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ABSTRACT Salat, the most important worship of Muslims and the second pillar of Islam, is an integral
part of the Muslim community. Being a complex activity, Salat involves a series of steady and transitional
activities to be performed in a specific sequence. On top of that, Salat has variations based on time,
priority, school of thought, etc., making activity recognition in Salat more challenging. Existing research
studies related to recognizing individual activities in Salat either demand capturing images by a camera
or carrying a smartphone (sometimes in inconvenient places) while praying. Both of the demands are
not convenient or applicable in real cases. Besides, the existing studies lack user-independent accuracy
analysis and fine-grained prediction. To address these gaps, in this study, we first assess the requirement and
acceptability of technological solutions for activity recognition in Salat by conducting an exploratory study.
Upon establishing the requirement, we propose an activity recognition methodology using a smartwatch to
recognize different activities in Salat. We prepare a Salat activity dataset using a smartwatch and propose
a new methodology using semantic rules and Dynamic Time Warping (DTW) that achieves a near-perfect
accuracy (99.3%) in recognizing activities in Salat. Besides, our proposed methodology offers fine-grained
recognition of the individual activities in Salat and is robust enough to overlook the extra transitional activities
a person performs while praying, which does not nullify Salat. Therefore, this research is expected to lead
to a comprehensive solution for monitoring Salat.

INDEX TERMS Complex activity recognition, DTW, Salat, smartwatch.

I. INTRODUCTION
Human Activity Recognition (HAR) has become an active
research area for more than a decade due to its numerous
applications in various domains. By definition, HAR implies
detecting and classifying human activities from time series
sensor data [1]. Over the years, different sensing technologies
are used in HAR studies such as body-worn sensors, cameras,
wearable sensors, etc., to improve recognition performance.
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approving it for publication was Dian Tjondronegoro .

In recent times, wearable sensor devices have been widely
used in HAR studies. In sensor-based methods, data is col-
lected from one or multiple sensors and later processed and
classified using different techniques such as machine learn-
ing, template matching, etc., [2]. In this regard, recent studies
are mostly geared toward leveraging the ubiquity, ease-of-
use, and self-sufficiency of smart devices such as smart-
phones, smartwatches, etc., [3], [4], as they are equipped
with all the essential sensors necessary for activity recogni-
tion. Practical deployments of HAR have been done in fall
detection [5], [6], behavioral monitoring [7], gait analysis [8],
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[9], Ambient Assisted Living (AAL) [10], surveillance sys-
tems [11], sports coaching [12], and many more [2]. Thus
activities under HAR research have become ever spreading.

Activities that have been covered by HAR research so far
are huge in number, and diverse in nature from walking,
running, biking, etc. [13], to kitchen activities [14], con-
struction activities [15] and whatnot. Moreover, they vary
greatly in complexity. However, simple activities are explored
extensively whereas complex activity recognition is yet a
less-explored area [16]. In this study, we focus on a particular
human activity, which is Muslim prayer or Islamic prayer
activity known as Salat.

A. SALAT - A COMPLEX RELIGIOUS ACTIVITY UNDER
RECOGNITION
Second is the most fundamental daily worship of Muslims
and the second pillar of Islam among the five pillars [17],
[18]. Regardless of gender, health, and income, it is manda-
tory upon every adult and sane Muslim to pray five times
a day as long as s/he is conscious. According to a survey
[19] conducted by the Pew Research Center across 39 coun-
tries and territories, a majority of Muslims in the Middle
East and North Africa, Southeast Asia, South Asia, and sub-
Saharan Africa pray several times a day. Additionally, in
12 countries, three-quarters or more of the participants report
performing all five prayers daily. This widespread practice of
Salat reflects its profound significance, particularly among
religious Muslims.

Salat consists of repeating units called Rakah (plural
Rakat) consisting of several predefined steps such as stand-
ing, bowing, prostrating, etc., all of which must be performed
maintaining the exact sequence and postures [17], [18]. The
activities in Salat belong to both static/steady and transitional
activities. Table 1 presents a list of these activities. The *
marked transitions, though not regular, can happen from time
to time, for example, when a person is praying too fast.
Moreover, Salat exhibits variations based on time, priority,
school of thought, etc. Accordingly, Salat, by its very nature,
falls under the category of complex activities. Considering
the importance of Salat among Muslims and its complexity,
some HAR studies focused activity recognition in Salat [20],
[21], [22].

B. POTENTIAL OF LEVERAGING A SMARTWATCH IN
RECOGNIZING ACTIVITIES IN SALAT
To date, all earlier sensor-based HAR studies focusing on
Salat use smartphones for data collection. Among these
studies, in many cases, the placements of smartphones lack
convenience and are impractical for daily use [21], [22] or not
applicable for all [23], [24], [25]. Salat, being a very frequent
worship, the device to be used for its activity recognition,
should be practical for daily use. On this ground, we assess
the potential of using smartwatches for this purpose as they
seem to be the only viable alternative to smartphones as a
convenient data collection tool.

TABLE 1. Different activities in Salat (The * marked ones are not standard
transitions but can also be found in different scenarios.)

In recent times, smartwatches have already become a
promising tool for activity recognition applications due to
their specific advantages over other wearable inertial sensors
and smartphones [26]. The primary advantage is that people
are accustomed towearingwatches and they can beworn for a
long time, i.e., at home, at night, and during any kind of activ-
ity [26]. The wrist placement of smartwatches presents one of
the least intrusive placements [27] for monitoring activities.
Additionally, the battery life of smartwatches is more durable
than smartphones [28], whereas they can combine almost all
features of smartphones for data collection and even continu-
ous monitoring [29]. Furthermore, the notifications are more
easily observed than that through smartphones, due to their
proximity to the user’s line of sight [29]. Moreover, many
studies in the literature made successful use of smartwatches
for various activity recognition tasks [30], [31]. Therefore,
considering all these, we find it worth attempting to recognize
activities in Salat using smartwatches.

C. MOTIVATIONS BEHIND OUR STUDY
The vacancies in the literature regarding HAR in Salat moti-
vate us to perform this study. First of all, the absence of
usage of any natural sensing device for HAR in Salat in the
literature [21], [25], [32], [33], [34] is our primarymotivation.
Next, recognition of Takbeer and differentiation between the
postures of standing and short-standing could not be done
previously due to using a smartphone. The size of the datasets
used in the earlier studies is also a matter of concern as
the majority cover only 10 subjects [21], [22], [25] or even
less [24].

Moreover, none of the existing studies reported perfect or
near-perfect accuracy, which is important for such sensitive
usage. In fact, the adoption of cross-validation alone to mea-
sure the performance of the models of almost all the studies
[22], [23], [24], raise serious concern as to whether they truly
reflect the models’ realistic performances [35]. Additionally,
the accuracy of HAR solution for Salat might hamper if a
person performs any extra activity in Salat, that does not
nullify prayer [36] as shown in Figure 1. This issue is also
not considered yet.
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FIGURE 1. Examples of extra activities performed during Salat [37].

FIGURE 2. Muslims praying at different places during Hajj and Umrah
times.

On top of all these, a HAR solution capable of recognizing
activities in Salat can help Muslims assess the correctness
and completeness of their prayers, find out mistakes, pinpoint
the areas to focus more on, track progress, etc. All these can
help a worshipper improve his prayer quality. Besides, in the
case of individual Salat in crowds (for example, in Makkah
or Madinah during Hajj/Umrah as shown in Figure 2, such
solutions can assist in determining the mistake and removing
the confusion and prevent the worshipper to stay some more
time in the crowd. Therefore, the importance of such stud-
ies is immense. Being motivated by all these, in this study,
we explore a new approach to activity recognition in Salat
using a smartwatch.

D. PROBLEM FORMULATION AND RESEARCH
CHALLENGES
In this study, we focus on the following set of research
questions.

RQ1 How prevalent are mistakes in Salat among people?
What types of mistakes are more common among
them?

RQ2 Do people need technological assistance for
improving their prayer? How willing are they to
accept such technological assistance?

RQ3 If people welcome technological interventions or
assistance for their Salat, then can we help them in
improving their prayers by leveraging a more con-
venient device, with improved accuracy compared
to that of the solutions existing in the literature?

In the process of answering the research questions,
we envision some research challenges entailing our study.
First of all, religion, being a sensitive and private topic,
we need to explore the acceptability of such solutions among
people as well as the permissibility from scholars. Next,

we have to deal with the higher variability in the sensed
signals of the smartwatch due to its placement on the wrist
[40]. Besides, to ensure robustness, we have to handle the
variations of Salat and extra activities that do not nullify
prayer. Moreover, as Salat is a very important worship for
Muslims, achieving near-perfect accuracy has no alternative.
In doing so, detecting and fixing the wrong predictions of
the classifier using domain knowledge in a post-processing
step perhaps has no alternative which presents a noteworthy
challenge.

E. OUR RESEARCH CONTRIBUTIONS
In this study, we propose a newmethodology to recognize the
activities in Salat using a smartwatch. Before that, we confirm
the necessity of recognizing activities in Salat by conducting
an online survey. afterwards, to develop a new methodology
for HAR in Salat using a smartwatch, we first prepare our
own dataset using Samsung Galaxy Watch Active 2 [41].
Then, we preprocess the raw data and separate the steady
and transitional states using two alternative approaches - 1)
using traditional machine learning classifiers such as Random
Forest (RF), etc., and 2) using Signal Magnitude Area (SMA)
[42]. Subsequently, we detect some of the steady states using
semantic rules derived from domain knowledge and use
Dynamic Time Warping (DTW) for the transitional states.
Finally, we apply some postprocessing on the predictions to
further enhance the accuracy. In this process, we achieve up
to 99.3% overall accuracy. To summarize, the main contribu-
tions of this study are as follows.

• First of all, we perform an exploratory study by conduct-
ing an online survey to understand the opinion of people
regarding the idea of helping them to improve their
prayer through technological assistance. Our key find-
ings from the survey responses provide potential direc-
tions for shaping this technology for real-life adoption.

• We propose a methodology for recognizing activities in
Salat with a smartwatch which is, to the best of our
knowledge, the first work that makes use of a convenient
and non-distracting wearable for regular use during the
prayer.

• We prepare a dataset by collecting data using a smart-
watch. The dataset consists of data collected from
30 subjects and has 3,50,762 data samples pertinent to
activities in Salat.

• We divide a prayer unit into more granular steps and
achieve near-perfect overall accuracy (around 99.3%)
by using semantic rules derived from domain knowl-
edge and Dynamic Time Warping (DTW) algorithm
followed by postprocessing steps through integrating
domain knowledge.

• We further devise strategies to make our system robust
to overlook the extra activities that do not nullify the
prayer. To the best of our knowledge, we are the first
to deal with the extra activities in recognizing activities
in Salat.
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FIGURE 3. Basic steps of Salat [43].

F. ORGANIZATION OF THE STUDY
Our paper is further segmented into different sections.
Section II contains some backgrounds and preliminaries.
Next, Section III is about literature reviews of recent papers
related to our study. After that, in Section IV, we present
our exploratory study i.e., survey and interviews to estab-
lish the acceptability and permissibility of such assistance
for Salat. Next, our proposed methodology is presented in
SectionV. Later, SectionVI contains experimental evaluation
and findings. Furthermore, in Section VII, we present the
discussion and comparative analysis of our proposedmethod-
ology with the existing literature. Finally, the conclusion and
future prospects of this research are stated in Section VIII
respectively.

II. BACKGROUNDS AND PRELIMINARIES
In this Section, we describe some concepts used in our study
covering Salat, its variations, and potential mistakes in Salat.

A. ACTIVITY UNDER STUDY: SALAT
Salat is the most regular compulsory worship of a Mus-
lim’s life. A Muslim has to pray five times a day: Fajr
(dawn prayer), Dhuhr (afternoon prayer), Asr (late after-
noon prayer), Maghrib (evening prayer), and Isha (night
prayer) [17], [18]. Salat consists of repeating units, called
Rakah (plural Rakat). In each prayer, every personmust fulfill
a mandatory count of Rakats. For example, ‘Fajr’ or the dawn
prayer, which is the first prayer of the day, consists of two
units, ‘‘Dhuhr’’ and ‘‘Asr’’ consisting of four units, and so
on. A Rakah consists of a series of postures that must be
executed in a predefined sequence such as standing, bowing,
prostrating, etc. Figure 3 depicts a complete prayer cycle.

As multiple postures or simple activities need to be per-
formed one after another in Salat, it falls under the category
of complex activity by definition [16], [44]. To elaborate a bit
more, Salat starts with Takbeer which means raising hands up
to the ear or shoulder and then lowering immediately. After
Takbeer, a person remains standing while placing his hands
either on the chest or belly and recite the first chapter from
the Qur’an. In some prayers, this is followed by the recitation
of (part of) some other chapter. Then a person bends down
keeping his hands on the knees as shown in Figure 3 which
is called Ruku or bowing. After that, the person goes up and
stands straight with hands on both sides. We refer to this as

short-standing, as the posture of this stage is different from
standing in terms of placement of hands and duration. Next,
a person goes to the Sujud or prostration phase and touches
his head to the ground. In each Rakah, a person has to pros-
trate twice and sits down for a short time in between. Besides,
at every even Rakah, a person has to sit again after the second
prostration to recite a specific supplication called Tashahhud.
If the Rakah is the last one of the prayer, then a person has
to recite some more supplications. Consequently, this sitting
also takes a bit longer. However, once done, a person ends the
prayer with Taslim, which means turning his head to the right
and then to the left reciting a specific supplication.

