCE TIME
The training and inference time between Pylogsentiment
and TransSentLog is presented in Table 7. Pylogsentiment
utilizes a batch size of 128 for training, thus it is unfair
to use a batch size of 1024 in training TransSentLog for
comparison. We use the same batch size of 1024 for both
Pylogsentiment and TransSentLog. The results clearly show
that the proposed approach required significantly less time for
both training (approximately 2.5 times faster) and inference
(approximately 0.24 times faster) compared to the existing
approach.

H. PREDICTION INTERPRETATION USING INTEGRATED
GRADIENTS
The Integrated Gradients (IG) method is adopted for
interpreting the model predictions, specifically abnormal
outcomes. The anomalies classified by the model can be
true positives or false alarms. To support system operators
in making decisions, the importance weights of each word
in log events are plotted to indicate which words are the
most contributions to the model outputs. The top three words
which have the highest weights are extracted to quickly
determine negative words and their contextual counterparts.
Moreover, these three words also help system operators
determine whether the output is a false positive. Since the
weights retrieved from IG can be negative or positive, larger
weights indicate greater contributions of the corresponding

features to the model predictions. For the sake of readability,
we normalize all the weights of each log event within a
range of 0 to 1. Figure 8 demonstrates three examples of logs
and their prediction interpretations, all of which have been
classified as anomalies by the model.

The first log event indicates an issue when the system is
unable to reserve a specific memory range. All timestamps,
numbers, and hex codes (0 × 0, 0 × 9ffff) are removed
after preprocessing the log. The negative word ‘‘not’’ and its
context word ‘‘range’’ and ‘‘could’’ can be interpreted as the
ones that mostly contribute to the classification result.

The second log event indicates an interruption in the pro-
cessing of a message on the queue. In the processed message,
the ‘‘WARN’’ log level was ignored in the preprocessing
step. Consequently, the model learned to pay attention to
other words in the log message such as the negative word
‘‘interrupted’’, and context words (‘‘message’’ and ‘‘queue’’).
We can see that the top 3 words (‘‘interrupted’’, ‘‘message’’,
and ‘‘queue’’) sufficiently explain the abnormal behavior of
the log event.

The last example states that the system encountered an
error in which the given ID of a container could not be found
in the system. The model assigned the highest weight to the
‘‘error’’ log level and the other two words ‘‘for’’ and ‘‘id’’.

Based on the analysis of the above-mentioned examples,
TransSentLog effectively shows the ability to extract negative
keywords as well as words related to entities or components
within log events. Therefore, the proposed approach can
be considered a better alternative method for detecting log
anomalies through keyword analysis.

VI. LOG ANOMALY DETECTION IN REAL-WORLD
SCENARIO
To demonstrate the applicability of TransSentLog, we present
a disk failure scenario in Figure 9. In the scenario,
TransSentLog was applied to detect anomalous log events in
our system. The upper part of the figure shows our service
architecture while the lower part presents the detected log
messages when the disk failure occurred.

Once a physical disk has encountered a failure, the OSD
(Object Storage Device), a component in the ceph cluster,
could not perform its functions such as reading or writing
from that disk. In this scenario, we did not replicate the
data stored on the failed disk. As a result, the OSD was
no longer available and cannot be monitored by the Ceph
cluster. Hence, TransSentLog detected the first log message
and raised it to the user from AnomalyDetector. Moreover,
when the OSD in the ceph cluster was interrupted, MySQL
service was not able to write its data to the physical disk. This
led to theMySQL service hanging for more than 600 seconds,
as shown in the second detected log event. Finally, the user
cannot access the web page running on Tomcat because of the
unavailable data.

Without help from the model, it is really hard for the user
to detect manually what happened in the system, particularly
when numerous services are running. Besides the detected
results, the keywords also show information about detected

96280 VOLUME 11, 2023



T.-A. Pham, J.-H. Lee: TransSentLog: Interpretable Anomaly Detection

FIGURE 8. Examples of interpreting model predictions.

FIGURE 9. Log anomaly detection in disk failure scenario.

log events and whether these logs are false alarms or not. It is
important to note that these detected log events were not seen
in the training dataset.

VII. CONCLUSION AND FUTURE WORKS
In this paper, we proposed a supervised learning method
TransSentLog with sentiment analysis for log anomaly
detection. Through extensive evaluation exploring different
scenarios, TransSentLog demonstrates its practicality and
potential for real-world application. The main contributions
of the model are four key points. Firstly, despite not having
the log parser in the preprocessing step, TransSentLog still
achieves better performance compared to the existing work.
Secondly, we conducted various experiments extensively in
order to gain in-depth insights from training and inferencing
the model. Thirdly, it is obvious that the adoption of the

Integrated Gradient method significantly enhances the inter-
pretation of model predictions, which somehow eliminates
the black box of deep learning methods. Lastly, we released
the code implementation and details of evaluation results on
GitHub repository for reproducibility.

There are several limitations of our work that would be
considered in future works. We did not take into account
the varying number of logs across different log types during
model training. For example, the Hadoop dataset has more
than 10 times the number of logs compared to the Casper.
We expect to collect more types of log data that may help
the model learn better general patterns. Also, we may explore
log events and their sentiment from other domains apart from
system logs to enhance the generalizability of TransSentLog.
In the last example of interpreting model predictions using
Integrated Gradients, the model should pay attention to
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‘‘error’’, ‘‘unknown’’, and ‘‘id’’ rather than ‘‘error’’, ‘‘for’’,
and ‘‘id’’. Although system operators can label the log
events with unique logs, it would be better to develop
an automatic labeling mechanism without losing the data
reliability. Considering transferring the knowledge from large
language models such as ChatGPT, and LLaMa or applying
them for labeling data might be effective alternatives. As the
scope of this work is anomaly detection on individual log
events which does not explore the abnormal behaviors of
template sequences, we plan to combine both types of
anomalies and process mining techniques in future work.
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