1) VARIATIONS IN SALAT
Based on priority, time, school of thought, capability, etc.,
the number of units or sequence of steps in Salat varies
greatly. First of all, based on priority, there exist different
types of prayer [17], [18], [45]. For example, one category is
obligatory or Fard, which is compulsory for Muslims to offer
within a prescribed time frame. Other categories are Sunnah,
Nafil, Wajib, etc., varying in priority.

Secondly, the number of Rakah to offer varies based on
the time of the prayer [17], [18], [45]. The steps in Salat also
differ based on the number of units and priority. For example,
the way to offer four units of Sunnah prayer differs from that
of the Fard prayer. Additionally, another prayer, called Witr,
which needs to be prayed after the Ishaa, differs from other
prayers as one has to give Takbeer after the recitation is done
in the last Rakah and recite some other supplications.

Furthermore, there are several schools of thought in Islam
regarding Islamic canonical laws, and prayer postures vary
from one school to another [46], [47]. Besides, male and
female prayer vary in posture in some schools of thought,
whereas others claim prayers of both genders to be the
same [17], [47], [48]. Even if two persons belong to the
same school of thought, prayer postures can still vary. For
example, while raising hands for Takbeer, some raise their
hands up until their ear, some raise up until their neck, and so
on. Differences also happen due to the lack of knowledge of
the standard ways of performing Salat. Postures vary due to
differences in capability too. For example, if someone cannot
offer prayer in standing due to any disability, he is allowed to
offer the whole prayer through sitting.

2) POTENTIAL MISTAKES IN SALAT
A Muslim, while offering Salat, has to repeat the specific
postures mentioned above, systematically and recite from
the Holy Qur’an or other specific supplications at specific
points. Along with these, he has to keep track of the counts
of Rakat, prostrations, etc. Hence, due to the variations in
different types of Salat, differences within the units, or lack
of knowledge, people tend to make mistakes [17], [49].
Moreover, when praying with proper concentration becomes
difficult, and mistakes happen more frequently. It is more
common, especially for beginners and elders. For example,
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forgetting to recite another chapter from the Qur’an after the
first one or forgetting specific supplications for a specific step
is common. Besides, out of forgetfulness, a person may either
forget to perform any obligatory step such as forgetting to
bow or missing one prostration, etc., or he may add anything
extra to Salat such as performing five Rakat instead of four.
Apart from that, a person may also become confused about
the counts. The most common mistake in Salat is to forget
the count of Rakat or the count of prostration.

III. RELATED WORK
We situate our research work in a body of related studies
exploring the recognition of various human activities. In the
following, we go through some relevant topics and shed some
light on the literature.

A. RESEARCH ON RECOGNIZING HUMAN ACTIVITIES
Human activities recognized in the literature, exhibit different
complexity, nature, and domains. Depending on the complex-
ity, various techniques and types of signals are explored as
follows.

1) SIMPLE ACTIVITIES
Simple activities refer to a repetitive occurrence of atomic
activities or actions. Examples are - walking, running, sitting,
etc. In the literature, simple activities are attempted to be
recognized using different techniques and sensors [50], [51].
Many research studies focused on Activities in Daily Life
(ADL) such as walking, running, jogging, etc., [52], [53],
[54]. Other studies focused on transitional activities too [55],
[56]. The study in [57] attempted exercise activities whereas
kitchen activities were recognized by the study in [14]. On the
other hand, the study in [58] recognized ten different dance
micro steps. Another study [15] explored construction activ-
ities using the accelerometer data. Moreover, recently fall
detection has also gained much interest because of its vast
application in healthcare [5], [6]. These studies present a few
examples of the wide variety of simple activities covered by
the HAR researchers.

2) COMPLEX ACTIVITIES
Complex activities compile a series of multiple actions [16],
[44] in a concurrent, interleaved, or overlapping manner.
Examples include playing a game, cooking, cleaning, buying,
etc. They demonstrate realistic representations of people’s
daily lives [16].
The study in [50], attempted to recognize simple activities

as well as some complex activities such as cooking, cleaning,
etc., through a smartphone and found that the performance of
recognizing complex activities appears to be poor (50%) than
simple ones (93%). Another research study [59] presented
a machine learning approach to correctly classify highly-
correlated and imbalanced nursing activities. Besides, the
study in [44] proposed an algorithm capable of mining tem-
poral patterns from low-level actions to represent high-level
human activities. Another study [60], proposed a model to

recognize and classify complex at-home activities through
wearable sensing leveraging selective multi-modal sensor
suites from wearable devices. Additionally, the study in [16],
built a dictionary of time series patterns, called shapelets,
to represent atomic activities and used shapelet-based models
to recognize sequential, concurrent, and generic complex
activities. However, to the best of our knowledge, complex
activities are still less explored and remains challenging
enough to recognize compared to simple activities [16], [44].

B. DATA COLLECTION IN HAR
There exist different methodologies of data collection in
HAR. The major and most widespread categories are
computer vision-based and sensor-based data collection.
We briefly present some studies for each of these methods
below.

1) COMPUTER VISION-BASED DATA COLLECTION
Computer vision-based data collection require data capturing
through one or more camera and activities are recognized by
processing captured images or recorded video sequences. The
recognition of human activities from static images or video
sequences exhibits applications in many fields. For example,
computer vision-based HAR is utilized in monitoring appli-
cations in industries [61], fraud detection [62], extraction of
information from videos [61], video assistance and surveil-
lance [61], and public security [63], etc. There also exist
applications in surgical operations [64] and classifying static
signs of the sign language [65]. However, due to the require-
ment of image processing, this approach is computationally
more expensive. Besides, privacy and security issues entail
this approach, and accuracy is greatly affected by occlusion,
change in illumination or background, etc., [44].

2) SENSOR-BASED DATA COLLECTION
Sensor-based data collection in HAR generally covers
two prominent data collection devices - smartphones and
smartwatches. These devices differ in their data collection
approaches as well as applications.

Smartphones have been extensively studied for recogniz-
ing different physical activities in recent years [4] due to
their wide availability and equipment with different sensors
such as accelerometers, gyroscopes, magnetometers, etc., that
can be used in different types of activity recognition. In the
initial phase of developing smartphone-based approaches, the
developed approaches mostly worked offline. For example,
the study in [66], presented Centinela, a system consisting of
a chest unit composed of several sensors to measure acceler-
ation data and vital signs (e.g., heart rate, breath amplitude,
etc.). Besides, common human activities [52], transportation
activities [67], gait analysis [8], [9] have also been explored
extensively using smartphones. Some studies, in this regard,
focused on energy efficiency [68] while others [69], [70]
focused on online recognition of activities.
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With the recent emergence of smartwatches, HAR research
arguably achieved a new dimension. Studies conducted with
both smartwatches and smartphones found that smartwatches
can achieve superior performance for a wider range of
activities than smartphones [30]. Besides, as explored in
a smartwatch-based study [31], activity recognition using
Restricted BoltzmannMachines (RBM) can cover a variety of
typical behavior and tasks demanding no additional resource
other than smartwatch-class hardware. Moreover, the study
in [71] explored obtaining keyboard usage information of a
laptop using sensors of the SamsungGalaxy Live smartwatch.
In addition to that, the study in [72], classified eight different
daily human activities with a Moto 360 smartwatch, using
PCA and Random Forest.

C. DATA ANALYSIS IN HAR
After collecting data, the next task generally performed in
HAR, is data analysis. Data analysis can be done using
classical machine learning, Deep learning, template match-
ing techniques such as Dynamic Time Warping (DTW), etc.
We present research studies in this regard in the following.

1) HAR USING CLASSICAL MACHINE LEARNING
Currently, the most exploited and probably the most mature
approach for data analysis in HAR is using classical machine
learning methods. The most widely-used classifiers in HAR
are decision-tree classifiers such as J48 Decision tree [73],
Random Forest (RF) [74], etc. They have been used in
numerous HAR studies [75], [76], [77] yielding impressive
accuracy. Many studies [78], [79] used Naïve-Bayes [80] ,
while others [81], [82], [83] used Support Vector Machine
(SVM). Besides, Instance-based Learning (IBL) algorithms,
especially KNN is used in a number of HAR studies [84],
[85], [85], [86].

Some studies [66] also investigated the potential of ensem-
ble classifiers which are generally computationally more
expensive. On the other hand, several studies [52], [81] com-
pared different classification techniques using a combination
of time and frequency domain features.

2) HAR USING DEEP LEARNING
Recent studies on human activity recognition are now inclin-
ing towards using deep learningmodels due to their capability
of simulating high-level features in the supplied data. Convo-
lutional Neural Networks (CNN) [87] and Recurrent Neural
Networks (RNN) [88] are the two most popular deep learning
models in this regard. Different research studies [89], [90]
applied CNN to the field of activity recognition. However,
CNN lacks the ability to capture temporal relationships in the
time-series sensor data. To overcome this limitation, RNNs
are designed which is adopted by many HAR studies for the
purpose of complex activity recognition [91], [92]. However,
recently the LSTMs [93], with their capability of memorizing
and modeling the long-term dependency in the supplied data,
have taken a dominant role in the HAR domain [94], [95].

Nevertheless, in recent times, hybrid deep learning models
combining both CNNs and RNNs are also explored for activ-
ity recognition tasks [92], [96].

3) HAR USING DYNAMIC TIME WARPING (DTW)
Dynamic Time Warping (DTW) [97], though extensively
applied in speech recognition, has also been proven effec-
tive in HAR research. Many studies bypassed the complex
feature engineering step of ML classifiers and used tem-
plate selection approaches such as DTW instead for HAR.
For example, the study in [98], modified DTW to improve
computational efficiency and similarity measure accuracy.
Another study [99] proposes a new ensemble classifier based
on DTW and uses combined information from multiple time-
series sensors to map them with corresponding activities.
On the other hand, the study in [100], classifies light sport
exercise activities using the accelerometer sensor on a smart-
phone and smartwatch that is placed on the left hand of the
user using KNN and DTW. Another research applied DTW
to process different shapes of foot movements captured using
wearable sensors [101]. Besides, the study in [102], performs
HAR for six different human activities by exploring time-
phased data and the signal magnitude of an on-body creeping
wave.

D. HAR RESEARCH RELATED TO SALAT
In the literature, we find a handful of HAR research studies
that focus on recognizing the activities in Salat. The first
study targeting automatic recognition of prayer movements
was conducted in 2009 [103] using a computer vision-
based approach. Later, the study in [20], investigated motion
tracking for Salat activity recognition leveraging two Kinect
devices and using Hidden Markov Model.

The study in [32] used deep learning for the first time for
HAR in Salat and built an image dataset for the basic Salat
positions. Besides, the most recent computer vision-based
study on Salat [104], proposed an assistive intelligent frame-
work to evaluate the correctness of prayer postures. However,
this approach is computationally expensive and requires a
good video recording facility, and sufficient lighting with
no occlusion and background change. This might also cause
distraction and pose serious privacy concerns (especially for
Muslim women who observe modesty) which makes this
approach less suitable in this regard.

The first sensor-based approach for Salat activity recogni-
tion was proposed in 2016 [21] using smartphone accelerom-
eter. However, the suggested placement of the smartphone (at
the upper back of the user), manual cleaning of data, etc., are
some other limitations of this study. Another study [25] used a
smartphone accelerometer sensor to recognize simple daily-
life activities such as standing, sitting, bowing, prostrating,
etc., in order to detect the correctness of a more complex
activity which is Salat while placing the smartphone in the
shirt’s pocket. On the other hand, the study in [33] developed
a pattern for the whole prayer and used DTW to decide
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FIGURE 4. Suggested smartphone placement positions in [21] and [22].

whether the whole activity is a prayer pattern or not. Another
study [34] distinguished between congregational prayer and
individual prayer as well as between silent prayer and loud
prayer using two body-worn sensors. However, neither [33]
nor [34] attempt to recognize different steps and activities
within the prayer. A similar studywas conducted in [23] using
mobile accelerometer data and performance comparison was
done among three feature extraction approaches and eight
machine learning classifiers placing the smartphone on the
hip area. Another research study [22], utilized a smartphone’s
accelerometer to help Alzheimer’s patients in their prayers
using a bunch of machine learning classifiers. They found
the upper arm placement of the smartphone yielding better
accuracy which is not a convenient position at all. Lastly,
the study in [24], recognized six steps in prayer using three
smartphone sensors placing the smartphone in the pant’s
pocket. Therefore, we see that the placement of smartphones
is inconvenient or impractical in these studies (Figure 4).
Even in the case of placing it in pockets, a concern is that
not all garments have pockets or pockets of a specific size
or a specific position. Therefore, the natural usage of sensing
devices is missing in these studies.

IV. COMMON MISTAKES IN SALAT AND ACCEPTABILITY
OF TECHNOLOGICAL ASSISTANCE TO OVERCOME THEM
To reveal the common mistakes in Salat and to assess the
acceptability of technological assistance to improve Salat,
we conduct an online survey. The survey is completely anony-
mous and the participants voluntarily fill it out. We also
conduct interviews with some of the participants who fill out
the survey to dig more about the mistakes. Besides, we inter-
view some Islamic scholars to confirm the permissibility of
such solutions in Islam. The following subsections contain
details on each of these phases.

A. JUSTIFICATION BEHIND ADOPTING A
SELF-REPORTING BASED SURVEY
In our study, we adopt a self-reporting-based survey to collect
responses from the participants on common mistakes in Salat
and the acceptability of technological assistance to overcome
them. The notion of adopting such a self-reporting-based sur-
vey is common in the literature. Existing research studies on
exploring various types of religious experiences [105], [106],
[107], [108], judging computer efficacy [109], assessing
social desirability [109], [110], measuring personality [109],

[111], exploring digital well-being [112], criminology [113],
psychopathology assessment [114], assessing openness in
research content sharing [115], investigating psychologi-
cal disorders [116], [117], etc., have already utilized self-
reporting based surveys. Moreover, the research communities
on HCI [115], CSCW [112], and ubiquitous computing [116],
[117] often leverage self-reporting-based surveys. Accord-
ingly, in our study, we utilize a self-reporting-based survey.

B. ETHICAL APPROVAL AND INFORMED CONSENT
We confirm that prior to conducting the survey, we have
obtained ethical approval from our university’s Institutional
Review Board (IRB) in accordance with established guide-
lines and regulations for research involving human partic-
ipants. The survey is conducted online through a secure
platform allowing us to present the participants with compre-
hensive information on the purpose of this research study at
the outset. We explicitly assure them about the confidentiality
and anonymity of their responses. Additionally, we ensure
the voluntary nature of their involvement and convey to them
that their valuable time and effort spent in this regard would
contribute towards better technology planning and design
through this research study. Only those participants who are
comfortable with these assurances voluntarily choose to take
part in the survey. Thus, the informed consent process is an
integral part of our study design.

C. OVERVIEW OF OUR QUESTIONNAIRE
We collect demographic information at the beginning of the
survey. Next, we ask the participants about their usage and
ownership of technological devices such as smartphones and
smartwatches. afterwards, we try to asses their regularity in
prayer and to what degree they are willing to improve their
prayer quality and quantity. Then, we ask them about their
frequency of mistakes or confusion during prayers. We take
responses for these questions in a 5-point Likert scale [118].

Next, we take their opinions regarding availing techno-
logical assistance for improving prayers, i.e., whether they
would welcome if their devices such as smartphones, smart-
watches, etc., assist them to improve their prayer quality.
Finally, we ask them about their willingness to pray wearing
a smartwatch or fitness band if they have to do so to avail the
above-mentioned assistance. The questionnaire items of our
survey is presented in Table 2.

D. SURVEY PARTICIPANT DEMOGRAPHY
The sampling strategies used in our survey are convenience
sampling [119], [120], referral sampling [119], [120], and
list-based sampling [119], [120]. First of all, we disseminate
the survey through email and social media to the people
accessible to us, which falls under convenience sampling.
Besides, we request each of them to refer this to other
people they think are eligible or circulate it among their
own networks, and this covers referral sampling. Further-
more, we email our questionnaire to the faculty members of
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TABLE 2. Table of survey questionnaire items.

different universities in Egypt, India, Indonesia, Iran, Iraq,
Malaysia, Saudi Arabia, the United Arab Emirates, and some
other countries. We collect their email addresses from their
institutional web pages, and therefore, this stands for list-
based sampling.

We get responses from 126 participants in total who are
from 15 different countries. Among them, two participants
reported that they are not religious or spiritual. Therefore,
we had to discard their responses. Thus, the count of our
responses becomes 124.

The majority of our participants are male and educated.
Regarding age diversity, we get responses from different age
ranges except for children. In Islam, Salat, alongwith all other
religious obligations, and accountability in general, begin
at puberty [121], [122], [123]. Therefore, it appears safe to
go without having this specific population from our survey.
As per occupation, our participants cover students, teach-
ers, IT professionals, engineers, homemakers, etc. Table 3
presents the demography of our participants.

E. SURVEY DATA ANALYSIS AND FINDINGS
We analyze the quantitative survey data using descriptive
statistics such as frequency, percentage, mean, etc. For

correlation analysis, i.e., to analyze the relationships between
demographic and other factors with any variable of interest,
we use the Chi-squared test [124]. Additionally, we use the
Mann-Whitney U test [125] and Kruskal-Wallis test [126] to
compare whether there is any statistically significant differ-
ence in the dependent variable for the independent groups.
For better understanding, the dependent variables of our anal-
yses alongwith their corresponding independent variables are
presented in Table 4.
Here, in response to the question regarding the expe-

rience of using technological devices (namely smartphone
and smartwatch), we find that all of the survey participants
(100%) have experience in using a smartphone and currently
own a smartphone. However, 43% of the survey participants
have experience using a smartwatch, and currently, 31% of
them own one.

Regarding regularity in prayer, we find responses from
almost all types of people such as regular, somewhat regular,
not regular at all, and so on. However, the majority of the
participants are regular in their prayers. Interestingly, when
it comes to the willingness to improve prayer quality and
quantity, almost all of them (above 80%) respond to bewilling
to do that. Figure 5 depicts these findings.
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TABLE 3. Demography of the survey participants.

TABLE 4. Table of dependent variables with corresponding independent
variables used in statistical analysis (DF = Demographic factors,
mean_mist_freq = Mean mistake frequency, regu_in_pr = Regularity in
prayer, will_to_imp_pr = Willingness to improve prayer, welcm_tech_salat
= Welcome technological assistance in Salat, will_to_wear = Willingness
to wear a wearable).

FIGURE 5. Summary of participants’ regularity in prayer and willingness
to improve prayer.

Regarding mistakes, we find the most common mistake
is forgetting the count of Rakat, i.e., forgetting how many
Rakat a person has prayed. On the contrary, forgetting or
getting confused about Ruku or bowing is the least frequent
mistake as reported by the participants. Other types of mis-
takes also happen with varying frequency. Figure 6 presents
the mean frequencies of the mistakes taken in the 5-point
Likert scale (1 = never, 2 = rarely, 3 = occasionally, 4 =
often, 5 = very frequently). We further assure that the choice
of the levels of the Likert scale is supported by the existing
literature [127], [128].
We observe that 42 participants (∼ 34%) report making

at least one type of mistake often or very frequently. This
further clarifies that mistakes in Salat are real and common
among people. We perform the Mann-Whitney test to find
whether there is any statistically significant difference in the

FIGURE 6. Summary of the frequency of different mistakes in Salat (1 =
forgetting count of Rakat, 2 = forgetting count of bowing, 3 = forgetting
count of prostration, 4 = forgetting to sit for Tashahhud, and 5 =
forgetting to recite another Surah after Surah Fatiha).

mistake frequency among the male and female participants
and find there is none (W = 1852, P = 0.832 > 0.05).
Similarly, we do not find any significant difference among
people of different age groups or different levels of education,
regularity in Salat, etc., with their frequency of various types
of mistakes.

The next important finding is the majority of the partici-
pants (∼ 70%) express their eagerness towards welcoming
technological assistance to help them in their prayers. We do
not find any statistically significant correlation between the
response to this question, i.e., welcoming technological assis-
tance in Salat, and the demographic factors, as well as
regularity in Salat. Figure 7a portrays the summary of the
response to this question.

Regarding the willingness of the participants to pray while
wearing a smartwatch (or a similar wearable) to avail of
the technological assistance in Salat, the majority of the
participants (∼ 85%) express their willingness to do so. Here
again, we find no significant association between willingness
to wear a wearable with mistake frequency and demographic
factors. Figure 7b presents the summary of the responses of
the participants to this question.

In addition to that, we have a few qualitative questions. The
free-text responses to these questions help us to have a deeper
understanding of the users’ perspectives and underlying
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FIGURE 7. Summary of the responses to the questions regarding
(a) eagerness to explore technological assistance in Salat and
(b) willingness to pray to wear a convenient wearable (smartwatch,
fitness band, etc).

reasonings behind their opinion. In line with the quantitative
analysis, the qualitative responses also reflect the keenness
of the participants to explore technologies to improve Salat.
As per their responses, the primary reason behind their inter-
est is the fact that technological devices have already become
an indispensable part of today’s life, and therefore, if they are
capable of providing any good regarding Salat, according to
them, people should embrace it. Many express their hope that
success in this workwould benefit theMuslims greatly. In this
regard, one of the participants state the following:

‘‘This will really be great if my devices help me
to improve my Salah because we use devices like
smartphones or smartwatches on a regular basis.
So, it will help me to track my improvement easily.’’
(P7)

However, few of the participants, think that the Islamic
guidance regarding the mistakes in Salat is enough. Some
participants also express their confusion regarding the per-
missibility of such solutions. Besides, quite a few participants
emphasize that technological solutions should not cause dis-
turbance during i.e., no alert or so inside prayer. For example,
one participant expresses his concern as follows.

‘‘I am interested, but I would want to make sure it
is permissible to use a device to assist my prayer.’’
(P87)
‘‘If the devices can assist properly, no problem;
but in times of praying, I don’t want the natural
environment to be harmed.’’ (P29)

TABLE 5. Background of the scholars interviewed.

F. FINDINGS FROM INTERVIEW
To learn more about the mistakes, we take interviews of
11 people who have already participated in our survey.We ask
themwhether there are other mistakes apart from the five they
were asked about in the survey, that they make regularly or
have seen others making. Also whether they do any random
movements or random mistakes in Salat or have seen others
doing so. In response, three of our participants report that they
sometimes forget to make the extra Takbeer followed by a
specific supplication in Witr Salat. Some of the interviewees
mention that they forget some of the supplications to be
recited at specific points of Salat sometimes. Finally, some
report that they make mistakes while performing some of the
unconventional prayers such as Eid prayer, funeral prayer,
etc., as the patterns of those prayers vary from regular prayers.
No other mistakes are reported by any of them.

G. EXPLORING PERMISSIBILITY OF TECHNOLOGICAL
ASSISTANCE IN SALAT
We explore the permissibility of adopting technological assis-
tance in Salat in Islam to address the concern raised by
our survey participants. Subsequently, we engage with three
esteemed scholars of Bangladesh, interviewing them to delve
into our topic in detail. Their short educational and profes-
sional background is presented in Table 5. We first provide
them with an overview of our study and obtain their con-
sent to utilize their opinions as references in our research.
Next, we mention the potential applications of our study and
asked them about the ruling of availing such technological
assistance in Salat. All of them permit the usage of any
technological assistance outside of prayer i.e., getting details
of the prayer upon completion or getting feedback to improve
prayer quality, etc. Similarly, all of them express their con-
cern regarding availing any assistance such as an alert for
mistakes, etc., while in prayer. Below we quote the opinions
of our scholars.

‘‘There is no harm in using such technologies after
Salat to check details or get feedback. I have also
confirmed with two of my senior Muftis (schol-
ars). However, having real-time alerts from such
devices regarding mistakes is something that needs
research from our end, and in my opinion, it is
better not to use such assistance.’’ (Scholar-1)
‘‘The idea is revolutionary! You know what, Mus-
lims are struggling most with their Iman (faith) in
this era of technology. What you guys are doing,

1Jamia is equivalent to a university.

VOLUME 11, 2023 97293



I. Jahan et al.: Leveraging a Smartwatch for Activity Recognition in Salat

FIGURE 8. Pipeline of our proposed methodology.

is the best way to do ihsan (favor) to your fellow
Muslim brothers. I really welcome the idea of mon-
itoring prayer using a watch very much. However,
you can generate alerts regarding mistakes inside
Salat for beginners such as reverts or so but not for
others. I pray that Allah makes you successful in
your endeavors.’’ (Scholar-2)

‘‘You cannot have any sort of assistance while a
person is praying. Anything else is fine. . . If a per-
son gets to know about a mistake through your
device after completing his prayer, he can take
corrective measures or repeat the prayer and there
is no harm in it. And if your device monitors
the prayer of an individual and provides neces-
sary feedback to improve prayer then that is good.
I mean, out of Salat, you can take any sort of help
but not inside prayer. ’’ (Scholar-3)

V. PROPOSED METHODOLOGY
This Section contains a step-by-step description of our pro-
posed methodology for activity recognition in Salat, includ-
ing the details of our data collection and analyses. Figure 8
depicts the pipeline of our methodology from a high level.

As per our proposed methodology, we first develop an app
for our wearable to use in data collection. Then, we perform
data collection using the wearable, having the app installed in
it, and prepare a dataset accumulating our data collected from
different users. We preprocess the raw data in our dataset and
use multiple approaches for classification over the dataset.
Subsequently, we perform some postprocessing to augment
the classification results by incorporating domain knowledge
and predicting the final activity recognition results. We elab-
orate on each of these steps of operations in the following
sections.

A. WEARABLE APP DEVELOPMENT
The wearable device we leverage in this study is a smart-
watch. The model of the smartwatch is Samsung Galaxy
Watch Active 2 [41] as shown in Figure 9. It is programmable,
widely available, and equipped with the sensors needed for
activity recognition. As it runs Tizen OS, we develop a Tizen
service app in Tizen studio and install it in the watch exclu-
sively for logging the sensor data while a person is praying
wearing the smartwatch.

FIGURE 9. Samsung galaxy watch Active 2 [129] - smartwatch.

This app is designed to record the sensor values from the
accelerometer, gyroscope, and magnetometer pertaining to
all three axes, with the timestamp, in files. Unfortunately,
our app cannot record the magnetometer data. From our
investigation, it seems that our watch model that runs on
Tizen might not support the magnetic sensor [130], despite
its inclusion in the official documentation. In our study, data
is collected at a sampling rate of 25 Hz. This rate is sufficient
for capturing human body motion, since 99% of the energy
of human motion is contained below 15Hz [131].

B. DATA COLLECTION
Due to the unavailability of any study as well as any dataset
for activity recognition in Salat using smartwatches, we pre-
pare a dataset on our own and use it for our study. We collect
data from 30 human subjects individually. We use conve-
nience or opportunity sampling strategy for recruiting the
subjects [119], [120]. All subjects have agreed to the usage
of the recorded data for scientific and research purposes.
We request the subjects to wear a smartwatch on the wrist
of their left hand as per their convenience and perform four
units of prayer.

We capture and record video of the whole procedure using
a timestamp camera app to facilitate the task of ground-truth
labeling. We explicitly take consent from the participants
regarding the video capturing. Due to this video capturing,
some participants express their discomfort in praying for-
mally as they find it difficult to concentrate while being
captured and therefore, want to mimic the prayer move-
ments skipping the recitations. We take into consideration
this discomfort and keep it open for all participants to either
pray formally or mimic the prayer movements skipping the
recitation part and instead remaining still in those positions.
In total, 14 subjects (9 female and 5 male) out of 30 choose
to mimic the prayer movements while others perform the full
formal prayer as they do usually. This allows us to capture a
broader range of prayer behaviors as we find that among our
participants who prayed the full prayer, almost all of them
prayed at a slower pace whereas in reality prayer speed varies
based on many factors. The inclusion of the subjects who
mimic prayer movements, helps us to get these variations in
our dataset.

Figure 10 shows a subject under data collection. Here,
as Takbeer is only performed once in the prayer only at the
beginning, we request the participants to repeat Takbeer four
additional times after completing their regular prayers for the
purpose of our data collection.
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TABLE 6. Demography of our subjects who participated in data collection.

FIGURE 10. Snapshots captured during our data collection.

1) PARTICIPANT DEMOGRAPHY
All 30 subjects, from whom we collect data, are from
Bangladesh and currently living here. The number of male
and female participants are 17 and 13 respectively. Our
study includes participants across a wide age range, spanning
from 15 to 67 years old, thus ensuring diversity in the age
demographic. The demography of the subjects is given in
Table 6.

C. PREPROCESSING OF RAW DATA
The collected accelerometer signal is preprocessed before it is
fed into the classifiers. Preprocessing includes different tasks
such as denoising, labeling, and segmentation.

1) DENOISING
Due to various issues such as calibration problems, device
malfunction, deployment issues, etc., wearable sensor data
frequently contain noises. Therefore, it is a common practice
to filter the data and denoise accordingly before going to the
next steps of classification. As such, to smooth out the raw
data, we use the notion of moving average filter [132]. Many
primary research studies on activity recognition use this
notion for the purpose of denoising and smoothening [21],
[133], [134]. Figure 11 shows the denoising process using a
moving average filter.

2) LABELING
As our target is to recognize all the steady states of Salat
such as standing, bowing, sitting, etc., along with Takbeer,
we divide each prayer unit into seven steps - Takbeer, stand-
ing, bowing, short-standing, prostrating, sitting, and tran-
sition - and label accordingly. Here transition includes all
transitional activities such as going from standing to bowing,
sitting to prostration, and so on. We perform the labeling task
manually with the help of the recorded timestamped video.

FIGURE 11. Comparison of the original (raw) and filtered data captured
during our data collection.

Algorithm 1 Algorithm for Preprocessing Raw Signal
Require: D accelerometer data of x, y, and z axeswith labels,
n total number of the collected data

Ensure: Set of Segments S
for each axis in D do
apply moving average filter of window k

end for
samplesPerWindow← frequency× windowSize
start ← 0
end ← 0
while end ≤ n do
if end ̸= 0 then
start ← end−samplesPerWindow× overlap

else
end ← start + samplesPerWindow

end if
s← D[start : end]
S.append(s)

end while

3) SEGMENTATION
Segmentation of the collected signals is a very crucial step
for activity recognition. Segmentation refers to dividing
the signals into chunks of windows for further process-
ing. The chunk size is generally problem-specific [135].
There are three basic types of windowing used in HAR -
activity-defined window segmentation, event-defined win-
dow segmentation, and sliding window segmentation [135].
In activity-defined windows, the initial and end points of
each window are picked by recognizing patterns of activ-
ity changes, whereas the window is constructed around a
detected event in event-defined windowing. However, in the
case of sliding windows, data is divided into fixed-size
windows with no gaps between them, and in certain cir-
cumstances, the data can even overlap. Among the three
alternatives, the sliding window is the most used segmenta-
tion method in HAR [136]. Accordingly, in our study, we use
the overlapping sliding window technique.

As the size of the window directly impacts the segmen-
tation accuracy, windows should be large enough to ensure
that at least one cycle of activity is contained and the com-
parable movements are distinguishable [137]. Keeping this
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in mind, we analyze the activities in Salat and find that
the steady activities may take from a second or so (such as
short-standing and sitting between two prostrations) to a few
minutes (such as standing). This time varies from person to
person. Accordingly, we choose our sliding window length in
such a way that we can capture all the steady states correctly.
The algorithm for preprocessing is presented in Algorithm 1.
Similar steps, as adopted in the Algorithm 1, have also been
used in other existing studies on activity recognition [138],
[139]. In summary, the purpose of preprocessing is to get
rid of unwanted noises and break the continuous data into
fixed-sized windows to effectively capture the salient char-
acteristics of the raw data. Algorithm 1 depicts our approach
to preprocessing the signal. At the end of this stage, the signal
is denoised and segmented into equal-sized chunks for further
processing.

D. CLASSIFICATION
The most conventional way of classifying sensor data in
HAR studies is adopting various supervisedmachine learning
classifiers, either classical machine learning or deep learning,
for training amodel and using it for final prediction [3], [140].
Therefore, we adopt machine learning-based classification as
our baseline methodology for activity recognition in Salat.
Rigorous analyses of the performance of the baselinemethod-
ology help us to understand its limitations. After realizing the
limitations of the baseline methodology, we come up with
an improved methodology for activity recognition in Salat.
For both of these cases, we first perform the preprocessing
as stated above is performed beforehand. In the next subsec-
tions, we elaborate steps of these methodologies.

1) BASELINE METHODOLOGY USING MACHINE LEARNING
CLASSIFIERS
We use a bunch of classical machine learning classifiers as
well as a deep learning model on our collected data after pre-
processing. The classical machine learning classifiers need
feature extraction after the preprocessing stage, whereas the
deep learning model does not require anything so. We present
the classical classifiers and deep learning model under our
investigation below.

a: FEATURE EXTRACTION FOR CLASSICAL MACHINE
LEARNING CLASSIFIERS
Pinpointing the most important attributes in each segment of
preprocessed data is an important task for classical machine
learning classifiers. This task is called Feature Extrac-
tion [141], which presents an important aspect of developing
HAR systems [3]. The use of features rather than raw data
generally enhances classification accuracy as reported in the
literature [141]. Accordingly, in our study, we summarize
each resulting segment in the preprocessed data to a fixed
number of features to feed the classical machine learning
classifiers, i.e., we summarize one feature vector per segment.
The feature vector contains a number of statistical measures.

TABLE 7. Features extracted for classical machine learning classifiers.

Examples of statistical measures include mean, median, stan-
dard deviation, etc. We extract the features from both time
and frequency domains. We extract 16 features in the time
domain and 5 features in the frequency domain. Additionally,
we consider pairwise correlations between the three axes
and include them as features. Moreover, we extract all these
features from the three accelerometer axes ax , ay, and az.
Table 7 lists down all these features extracted from each of the
axes. Thus, in total, we extracted 21 features in total for each
of the three accelerometer axes in addition to three pairwise
correlations, which sum up to 66 features per segment.

b: CLASSICAL MACHINE LEARNING CLASSIFIERS USED IN
OUR BASELINE METHODOLOGY
We use the features extracted from the raw inertial data
sensed by the smartwatch corresponding to the user’s activi-
ties, to train and test different supervised machine learning
classifiers. Here, we use four prominent classical super-
vised machine learning classifiers for the classification of
our feature vectors namely Random forest [74], J48 decision
tree [73], Naive Bayes [80], and Logistic regression [142].
We select these classifiers considering their high accuracies
in the existing HAR studies [75], [76], [78], [79].

c: DEEP LEARNING MODEL USED IN OUR BASELINE
METHODOLOGY
Recently, Deep Learning (DL) methods such as recurrent
neural networks (RNN), LSTMs, autoencoders, and their
variations have been proven to provide state-of-the-art results
on challenging activity recognition tasks with little or no data
feature engineering [137]. This inspires us to explore a deep
learning model for our task. In our case, the diversity of the
signal varies from person to person. Accordingly, as found
from our investigation of the classical machine learning clas-
sifiers, the diversity exhibits to be the main factor responsible
for lower classification accuracy. Considering the fact, we
adopt the model presented in the study [143].
The model adopted from the study in [143] learns to auto-

matically disentangle domain-agnostic and domain-specific
features. Here, the domain stands for a specific person’s data.
To effectively disentangle these two latent spaces, the study
claims to develop a novel Independent Excitationmechanism.
As stated in this study [143], the novelty lies in the fact
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FIGURE 12. Workflow diagram of the deep learning model (GILE) [143]
used in our experiment.

that this mechanism, inspired by the independent optical
excitation of distinct neural populations [144], minimizes the
correlations between domain-agnostic and domain-specific
features. As a result, the model can generalize better to new
unseen target domains. In this manner, the model proves itself
to be robust for cross-person or user-independent HAR. For
better visualization, the workflow diagram of the model is
presented in Figure 12. This model undergoes experimenta-
tion with three benchmark datasets [145], [146], [147] and
yields better accuracy than many state-of-the-art DL models.
Therefore, we keep all the parameters of this model intact to
check how it performs in our case.

d: DIFFERENT APPROACHES OF CLASSIFICATION USING
MACHINE LEARNING
Salat involves both static/steady and transitional activities in
an alternating manner. We are interested to recognize the
steady states along with Takbeer. Pertinent to the recog-
nition, the literature reports that examining the transition
period before a steady/immobile state can improve the per-
formance of steady-state recognition [148]. Being motivated
by this, we attempt to explore two different approaches
with our machine learning classifiers. In the first approach,
(Approach-1), we do not attempt to recognize the transitions
individually, rather group them together into a single class
‘Transition’. In the second approach (Approach-2), we rec-
ognize all the steady and transitional activities mentioned in
Table 1 as different individual classes. A summary of the two
approaches are presented in Table 8.

Besides, in the HAR literature, when the classification
problem involves both steady and transitional activities, many
studies often separate the steady and transitional activities
first and then perform more granular classification over their
activities of interest [42], [134], [149]. Therefore, in both of
our approaches, we first attempt classification altogether and
thenwe attempt classification in a hierarchical fashion similar
to the existing studies [42], [134], [149]. In the former one,
we classify using a single classifier for recognizing all the
classes. However, in a hierarchical way, we first recognize
steady and transitional activities. For this purpose, we first
classify the segments into steady and transitional using classi-
cal machine learning classifiers. Afterwards, we use separate
classifiers to classify the steady and the transitional states and
then combine their outcomes to determine the final classes.

FIGURE 13. Pipeline of our proposed hierarchical methodology.

2) CLASSIFICATION WITH IMPROVED METHODOLOGY
USING SEMANTIC RULES AND DTW
Our experiments reveal some limitations and low accuracies
of our baseline ML-based approaches, which we are going
to present in detail in our next section. As Salat is a religious
worship, any technology for Salat should provide near-perfect
accuracy. However, the ML-based approaches do not meet
this expectation. The underlying reason behind this is the inter
and intra-class variabilities which present a well-known chal-
lenge in the HAR literature [150]. Intra-class variation refers
to the fact that the same activity can be performed differently
(e.g., at different speed and style) by different subjects, which
result in a variation in the signals belonging to the same activ-
ity class [150], [151]. On the other hand, sometimes different
action classes have similar patterns, which is related to inter-
class variation [150]. Considering both aspects, our target is
to design a new methodology that would be generic enough
with higher discriminative power to have a clear realization
of these variations.

However, in our problem, recognizing the transitions in
Salat is necessary for the purpose of having enough con-
text information to infer the steady states as the context
information can substantially improve the recognition of
steady states, [148]. To recognize the transitions with bet-
ter accuracy, a viable alternative to ML-based approaches
can be template-matching [2]. Template matching finds the
distance or correlation of a given signal segment with some
pre-defined templates. Based on the distance or correla-
tion, template matching finds out the class of the test sig-
nal [152]. We find many prior research studies adopting
template matching [14], [100], [152], [153], [154], especially
for transitions [153], [154]. The reason behind this adoption
is that transitions generally span a very short time. In the
case of short-time samples, traditional features are unstable
and cannot describe the actions effectively [152]. In fact, the
study in [155] observes a higher generalization ability of the
template-based methods compared to several ML classifiers
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TABLE 8. Different approaches of classification using machine learning.

while classifying activity data collected with a wrist-worn
accelerometer. Therefore, in our proposed methodology,
we adopt Dynamic Time Warping (DTW) [156], which is
a famous template-matching algorithm for classifying tran-
sitions. The use of template matching using DTW has the
advantage that, it works well even when the training data
is limited [155]. However, to recognize transitions, we first
distinguish the steady and transitional states. At the same
time, using domain knowledge, we develop some semantic
rules for recognizing some of the steady states. Finally, the
results of both of these stages are postprocessed incorporating
domain knowledge to detect and fix misclassifications and
enhance accuracy. Figure 13 presents the pipeline of our
proposed improved methodology integrating all these stages.

a: STATE RECOGNITION
As stated earlier, it is often practiced in the HAR literature
to distinguish the static and transitional states first and then,
do further classification. Therefore, at the top layer of the
proposed hierarchical methodology, we have our state recog-
nition stage. Besides, the DTW-based classification stage
demands the transitions be separated fully from the steady
states. Accordingly, after preprocessing the signal, we deter-
mine the state to which a signal segment belongs, i.e., whether
it is part of a steady activity such as bowing, prostrating, etc.,
or a transitional activity such as standing to bowing, pros-
trating to sitting, etc. Existing research studies often employ
this step at the beginning of their pipeline to distinguish
the static and dynamic activities [42], [131], [134], [149].
The mean, range, and variance of the possible acceleration
values as well as periodicity in the acceleration data many
a time differ slightly between consecutive activities in Salat,
however, they differ substantially over different states. Hence,
as a classical approach, we can deploy machine learning
to train a model to learn the characteristics of steady and
transitional states. Then, we can feed our preprocessed sig-
nal segments to such a model to predict the state of each
segment.

However, in the literature, state recognition has also been
done using normalized signal magnitude area (SMA) [42],
[131]. In our study, we also explore this approach. Here,
to calculate SMA, linear acceleration, i.e., acceleration due to
bodymovement is separated from the total acceleration signal
by discarding the gravity component. This signal is used to
calculate the normalized SMA using Equation 1 [131].

SMA =
1
t

(∫ t

0
|x(t)|dt +

∫ t

0
|y(t)|dt +

∫ t

0
|z(t)|dt

)
(1)

FIGURE 14. Impact of merging adjacent segments based on prediction
labels (S = Steady and T = Transition).

Here, x(t), y(t), and z(t) refer to the body components of the
x, y, and z-axes of the accelerometer, respectively. However,
the separation of body components is typically performed
using a high-pass Butterworth filter of low order with a cutoff
frequency of 1Hz [157]. We use the same in our study as
we also deal with human body movement. An appropriate
threshold value is determined such that a normalized SMA
value below the threshold will refer the user to be in a steady
state and the user to be in a transitional state otherwise [131].
As mentioned already, in the next stages, our target is to
classify each transition between the steady states using DTW.
Here, the input is a complete set of activities covering the
transitions in Salat such as bowing to short-standing, prostrat-
ing to sitting, etc. However, due to the usage of fixed-length
slidingwindow segmentation, these transitions are segmented
into multiple chunks. To better distinguish each individual
transition and steady state, we merge a segment with its
neighboring segment(s), if its predicted label is the same as its
neighbor(s). This eventually groups contiguous transitional
segments into one complete transition and the same for the
steady segments. This type of merging of segments exists in
the literature [158]. Figure 14 portrays this process in our
case. As shown in the figure, after the completion of this
stage, the signal is segmented into alternative steady and
transitional activity segments where each segment represents
either a complete transitional activity or a complete steady
activity in Salat such as bowing, standing, etc.
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FIGURE 15. The three axes of a smartwatch.

b: CLASSIFICATION OF STEADY STATES USING SEMANTIC
RULES
Next, we take a deeper look into the prayer postures of an
individual and corresponding accelerometer signals. We do
so to come up with some rules for distinguishing some of the
steady states. For example, based on the postures of the stand-
ing and bowing phases as well as the transition between them,
we find some correlations of the values of the accelerometer
in different axes, using which we can distinguish the steady
states. Accordingly, we can set some semantic rules to dis-
tinguish the states. The term semantics refers to the study of
meaning. In the HAR literature, semantic approaches refer to
incorporating the human understanding of an activity [151].
More specifically, semantics interpret an action as a relation
between its features (e.g., body parts, corresponding objects,
scenes, etc.). In activity recognition, semantic understanding
enables users to apply prior knowledge in the recognition
process [151]. In our case, we derive some rules based on
the understanding of the activities and corresponding sensor
signal patterns as well as prior knowledge, etc., and therefore,
we term them as semantic rules.

Before we go to the details of these rules, it is worth
mentioning that, while performing activities wearing a smart-
watch, the accelerometer of the smartwatch measures the
acceleration in m/s2. This applies to the watch on all three
physical axes (x, y, and z) as shown in Figure 15. The acceler-
ation covers the force of gravity too. Sustaining these aspects,
we derive semantic rules applicable to different states and
positions.

When a person is in the standing position, his hands are
placed either on his chest or belly, as shown in Figure 16.
Therefore, when he goes from standing to bowing, his hand
first moves slightly outward and then moves straight down-
ward. As per the axes of the watch shown in Figure 15, it is
clear that the outward movement will result in acceleration
towards the negative x-axis and the downward movement
towards the negative z-axis. Here, the acceleration along the
y-axis is not very significant. Besides, whatever the place-
ment of the hands is while standing, the resulting acceleration
from standing to bowing always follows the same pattern.
Next, while in the bowing position, the value of the x
and z-axes of the accelerometer should always be negative.
This intuition complies with our findings from the boxplots
depicted in Figure 17a and Figure 17c. Here, Figure 17 shows
the summary of the real values collected from 30 subjects.
Besides, as the acceleration towards the y-axis is not much
significant compared to the other two, the differences of y

FIGURE 16. The placements of hands in (a) standing and (b) bowing
positions.

from x and y to z are always positive in the bowing position.
We find that, if we develop rules combining these conditions,
we can correctly recognize bowing among all the steady
states.

In Salat, a person is supposed to go to the bowing from the
standing position. He can also (wrongfully) go to the bowing
position from the short-standing position, however, he can
never go to the bowing position from the sitting position.
From the sitting position, he has to stand up and then bow
down. Therefore, the previous steady state of bowing should
be either standing or short-standing. When a person goes to
the standing position and places his hands on his chest or
belly, an acceleration towards the positive x-axis takes place
because of the inward direction of themovement of our hands.
Besides, the same inward direction also generates negative
acceleration along the y-axis. On the contrary, while in the
short-standing position, we keep our hands floating on both
sides.

Algorithm 2 Algorithm for Recognizing Steady States
Through Semantic Rules
Require: S Signal segments labeled as Steady or Transition
by the state recognizers

Ensure: L new labels array
count ← 0
L ← []
for each segment s in S do
if s is steady then
if (s.x − s.y).mean < 0 and (s.z− s.y).mean < 0 and
s.x.mean < 0 and s.z.mean < 0 then
L[count]← Bowing
ps← previous Steady segment of s
if (ps.x − ps.y).mean > 0 then
L[count − 2]← Standing

else
L[count − 2]← ShortStanding

end if
else
L[count]← Unknown

end if
else
L[count]← Transition

end if
count = count + 1

end for
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Therefore, while going to the short-standing position,
acceleration takes place slightly along the outward direction,
and thus in short-standing, the x-axis value is always negative.
Therefore, we can infer that the steady state before bowing is
standing, if the x-axis value is greater than the y-axis value,
and short-standing otherwise. In this fashion, we can recog-
nize the bowing and standing states with confidence, as per
the semantic rules developed based on domain knowledge.
Among the five steady states, we have semantic rules to
recognize two steady states. Therefore, the other three steady
states, which we could not be recognized in this stage, are
marked as ‘Unknown’. They are going to be recognized in the
later stages of ourmethodology. The corresponding algorithm
is presented in Algorithm 2.

A special case to be considered here is that some worship-
pers tend to swing their hands while in the short-standing
position instead of standing still. In our dataset, we also
record this phenomenon as we found two of our male subjects
(P5 and P8) doing so. We present the corresponding signal
of two worshippers where the first one swings his hands
while in a short-standing position and the other one does not
and prays in a standard way in Figure 18. This particular
deviation of posture from the standard way does not affect
our recognition of bowing and standing using semantic rules.
Figure 18 depicts how in both cases the previous stage, i.e.,
state recognition stage segments and labels the signal. We see
that in the non-ideal case, the short-standing state, due to hand
movement, could not be separated or marked as a steady state.
Everything else remains the same in both cases. More impor-
tantly, we can verify from the figures that our assumption
about the values and relationships of the axes discussed above
in the standing and bowing phases hold in both scenarios.
Therefore, this non-standard posture in short-standing does
not pose any anomaly in this stage and our intended task of
recognizing bowing and standing using semantic rules can
still be carried on seamlessly.

c: CLASSIFICATION OF TRANSITIONS USING DYNAMIC
TIME WARPING (DTW)
In this stage of our proposed methodology, we aim to classify
the transitions that occur between the steady states. This
classification, in turn, helps us to infer the steady states.
We use Dynamic Time Warping (DTW) [156], more specifi-
cally a variant of DTW called FastDTW [97], for classifying
the transitions. Dynamic time warping (DTW) [156] is a
widely used and robust template-matching algorithm for time
series data. DTW seeks the optimal temporal alignment,
which means a matching between time indexes of the two-
time series. The matching minimizes the Euclidean distance
between the aligned series. Non-linear mapping is its primary
strength. In contrast to Euclidean distance, which is extremely
restrictive and matches point to point, DTW allows the two
series to evenly match up even though the X-axes (i.e., time)
are not necessarily in synchronization. Figure 19 presents
the matching technique of DTW in contrast to Euclidean
matching.

A well-known application of DTW has been in auto-
matic speech recognition, to cope with different speaking
speeds [159], [160], [161]. Besides, it is used in partial
shape-matching applications [162]. However, we also find
this algorithm being adopted in HAR research [14], [100],
[101], [155], as this approach is beneficial for the analysis
of real-world time series data. Besides, DTW is also robust
against variation in speed or style in performing transitions.
For instance, similarities in walking could be detected using
DTW, even if one person walks faster than the other, or if
there were accelerations and decelerations during the course
of an observation. Considering these aspects, we utilize DTW
to classify all the transitional activities in Salat as given in
Table 1.
For the classification of transitional activities, we first

create a template database with templates for each of the
transitions. We begin the template database construction
process by extracting the signal portions corresponding to
transitional activities for all subjects. Subsequently, for each
transition class, we retain patterns that exhibit the highest
dissimilarity. As for the similar ones, we retain only one or
two representative templates of that cluster by subjective fil-
tering and discard the others. This process helps to capture the
nuances and variations in transition signals among different
subjects and covers a broad range of transition patterns main-
taining a balanced representation of transitional activities in
the template database.

To demonstrate the process, we present an example in
Figure 20. Among the 3 templates presented in this figure
for the class Sh-P, we select one subjectively from the first
two due to their high similarity and keep the third one as it
is much more dissimilar than the other two. Among the three
irregular transitions mentioned in Table 1, B-Sh-P and P-S-
P are included as we find in our dataset that, many subjects
do not spend much time in the short-standing phase before
bowing and in the sitting phase in between two prostrations.
Besides, some worshippers tend to swing their hands while
in the short-standing phase as shown in Figure 18. Therefore,
the short-standing in B-Sh-P and the sitting in P-S-P can not
be recognized individually as steady states for not having
enough time spent or unusual hand movement. Here, the
short-standing and sitting are considered as a part of the
transition from the previous steady state to the next steady
state. Regarding St-Sh, this transition is performed by some of
our participants while performing the extra Takbeer. Hence,
these patterns are stored in our databases too.

Thus, we get a total of 10 sets of templates pertinent to all
10 types of transitions. These sets are maintained for males
and females separately as male and female prayer patterns
vary significantly in our dataset. Figure 21 depicts an example
case of the variation in the prayer patterns. For an unknown
transition, we utilize the DTW scores for all the templates in
the template sets. We take the average of the DTW distances
from our unknown transition to all templates of a template
set. In this way, we find the average distance of our unknown
transition from all template sets. The set with the minimum
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FIGURE 17. Comparison of the values of x , y , and z axis at different steady states (St = Standing, B = Bowing, Sh = Short-standing, P =
Prostrating, and S = Sitting).

FIGURE 18. Comparison of the signal of 1-unit prayer of two subjects P8 and P15 where
(a) P8 swings his hand in the short-standing position and (b) P15 does not and prays in a
standard way. The red dashed lines indicate the signal segmentation and predicted labels
(S = Steady, T = Transition) by the state recognition stage.

FIGURE 19. A comparison of Euclidean and DTW matching.

FIGURE 20. Template selection.

distance indicates that our unknown or test transition belongs
to this set.

As the male and female prayer patterns vary significantly
in our dataset, therefore, we maintain separate template

FIGURE 21. Comparison of two representative templates of Sh-P from
(a) Male and (b) Female template databases.

FIGURE 22. Classification of an unknown transition using DTW.

databases for males and females. One example of the differ-
ence in the transitions between male and female is depicted
in Figure 21. To elaborate our approach further, let X be an
array of sample accelerometer values labeled as a transition
by the state recognition stage and we want to classify X using
DTW. To do so, first, we need to find out the distance of each
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template set from X. The formula to measure the distance of
X to the k-th transition set Tk is as follows.

d(X ,Tk ) =
1
N

i=N∑
i=1

DTW (X ,T ki ) (2)

Using this equation, we will get the distances from X to
all template sets. Now, the set with which X will give the
minimum distance will be the class ofX . Accordingly, if there
are s template sets, the distance of X to the X ’s class will be
as follows.

d = min
k=1..s

d(X ,Tk ) (3)

In this manner, we can classify the transitions using DTW.
Besides, from a transition, we can infer the next and previous
steady states. Another important thing is, while classifying
the transitions, we utilize the knowledge of bowing and stand-
ing recognized already using the semantic rules. This happens
because, when we know that a steady state is bowing, we do
not match the next transition with all ten transitions but only
the ones which start with bowing, i.e., B-Sh and B-Sh-P.
In this fashion, we can leverage the template-matching task
through a delicate blending between semantic rules andDTW.

We perform this classification stage with (WT) andwithout
(WOT) incorporating the knowledge of the recognition done
using semantic rules. Here, WT means we incorporate the
knowledge of the recognition of bowing and standing states
while performing the DTW-based classification. By applying
the semantic rules in this way, we can detect the bowing
and standing stages. Such detection can eventually facili-
tate recognition of the next transitions. This happens as, for
example, if we know that a steady state is bowing, then
the next transition should start with bowing, i.e., the next
transition should be either B-Sh or B-Sh-P. Therefore, we can
only match with these two types of templates to classify the
unknown transition after bowing. On the other hand, inWOT,
we do not incorporate knowledge about the steady states.
Therefore, in the case of WOT, to classify the transition after
bowing, we have to match with all the possible ten types of
template sets.

It is worth mentioning that the extra activities or Null
activities cause some noise in the data. The noises are also
segmented as transitions and if we try to match these noises
with existing transitions, we will get very high DTW dis-
tances. Therefore, to distinguish the noises, we set a threshold
value. While computing the distance of an unknown transi-
tion, if we get the distance beyond the threshold, then we
predict that transition to be a noise resulting from a Null
activity. In this way, we recognize the noises introduced by
the extra or Null activities.

d: POST-PROCESSING
In this study, our focus is to classify the steady states of
Salat along with Takbeer. However, after the classification
of the transitions is done using DTW, each of the predicted
transitions provides us information about its previous and

FIGURE 23. An example of fixing misclassified transition using
neighboring transitions.

next steady states. In other words, each steady state has two
transitions associated with it - one leading to that steady state
from the previous steady state and another is the immedi-
ate next transition starting from that steady state. Besides,
some steady states such as bowing and standing have already
been classified using semantic rules. Therefore, they provide
us with some extra information about the context upfront.
Accordingly, by giving a second pass over the results obtained
up to this stage, and combining these available results about
the steady states, some misclassifications can be detected.
The detected misclassifications can substantially be fixed
using domain knowledge. The postprocessing stage performs
this task and attempts to correctly predict each steady state
by making necessary corrections. This type of postprocessing
is also found in the existing HAR literature [53], [163].
We describe our postprocessing techniques below in detail.

We iterate through the predicted transitions by DTW and
detect and fix the inconsistent transitions. Here, by being
consistent, we mean if one transition is leading to a specific
steady state, the next transition should start from that partic-
ular steady state. For example, if a person has gone through a
transition A-B, that means he was in the steady state A, and
from A, he has gone to the steady state B. Therefore, the next
transition should be B-X, where X is any other steady state.
We detect such inconsistent transitions and fix them based on
their neighboring transitions.

For example, in the example presented in 23, the transi-
tion after bowing is found to be B-Sh, and the next transition
is found to be P-S. Therefore, we call the next transition
inconsistent with its predecessor. In this case, we fix the
inconsistent transition based on its previous and next transi-
tions. In our example, P-S is the inconsistent one. Its previous
transition is B-Sh, and the next transition is P-S. Then both
of the neighboring transitions indicate that the middle one
should be Sh-P.

Similarly, some misclassified transitions can be fixed by
considering the duration of transitions. In our experimenta-
tion, we find B-Sh-P to be confused with B-Sh or Sh-P and
P-S-P with P-S or S-P. However, both B-Sh-P and P-S-P
consist of two transitions, and therefore their duration should
be substantially higher than the individual transitions.We cal-
culate the mean duration taken in each of these transitions
and use this knowledge to resolve these confusions in the
postprocessing stage. For example, if at some point, we find
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FIGURE 24. An example of ignoring extra movements.

a transition P-S with unusual duration, i.e., duration much
higher than expected then we assume that this is a P-S-P and
correct accordingly.

Lastly, Null activities are also removed in this stage. The
Null activities or extra movements, result in some extra tran-
sitions, which usually span a very short time duration and can
be considered as noises. As mentioned earlier, if for any tran-
sition we find all the template sets having a distance greater
than the threshold value, we will consider the transition as a
noise. Therefore, if we find some steady states with noises
in between, then those noises will be ignored and we will
merge all these steady states as a single steady state. Figure 24
presents such a scenario of detecting and eliminating extra
movements.

The full algorithm of postprocessing is presented in
Algorithm 3. Here, we first remove the Null activities or
extra movements. Then, we apply our postprocessing logic
stated earlier and fix the predictions accordingly. Based on
our observations, we find Takbeer to be mostly confused
with P-St. Therefore, we have handled it exclusively. Besides,
we detect transitions with abnormal durations and fix them
accordingly. Lastly, if we find a transition to be inconsistent
with its previous one, then we fix it based on its neighbor-
ing transitions as stated above. And when two consecutive
transitions are consistent, we can easily infer the steady state
between them. For example, if the two consecutive transitions
are B-Sh and Sh-P, then the steady state between them should
be short-standing. In this way, the unknown steady states can
be inferred.

Therefore, we can say that by incorporating our domain
knowledge, we can detect and correct some misclassifica-
tions. Such detections and corrections of the misclassifica-
tions help us to improve our classification accuracy to a great
extent.

E. VALIDATION PROTOCOL AND EVALUATION METRICS
We use both k-fold cross-validation [164] and Leave-One-
Subject-Out (LOSO) [1] as our validation protocols. Besides,
for the evaluation metrics, there exist several metrics to mea-
sure the performance of activity recognition. Examples of the
metrics include accuracy, precision, recall, F-measure or F1-
score, etc. These metrics are widely used in the evaluation
of HAR models [1]. Definitions of the evaluation metrics are
given below.

Accuracy =
TP + TN

TP + FP + TN + FN
(4)

Algorithm 3 Algorithm for Postprocessing
Require: S Signal segments with labels predicted by state
recognizer, semantic rules, and DTW

Ensure: Final prediction labels
for each segment s in S do
if s is a Transition and label of s is Noise then
Combine s with the previous and the next steady state
of s
if any of the steady states’ label is known then

Update label of the combined segment according to
the known steady state

else
Label the combined segment as Unknown

end if
end if

end for
for each segment s in S do
if s is a Transition then

if label of s in L is P-St and previous steady state of s
is not Prostrating or Sitting then
update label of s as Takbeer

end if
if s is a Transition and label of s is B-Sh-P and duration
of s < threshold duration of B-Sh-P then
update label of s as B-Sh

end if
if s is a Transition and label of s is P-S or S-P and
duration of s > threshold duration of P-S or S-P then
update label of s as P-S-P

end if
end if

end for
for each segment s in S do
if s is a Transition then

if label of s is not consistent with the previous transi-
tional segment’s label then
update label according to the previous and next
transitional state

end if
if the previous steady segment’s label is Unknown
then
update label of the previous steady segment accord-
ing to the label of s and its previous transitional
segment’s label

end if
end if

end for

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

F1-score =
2× Precision× Recall
Precision+ Recall

(7)
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Here, TP is True Positive, TN is True Negative, FP is
False Positive, and FN is False Negative. We use accuracy,
precision, recall, and F1-score to analyze the performance
of our methodology in recognizing each of the activities
separately.

In our study, by accuracy and other metrics, we refer to
the accuracy or respective metrics pertinent to classifying
the activities through any of the above-mentioned method-
ologies. Thus, the accuracy and metrics correspond to how
accurately the activities performed in Salat are recognized
by the proposed methodology. Here, it is worth mentioning
that we do not assess the correctness of Salat through these
metrics, and therefore, accuracy does not refer to the accuracy
of Salat in any way.

VI. EXPERIMENTAL EVALUATION
In this Section, we present the experimental evaluation of the
baseline methodology as well as our proposed methodology
presented in Section V, for activity recognition in Salat.
We perform the experimental evaluation using our prepared
dataset. Therefore, first, we describe the details of the dataset,
and then we present the performance at each stage of our pro-
posed methodology. We also present a comparison between
the performance of the baseline methodology and that of our
proposed methodology.

A. ADOPTION OF APPROPRIATE SENSOR
The literature suggests evaluating each sensor individually
offline to determine its contribution to the overall process
[165]. Therefore, we do some initial experimentation with
both accelerometer and gyroscope data collected by our app
to assess their contribution. Following our baseline method-
ology using machine learning, the cross-validation accuracy
we get for detecting the steady states using an accelerometer
is pretty impressive (above 90%). Details of experimentation
using an accelerometer are provided in the following subsec-
tions. In contrast, the gyroscope does not detect any change
in angular velocity when a person is still and the value of
the gyroscope in all 3 axes is around 0 in all steady states of
Salat. For this reason, unlike accelerometers, the recognition
of steady states is not possible with the gyroscope. Therefore,
we aim to recognize the transitional activities using gyro-
scope data following our baseline methodology, which yields
only 44.63% accuracy which is too poor. Consequently, con-
sidering the lower accuracy and the inability of the gyroscope
data to contribute significantly to recognizing steady states,
we decide not to include the gyroscope data in our further
experimentation.

B. DATASET DETAILS
As mentioned earlier, we collect data from 30 subjects and
prepare a dataset for the purpose of this research study. Our
dataset contains 3, 50, 762 samples in total. Figure 25 sum-
marizes the sample distribution of the activities in the dataset.
Here, Null activity refers to the extra activities performed in
Salat that do not nullify prayer.

FIGURE 25. Distribution of activities in our dataset.

TABLE 9. Statistics of the demographic factors of the subjects in our
study.

As mentioned in the study of [51], in the context of human
activity recognition, the diversity of the subjects enrolled
includes the following four factors: (1) gender, (2) age, (3)
height, and (4) weight. Accordingly, to cover gender diversity,
we collect data from 13 female and 17male subjects. Besides,
to present the diversity over the other three factors, we present
the statistics of age, height, and weight of our subjects are
listed in Table 9. We expect that the diversity in each of these
four demographic factors covers a wide range of populations.

C. RESULTS AND FINDINGS
In this Section, we state our findings in detail obtained
from our experimentation. Here, first, we present findings
from the baseline methodology and then from our proposed
methodology.

1) BASELINE ANALYSES USING MACHINE LEARNING
CLASSIFIERS
We employ four classical machine learning classifiers as
well as a deep learning classifier for our classification tasks.
The four classical machine learning classifiers are Random
forest [74], J48 decision tree [73], Naive Bayes [80], and
Logistic regression [142]. Here, in all cases, we achieve
very good k-fold cross-validation accuracy (k = 5) for
Approach-1 and Approach-2 as mentioned in Section V-D1.d
in both single classifier and hierarchical fashion. However,
when we perform LOSO for testing i.e., the model is trained
with all but excluding one subject’s data, and that particular
excluded subject’s data is used as the test data, accuracy
varies substantially from person to person. For some people,
the LOSO accuracy is found to be high, and their activities
are recognized correctly. On the other hand, for some peo-
ple, the LOSO accuracy gets below 70% and the classifiers
becomemuch confused between individual activities in Salat.
Table 10 quantitatively presents details of these findings.
We use a sliding window of 1 sec for classical machine

learning classifiers with 50% overlap. On the other hand, for
GILE [143], which is the deep learning model we used in
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TABLE 10. Accuracy (%) of machine learning classifiers in Approach-1 and Approach-2.

our baseline methodology, elaborated in Section V-D1.c, the
sliding window length is 1.28 sec with 50% overlap. For both
types of classifiers, these values give us the best performances
tuned up through our experiments.

From the results shown in Table 10, we can see that, for
both approaches, accuracy increases, in general, in a hier-
archical manner as each classifier can specialize in its own
domain. The increase in accuracy also happens for LOSO
which is our main focus. Therefore, from now on, we will
only consider the results obtained in a hierarchical fashion.
Besides, accuracy is much higher in Approach-1. This is
expected, as in Approach-2, we classify the transitions and
steady states altogether, and thus, there arises a large number
of classes making the recognition task more challenging.
Among the two approaches, the best LOSO performance is
found by the deep learning model GILE in a hierarchical
fashion. The reason behind this finding is that the model is
specialized for cross-person HAR, i.e., for extracting latent
characteristics of activity independent of any person. This,
in turn, increases the cross-person generalization capability
of the model. Besides, it is worth mentioning that for both
approaches, RF obtains the highest cross-validation accuracy
among all the classical machine learning classifiers under
consideration. Nonetheless, LR achieves the highest LOSO
accuracy in most cases among all the classical machine learn-
ing classifiers.

Another important thing is that, in our dataset, the prayer
pattern of male and female subjects vary substantially, as they
belong to a specific school of thought (Hanafi [48]) and the
school of thought prescribes to do so. Therefore, we separate
male and female data, maintain a separate database for each
of them and evaluate them independently. We also attempt
training and testing with the combined dataset. Here, we find
that the accuracy drops in many of the cases. Figure 26 shows
a comparison in this regard for both approaches.

2) LIMITATIONS OF MACHINE LEARNING CLASSIFIERS
It is clear from Table 10, that the LOSO accuracies are not
uniform across the subjects and substantially vary among

FIGURE 26. LOSO accuracy of GILE when datasets from male and female
subjects are considered in combined and separated manners of
Approach-1 and Approach-2 in the hierarchical fashion.

different subjects for all the classifiers. To analyze the varia-
tion in depth, we present the histogram of the LOSO accu-
racies found by LR and GILE for both approaches in the
hierarchical fashion in Figure 27. It is evident from Figure 27
that even if we achieve high cross-validation accuracy, the
LOSO accuracy is not satisfactory for a considerable number
of subjects. However, the confusion matrices can give us
another insight into the predictions of the individual activities
along with the types of errors that are being made by the clas-
sifiers. Therefore, we present confusion matrices obtained
with LR and GILE for individual steady activities along with
all transitions combined in a single class in Approach-1 in the
hierarchical fashion in Figure 28.

From the confusion matrices in Figure 28, we find that
bowing and standing activities are less confused by the
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FIGURE 27. Histogram of LOSO accuracies obtained by (a) LR and (b) GILE
for Approach-1 and Approach-2 in the hierarchical fashion.

FIGURE 28. Confusion matrices obtained by (a) LR and (b) GILE with
Approach-1 in the hierarchical fashion (St = Standing, B = Bowing, S =
Sitting, P = Prostrating, Sh = Short-standing, Tk = Takbeer, and T =
Transition.)

classifiers. However, for the other activities such as pros-
trating, sitting, and short-standing, we do not notice any
deterministic error pattern. For example, for some people,
prostrating is sometimes confused with short-standing and
sometimes with sitting. On the other hand, short-standing is
mostly confused with prostrating or sitting and rarely with
bowing. Let us take an example to elaborate on the problem.
For one subject (P4), we find the expected activities and

FIGURE 29. Confusion matrices of (a) steady and (b) transitions obtained
by LR with Approach-2 in the hierarchical fashion.

the activities of one Rakat predicted by GILE as shown in
Table 11.

We can see from Table 11 that the short-standing is mis-
classified as prostrating. Therefore, the model will predict
that this person has prostrated thrice, whereas, in reality,
he has prostrated twice. Here, we have no clue to detect
and fix this misclassification, as sometimes after the bowing
phase, some people go to the short-standing phase and then
immediately go to the prostrating phase without delaying a
bit in the short-standing position. This whole movement, i.e.,
bowing to short-standing to prostrating is predicted as a single
transition to the classifier, as there is barely any delay during
those activities and barely any pause between those activities.
A similar thing can happen while going prostration to another
prostration, as some people do not sit and spend a bit of time
in between consecutive prostrations, and they immediately go
for another prostration after the first one. For these reasons,
it becomes extremely difficult to detect this misclassification
by incorporating our domain knowledge.

On the other hand, we explore another alternative approach
(Approach-2), so that we can get enough context about the
steady states. From Table 10, we find that the overall accu-
racy degrades in the cause of Approach-2. The individual
confusion matrices of the steady states and transitional states
demonstrate that the poor classification accuracy of the tran-
sitional states substantially contributes to the degraded accu-
racy. Figure 29 shows the confusion matrices of steady states
and transitional states obtained by LR with Approach-2.

Such degraded accuracy for short-lived activity recognition
is not new in the literature. We find in the existing HAR
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TABLE 11. Prediction of activities performed in one Rakat by a subject (P4) by GILE.

literature that, the traditional features of short-lived samples
are unstable and cannot describe the actions effectively [70],
[152]. The transitions in Salat are also short-lived activities
and therefore, the ML classifiers are unable to recognize this
large set of transitions in Salat correctly. Therefore, as the
accuracy of the recognition of transitions is poor, they fail to
provide us with reliable context information, which we could
have used to improve the accuracy of the steady state mis-
classifications. This scenario eventually leads us to attempt
to design an improved methodology for better prediction of
activities in Salat through better error handling.

D. PERFORMANCE ANALYSES OF THE PROPOSED
METHODOLOGY
Below we present the performance analyses of our improved
methodology.

1) RESULTS OF STATE RECOGNITION
In our proposed methodology, we first recognize steady and
transitional states. We have already mentioned earlier in
Section V-D2.a, that this can be done using two approaches,
and here, we compare the results obtained using both of
these approaches. Here, we segment the signal using a sliding
window of length 1.2 seconds with 50% overlap and amoving
average filter with a window size of 10. Similar to the earlier
case, we use four classical machine learning classifiers i.e.,
RF, LR, NB, and J48 over the segmented data and find RF as
the best-performing one.

In the Signal Magnitude Area (SMA) based approach,
we use a high-pass Butterworth filter of order 3 with a
cutoff frequency of 1Hz following the convention [157] of
the literature. We adopt these parameters to obtain the lin-
ear acceleration component from the acceleration signals.
Subsequently, we focus on identifying the optimal threshold
value for normalized SMA. We calculate the accuracy of
state recognition across the entire dataset while adjusting the
normalized SMA value within the range of 0.2 to 2. Through
this iterative process, we discovered that the highest accuracy
was achieved when the normalized SMA value was set to
1. Therefore, we set this as the optimal threshold for our
analysis. Figure 30 depicts our findings of tuning normalized
SMA value. This implies that if the normalized SMA value
of a segment is less than 1, then this segment is considered
to be steady, otherwise, we consider the segment transitional.
The two approaches give us almost similar results, which are
depicted in Figure 31.
After predicting each segment, we merge contiguous

blocks of similar states. Though we see in Figure 31 that the
classification into steady and transition accuracies fluctuate
around 90%, after merging the adjacent similar segments,

FIGURE 30. Accuracy variation with different normalized SMA values.

FIGURE 31. Performance comparison of two state recognition methods.

TABLE 12. Accuracy of state recognition using ML varying sliding window
size and moving average filter window size.

the recognition accuracy goes around 99.5% for both. This
improvement in accuracy indicates the feasibility of employ-
ing the classification of segments into steady and transition in
both the proposed approaches. Another important aspect is,
we find that this process is not very sensitive to the choices
of parameters for segmentation. For example, we explore
variations in these parameters, such as window size from 0.5s
to 1.5s and moving average filter window length from 5 to 30,
and find almost no change in the accuracy. Table 12 sum-
marizes our findings regarding the state recognition accuracy
achieved through varying sliding window sizes and moving
average filter window sizes.

2) RESULTS OF SEMANTIC RULE-BASED CLASSIFICATION
FOR STEADY STATE RECOGNITION
We apply the semantic rules that we derived from our domain
knowledge, on the five steady states - standing, bowing, short-
standing, prostrating, and sitting. We find that using these
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TABLE 13. Overall accuracy of classifying transitions using DTW with
(WT) and without (WOT) applying the knowledge obtained using the
semantic rules.

rules, bowing and standing can be accurately recognized
with a remarkable 100% accuracy. As we cannot differentiate
among the other three states using these rules, therefore,
they are marked as ‘Unknown’ in this stage which is later
classified using DTW in the later stage. Thus, the semantic
rules serve as reliable indicators for the identification of these
activities. Another important aspect is that the confidence
gained from the accurate recognition of these two activities
eventually helped optimize our subsequent phases also.

3) RESULTS OF DTW-BASED DETECTION FOR
TRANSITIONAL STATE RECOGNITION
Upon classifying the steady states using semantic rules,
we apply DTW to recognize the transitions in Salat. We con-
duct this stage with (WT) and without (WOT) incorporating
the knowledge of the recognition done using semantic rules,
i.e., the knowledge of distinguishing bowing and standing
states. Here, we find that the former approach, i.e., with
the incorporation of the results of applying semantic rules,
performs better. Table 13 presents the comparative results
over WT and WOT approaches.

The reason for WT performing better is that it narrows
down the search space and reduces the number of com-
peting templates to consider for each unknown transition.
To elaborate a bit more, after applying the semantic rules,
we can recognize the bowing and standing steps with per-
fect accuracy. Incorporating this knowledge in our DTW
stage means, for example, if we know that a steady state is
bowing, then the next transition should be either B-Sh or
B-Sh-P. Therefore, we can only match with these two types
of templates to classify the unknown transition. However,
if we have no knowledge about the steady states, then to
classify the transition after bowing, we have to match with all
possible ten types of template sets. This increases the chance
of misclassification, as more possible transitions are there.

As WT performs better, we adopt this in our methodology.
Another important point is, as we have already shown in
Section V-D2.c, that the transition patterns vary substan-
tially between men and women. Even though, we explore
combining both male and female patterns together and per-
form classification using DTW. Here, due to the differ-
ences in the templates for males and females, we find the
accuracy degrading significantly and dropping even below
50%. Therefore, we maintain separate template databases for
males and females and carry on this classification separately.
Table 14 presents the confusion matrices in this regard.

The confusion matrices show us that the majority of the
transitions are classified accurately. Here, Null means the

extra activities performed during Salat that are to be ignored.
We set the DTW distance threshold to 500 for Null activi-
ties. This implies that, if the lowest DTW distance from an
unknown transition to the template sets exceeds 500, then this
is a Null activity. From the confusion matrices, we find that
all the Null activities of both Male and Female datasets got
classified correctly. However, we find Tk is mostly confused
with P-St for both male and female datasets. However, P-St
is not confused with Tk, which eases fixing this confusion in
the postprocessing stage. Similarly, we see P-S-P is some-
times confused with S-P or P-S. However, as mentioned
in Section V-D2.d, such confusion can be fixed using the
duration of the transitions.

4) FINAL RESULTS AFTER POSTPROCESSING
From the confusion matrices in Table 14, we see that most of
the instances lie on the diagonal except for a few cases show-
ing potential misclassifications. These misclassifications can
be fixed by considering the previous transitions, steady states,
and durations as stated in Section V-D2.d. For example,
if we find a prediction of P-St at some point whereas the
immediate previous transition does not involve sitting, then
we can assume that this P-St should be Tk. On the other hand,
in terms of duration, there is a significant difference between
B-Sh-P to B-Sh. As B-Sh-P means a person going from
bowing to short-standing to prostrating, this whole transition
generally takes more time (Mean = 5.1 sec, SD = 0.17 sec)
than B-Sh, i.e., bowing to short-standing (Mean = 2.2 sec,
SD = 0.25 sec). Similarly, we can differentiate P-S-P (Mean =
6.1 sec, SD = 0.21 sec) from P-S (Mean = 1.9 sec, SD =
0.11 sec) and S-P (Mean = 1.7 sec, SD = 0.15 sec) by com-
paring the duration of a transition. Thus, by incorporating this
domain knowledge, we can detect misclassifications as well
as resolve confusion resulting from any misclassification.
This, in turn, improves the predictions of the previous stages
and yields higher prediction accuracy. The final precision,
recall, and F1-score of each activity of Salat after applying
such post-processing is given in Table 15.

After the postprocessing, out of 728 activities, only seven
activities are misclassified. Here, two sittings are classified
as prostrating. Besides, five Takbeer activities are missed
as they are performed right after going up from sitting to
standing without any pause. Due to the absence of pause, the
sitting-to-standing and Takbeer are considered one activity
and predicted as sitting-to-standing. Thus, the overall final
accuracy obtained by our proposed methodology becomes
99.03%.

a: RAKAT COUNTING ACCURACY
After the final prediction is made by our proposed methodol-
ogy about each activity, we go through the predicted series of
activities to count the number of Rakat. Ideally, as standing
and bowing occur only once in a Rakah, therefore, the number
of standing activity or bowing activities should be equal to the
number of Rakat. In that sense, as our proposed methodology
can recognize bowing and standing with 100% accuracy,
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TABLE 14. Female.

TABLE 15. Final accuracy, precision, recall and F1-Score of each activity.

Algorithm 4 Algorithm for counting number of Rakat
Require: Ordered list of predicted steady-state activities S
Ensure: rakatCount = 0
for each activity s in S do
if s is Standing then
standingFound = True

else if (s is Sitting or s is Prostrating) and
standingFound = True then
rakatCount+ = 1
standingFound = False

end if
end for

therefore, the Rakat count accuracy is also 100% in ideal
scenarios. However, we also consider the non-ideal cases i.e.,
where a person might make mistakes such as bowingmultiple
times in a single Rakah or not bowing at all, etc. Considering
all these, we have devised an algorithm for Rakat counting
which is presented in Algorithm 4. Basically, we check for
a standing phase followed by a sitting phase to decide that
a Rakat is found. That means, upon encountering a standing
activity, we assume that a Rakat has just started and then we
keep searching for sitting phase activities in the subsequent

activities and once we find a sitting phase activity such as
sitting or prostrating, we count that as a complete Rakat.

Therefore, it is clear that our Rakat counting accuracy is
dependent on the accuracy of recognition of standing and
sitting activities, i.e., sitting and prostrating. According to our
final confusion matrix presented in Table 15, the recognition
accuracy for the standing activity is 100%. Similarly, the
sitting activities (prostrating and sitting) are recognized with
near-perfect accuracy and occasionally get confused between
sitting and prostrating but not with other activities. However,
even if such confusion occurs, it does not impact our Rakat
counting algorithm since both sitting and prostrating activi-
ties are treated equally in the algorithm. Consequently, our
Rakat counting accuracy remains consistently high at 100%.

VII. DISCUSSION
In this Section, we discuss some important aspects of our
study, such as its acceptability to users, methodological
advancement, scaled-up experimentation, etc. Before pre-
senting these discussions, we first briefly elaborate on how
we answer our research questions set earlier in this study.

A. OUTCOMES OF THE EXPLORATION OF OUR RESEARCH
QUESTIONS
In this Section, we will shed light on the outcomes of explor-
ing our research questions set in Section I-D. We find the
answer to RQ1 and RQ2 through our online survey. Through
a mixed-method analysis of the responses of the participants,
we find that more than one-third of our participants make at
least one mistake frequently where forgetting the Rakat count
is reported to be the most common mistake. This answers
our RQ1. Next, we find that the majority of our participants
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(above 70%) exhibit a willingness to explore technological
assistance to improve their Salat which answers RQ2.

And lastly, to answer RQ3, we explore recognizing activi-
ties in Salat using a smartwatch and develop a methodology
in this regard. The impressive accuracy of our methodology
proves that HAR in Salat using a smartwatch is feasible and
surpasses the accuracy of other currently available methods.

B. ESTABLISHMENT OF REQUIREMENT, ACCEPTABILITY
AND PERMISSIBILITY OF TECHNOLOGICAL ASSISTANCE
IN SALAT
Before approaching the gaps in the literature regarding activ-
ity recognition in Salat, we survey the real users to assess
the necessity, and acceptability of technological assistance
among them. We do not find any research in the literature
conducting any such study in this direction. However, in the
literature, we find some other HAR studies [166], [167]
doing this practice of assessing the acceptability of their HAR
solutions which focus on different domains other than Salat.
By conducting our survey, we have gained a more profound
understanding of different facets relating to the need and
willingness of the general population to embrace technolog-
ical assistance in Salat. Considering the demography of the
survey participants presented in Table 3, we can claim that
this survey does not represent any specific community, but,
rather represents the Muslim population in general. More
importantly, our interviews with Islamic scholars clarify the
concerns regarding the permissibility of such assistance and
provide us with a firm ground to go further in this direction.

C. A NEW DATASET FOR SALAT ACTIVITY RECOGNITION
One very important contribution of our study is the prepa-
ration of a smartwatch dataset consisting of Salat activities.
To date, there is no such dataset present in the literature. Our
dataset contains a large number of samples (3,50,762) col-
lected from 30 subjects including both men and women. This
appears to be sufficient enough, as other benchmark datasets
cover the number of subjects equal to us [146], [147] or less
than that of ours [51]. Furthermore, ideally, a dataset should
reflect the variability of real-world activities, and be flexible
enough to emulate different experimental setups [145]. In a
similar way, our dataset covers a diverse demography of
subjects, as shown in Table 6. The preparation of such a
dataset takes much time and manual effort for both collecting
raw data and subsequent labeling. We believe that our dataset
will serve as a basis for testing different HAR approaches
for Salat and also for the evaluation of any complex activity
recognition model in the future.

D. METHODOLOGICAL ADVANCEMENT FOR ACTIVITY
RECOGNITION IN SALAT
In this study, we propose a new methodology to recognize
the activities in Salat. None of the methodologies presented
by the existing studies matches ours, as almost all of them
use only a classical pattern recognition pipeline whereas

we use the notion of DTW blended with semantic rules,
postprocessing, etc. Though one of the earlier studies on
Salat [33] uses DTW, it only attempts to detect whether the
signal pattern is a prayer pattern or not. Moreover, in the case
of other existing studies [60], [168], [169], [170], [171], the
recognition of activities or methodologies under considera-
tion are either not applicable for Salat [168] or are muchmore
complex compared to ours one [16], [44]. Besides, though we
find several HAR studies in the literature using DTW [14],
[100], [101], our study establishes that the mere adoption of
DTW is not sufficient to develop a model for recognizing all
steps of Salat. The model definitely needs some sort of post-
processing mechanism to correct the misclassifications in the
process of preparing the final output. This post-processing
step is not found in any existing studies on Salat. To summa-
rize, the process of state recognition, application of semantic
rules, leveraging DTW, and post-processing - all these in
combination is not seen in the literature yet. This pipeline is
developed exclusively considering the nature of activities in
Salat and its various steps, analyzing people’s postures while
performing these activities, and so on. Our study proves that
all the steps of this pipeline complement each other to build
a robust model for recognizing activities in Salat.

E. RECOGNITION OF A COMPLEX ACTIVITY WITH
NEAR-PERFECT ACCURACY
First of all, in the literature, we find that complex activities
are comparatively less explored and challenging to recog-
nize [50], [59]. Salat, being a complex activity, is not an
exception here, as recognizing each individual step in Salat
is undoubtedly a challenging task. Our method is specifi-
cally devised for Salat keeping its specific characteristics
in consideration yielding a near-perfect accuracy (99.3%)
in recognizing individual steps or activities in Salat. This
outperforms all the existing studies found to date to the best
of our knowledge. Table 16 presents a comparison of the
performances and other aspects of our model as well as
related existing studies [21], [22], [23], [24], [25].

F. ROBUST PERFORMANCE ANALYSIS
With the classical machine learning approaches, we obtain a
maximum of 95% cross-validation accuracy. With DL, this
is even better (96.1%). However, we investigate that when
we perform LOSO instead of cross-validation, we find an
accuracy of less than 70% for some subjects. This means
that, for some of the subjects, these models will be able to
recognize activities in Salat correctly, while at the same time,
there are high chances to fail for some other subjects. The
cross-validation accuracies we achieve are unable to reveal
these limitations of the machine learning approaches. This
happens as, in the case of cross-validation, as the data of
all the subjects are shuffled together, it is highly likely that
the training folds already carry some data of the subjects
whose data are present in the testing fold. Thus, The LOSO
type of validation is highly important, however, absent in
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TABLE 16. Comparison over the performances and other aspects of our approach and other related studies.

the existing studies of HAR in Salat. Therefore, in our case,
the usage of LOSO gives us a better understanding of the
performance of our proposed methodology in the real world.
Besides, the findings fromLOSOmotivate us to come upwith
an improvedmethodology to provide better andmore uniform
performance in a user-independent manner.

G. FINE-GRAINED RECOGNITION WITH TOLERANCE TO
EXTRA ACTIVITIES
Our model is capable of predicting each step of Salat except
Taslim. Taslim marks the end of the prayer while sitting in
the same position, turning only the head first to right and
then to left saying a specific supplication [17], [18]. As this
only includes the movement of the head, its impact on the
smartwatch (placed on the wrist) is not significant enough to
recognize. All other steps, irrespective of whether it is steady
or transitional, can be recognized by our model.We recognize
Takbeer and short-standing which is not recognized by the
earlier studies. Besides, while collecting data, we find many
people spending not enough time in the short-standing phase
or in the sitting phase in between the two prostrations. Unlike
the earlier studies, our proposed methodology takes this into
consideration, and no matter how quickly these steps are
performed, can be recognized by our model.

Besides, we are the first to make our system robust by
making it tolerant to extra activities that are not part of Salat,
however, found to be often done by people [36]. However,
as the smartwatch rests on the wrist, and the extra activities
are mostly done by hand, they result in some extra transitions
in the signal which can cause wrong predictions. In this
regard, we leverage DTW to eliminate the extra activities in
the post-processing stage. This also presents the necessity of
post-processing in the process of producing a complete and
final prediction.

H. USAGE OF A CONVENIENT WEARABLE FOR HAR IN
SALAT
To the best of our knowledge, we are the first to utilize a
smartwatch for HAR in Salat. As for their respective usage,
both smartphones and smartwatches are convenient for their
own purposes. However, in the case of activity recognition

in Salat, the data collection device is expected to be easy-
to-use, convenient to pray with, non-distracting, and should
be applicable to all. Smartphones, though more pervasive
than smartwatches in today’s world, pose some limitations
from these perspectives when used as a data collection tool in
HAR in Salat. Our findings from the survey also support this
understanding. Considering all these, we can claim that, our
endeavor to use smartwatches for HAR in Salat is a valuable
addition to the literature.

I. SCOPE OF OUR STUDY - RECOGNITION, POTENTIAL
EXTENSIONS, AND BEYOND
The scope of this study is limited to the recognition of the
activities performed in Salat. More specifically, this study
recognizes the steady states of Salat as listed in Table 1 along
with Takbeer. After the activities performed in Salat by a
worshipper get recognized by the methodology proposed in
this study, the sequence of recognized activities can be used
later to assess the completeness and correctness of the prayer.

Besides, it is worth mentioning that this study covers
recognizing the activities in Salat, and identifying different
mistakes in Salat is its logical consequence such as mis-
takes include forgetting to perform a specific activity (e.g.,
a Rakah), performing a specific activity more than the pre-
scribed times, etc. This happens as mistakes related to the
count of various activities in Salat can be captured based
on the activities recognized. However, there also exist other
types of mistakes that cannot be identified in this way such as
wrong recitation, wrong direction of facing, wrong postures
such as placing hands on the chest instead of the belly, etc,
which are beyond the scope of this study.

One important point is that our proposed methodology,
in its present form, is not intended for real-time recognition
of Salat activities. It is because, we take the whole prayer
signal and then separate the steady and transitional states,
and apply various logics and algorithms to recognize the
states. Again, this can be extended to work in real-time too.
Nonetheless, the applications of our proposed methodology
are not confined only to providing real-time feedback to the
worshippers. Rather, the most useful application could be
helping worshippers monitor their prayers, getting valuable
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insights regarding their prayers that can help them in improv-
ing their prayers, etc.

Accordingly, this research opens up possibilities for the
development of innovative apps that can provide a com-
prehensive analysis of one’s prayer such as the counts of
performed activities, durations of prayer and each activity in
prayer, sequence of activities, number of Rakat, etc. In this
way, an app can be developed to highlight areas for improve-
ment in the prayer as well as track progress and offer feedback
in accordance with Islamic teachings. Users could gain a
deeper understanding of their prayer habits, including missed
prayers, delayed prayers, rushed prayers, common mistakes
in the prayer, and time spent in individual activities of the
prayer. Armed with this information, users can take proac-
tive steps toward improving the quality and consistency of
their prayer. These insights can be delivered to the worshiper
instantly or after monitoring their prayer patterns over a spe-
cific duration. Besides, the worshiper can also be reminded
about hismistakes upon completing the prayer so that s/he can
take corrective actions, which the scholars generally permit as
stated in Section IV-G.

In addition to general worshipers, such assistance could
be particularly valuable for beginners or new Muslims (con-
verted), who often face challenges in accessing proper guid-
ance, especially residing in remote areas. Obviously, they can
learn how to pray from online resources, however, through
such technology, they can monitor their prayers and get feed-
back for improvement in the absence of a guide.

Additionally, leveraging our proposedmethodology, future
solutions can be made to facilitate a distraction-free environ-
ment for prayers by automatically switching all devices to
Silent mode upon detecting ongoing prayer activities. Fur-
thermore, an auto-adjusting alarm feature can be integrated
to keep notifying or warning the users for prayers. This can
be especially helpful for Fajr or dawn prayer as many people
find it difficult to wake up for the Fajr prayer.

Therefore, though Islam has already provided ‘‘Sahu
Sijda’’ [17], [18] as a means of correction upon making
specific mistakes, we assert that our study captures a broader
aspect beyond correction of mistakes by aiming at helping
Muslims in improving their prayer quality.

J. CONTRIBUTION TO THE HAR LITERATURE
Our study contributes to the HAR literature in several ways.
First of all, the pipeline of our proposed methodology, i.e.,
the delicate combination of semantic rules, DTW, and custom
context-based postprocessing, is the first of its kind in the
HAR literature to the best of our knowledge. As we can
recognize a complex activity following this newmethodology
with near-perfect accuracy, the methodology can be exploited
in the future for recognizing other complex activities such
as sports training, different types of Yoga, different types of
exercises, military training, etc. More specifically, to recog-
nize the activities that involve the sequential execution of a
set of simple activities, our proposed methodology might be

a good option to explore. For example, the study in [172]
recognizes six different types of exercises for frozen-shoulder
rehabilitants. Each of these exercises involves specific pos-
tures and they are repeated multiple times. In such a case,
we can explore our methodology to detect these exercises and
count the repetitions.

On the other hand, our prepared dataset can also be
valuable in the HAR literature. The dataset can serve as a
benchmark dataset for complex activities. The dataset con-
tains a good number of steady and transitional activities,
and therefore, future researchers can design and test different
methodologies for complex activity recognition leveraging
this dataset. Nonetheless, future methodologies can also be
experimented with the dataset for comparative analysis over
their performances.

Besides, for the first time, our survey in this study reveals
the eagerness of people to be helped in their worship. This
might encourage future researchers to detect activities in
other types of worship to assist people.

VIII. CONCLUSION AND FUTURE WORKS
In today’s world, HAR solutions are being leveraged widely
for assisting people in numerous fields [10], [11], [12]. Salat,
being the most fundamental worship of the Muslim commu-
nity as well as a complex activity by definition [16], [44],
has got the attention of HAR researchers too over the last
decade. However, several limitations still exist in these HAR
studies focusing on Salat, and the literature is yet to provide
a convenient and robust solution for activity recognition in
Salat. To this extent, in this study, we approach to address the
gaps in the literature focusing on activity recognition in Salat.
However, before that, we perform an exploratory study to
find out the requirement, acceptability, and permissibility of
such HAR solutions. Subsequently, we prepare a smartwatch-
sensed dataset of offering Salat and propose a new HAR
methodology blending machine learning algorithms, seman-
tic rules, DTW, and custom post-processing in a delicate
manner. Rigorous user-independent experimentation reveals
that our proposed methodology outperforms all the previous
studies, achieving a near-perfect accuracy (99.3%)

Being motivated by the potential of this study, we wish
to take this to the next step, which is real-life deployment
i.e., building an app with features outlined in Section VII-I.
Additionally, apps built on our proposed methodology can
also act as a prayer tracker i.e., detect whether a person has
prayed or not. Besides, this can be extended to work in real-
time as per the applicable rules in Islam.

Moreover, this study can be improved by including more
subjects from people of different schools of thought or from
people, who, due to some disability or so, cannot perform
Salat in a conventional way, etc. In addition to that, another
possible future work could be to work with low-resource
and low-cost wearables as the one we use is a high-resource
one. Lastly, our survey reveals the eagerness of people to
be helped in their worship, and therefore, future attempts
can be made to detect activities in other types of worship to
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assist people. For example, recognizing Tawaf, Sa’i, stoning,
and other worships performed by the Hajj pilgrims [173],
and providing their accurate counts to the pilgrims can be a
potential direction of future work.
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