IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 9 August 2023, accepted 30 August 2023, date of publication 1 September 2023, date of current version 7 September 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3311370

== RESEARCH ARTICLE

Autoscaled-Wavelet Convolutional Layer for
Deep Learning-Based Side-Channel Analysis

DAEHYEON BAE"', DONGJUN PARK ', GYUSANG KIM“!, MINSIG CHOI', NAYEON LEE 1,
HEESEOK KIM“2, (Member, IEEE), AND SEOKHIE HONG"'!, (Member, IEEE)

1School of Cybersecurity, Korea University, Seoul 02841, South Korea
2Department of Al Cyber Security, College of Science and Technology, Korea University, Sejong 30019, South Korea

Corresponding authors: Seokhie Hong (shhong @korea.ac.kr) and Heeseok Kim (80khs @korea.ac.kr)
This work was supported by Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the

Korea Government (Ministry of Science and ICT) (N0.2021-0-00903, Development of Physical Channel Vulnerability-based Attacks and
its Countermeasures for Reliable On-Device Deep Learning Accelerator Design).

ABSTRACT Continuous Wavelet Transform (CWT) is rarely used in the field of side-channel analysis due
to problems related to parameter (wavelet scale) selection; There is no way to find the optimal wavelet scale
other than an exhaustive search, and the resulting spectrogram analysis can introduce significant analysis
complexity. However, a well-scaled CWT can improve the signal-to-noise ratio of side-channel signals,
which can lead to better attack performance. And our insights suggest that there is scope for CWT and deep
learning approaches to be combined, which could help the models to train more effectively while overcoming
the problems of CWT. In this context, we propose a novel feature extraction layer that combines a CWT
with a Convolutional Neural Network (CNN). The proposed method can leverage neural network training
to automatically adjust a wavelet scale, which is a critical parameter of CWT. Furthermore, the proposed
method can lead to performance improvements by enabling a deep learning model to perform on-the-fly
multi-frequency analysis without any pre-processing. By bringing the two approaches together, we were
able to overcome the limitations of CWT and improve the performance of deep learning-based side-channel
analysis. As an experimental result using open dataset ASCAD, a de facto standard in deep learning-based
side-channel analysis, we confirmed that the proposed method could improve the performance by inserting
the proposed layer into existing state-of-the-art deep learning models.

INDEX TERMS Convolutional neural network, deep learning, hardware security, side-channel analysis,
wavelet transform.

1. INTRODUCTION integrated circuit, various side-channel information related to

Side-channel analysis remains the most practical attack tar-
geting existing cryptographic systems even after more than
20 years since the development of the timing attack [1]
and DPA (Differential Power Analysis) [2]. Side-channel
analysis is a type of cryptanalysis that extracts sensitive
information inside an integrated circuit from unintentional
information leakage caused by physical characteristics. These
unintentional information leakages, i.e., side-channel leak-
ages, include time, power consumption, and electromagnetic
emission. Once a cryptographic algorithm is operated in an

The associate editor coordinating the review of this manuscript and

approving it for publication was Mohamed Elhoseny

sensitive value (e.g., a cryptographic key) could be leaked.
Therefore, hardware (implementation) level security of a
cryptographic algorithm cannot be guaranteed, even if the
algorithm or scheme level security has been mathematically
proven unless side-channel analysis-specific countermea-
sures are investigated. For this reason, side-channel analysis
is still actively researched in cryptanalysis/hardware security
academia and the semiconductor industry [3].

To improve the performance of side-channel analysis, var-
ious signal processing methods have been studied: signal
aligning, filtering, and transforming [4], [5]. One example
of this is wavelet transform [6]. The wavelet transform,
which is the main focus of this paper, can compress a

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

VOLUME 11, 2023

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

95381

https://orcid.org/0000-0002-5523-6710
https://orcid.org/0000-0002-4820-389X
https://orcid.org/0000-0002-9937-674X
https://orcid.org/0000-0002-1487-8143
https://orcid.org/0000-0001-8137-4810
https://orcid.org/0000-0001-7506-4023
https://orcid.org/0000-0001-6347-8368

IEEE Access

D. Bae et al.: ASW-CL for Deep Learning-Based Side-Channel Analysis

signal or decompose frequency by performing convolution
between a short waveform called a wavelet and an unrefined
signal. Discrete Wavelet Transform (DWT) is often used
in side-channel analysis to take advantage of compressing
side-channel signals while preserving Signal-to-Noise Ratio
(SNR) [7]. Whereas Continuous Wavelet Transform (CWT),
which decomposes signals for time-frequency analysis, has
been rarely used in the field of side-channel analysis due to
scale selection and data size-increasing problems [8]. That
is, there is no effective algorithm for calculating the opti-
mal wavelet scale, which is a critical parameter of CWT,
to improve the performance of side-channel analysis due to
many factors: hardware and implementation characteristics
(e.g., instruction structure), signal quality, and the presence of
countermeasures; exhaustive search is required. In addition,
the size of the data increases in proportion to the number
of selected wavelet scales, which may cause an increase
in analysis complexity. However, we have found that CWT
provides significant performance gains over DWT if appro-
priate wavelet scales are selected. We aim to overcome the
wavelet scale selection problem in CWT by combining it
with deep learning approaches. In addition, we leverage the
advantages of CWT to improve the performance of existing
deep learning-based side-channel analysis.

Deep learning is a technique for approximating functions
using a deep neural network. Over the past decade, deep
learning has been applied to side-channel analysis; Deep
learning-based side-channel analysis. Deep learning-based
side-channel analysis is used to approximate a function that
maps from a time series side-channel leakage (e.g., power
consumption or electromagnetic emission) to an intermediate
value (IV) of a cryptographic algorithm. To approximate a
function more accurately, a deep learning model tunes itself
using error backpropagation, i.e. training. We aim to combine
CWT primitives with models for deep learning-based side-
channel analysis. This allows the wavelet scales (critical
parameters of CWT) to be automatically adjusted by itself
through error backpropagation during the training process.
In addition, the effects of multi-frequency analysis driven
by the CWT primitives can be used to improve the attack
performance of the model.

In this paper, we bring together two worlds that have
been studied independently to overcome the shortcomings
of CWT while improving the performance of deep learning-
based side-channel analysis: CWT from the traditional
signal-processing world with CNN from the deep-learning
world. In this context, we propose a novel feature extrac-
tion layer called the Autoscaled-Wavelet Convolutional Layer
(ASW-CL) for deep learning models that takes advantage
of the wavelet transform (CWT) and the neural network
training. We were motivated by the similarity of the under-
lying operations of CWT and one-dimensional CNN. The
proposed ASW-CL enables a deep learning model to conduct
on-the-fly multi-frequency analysis in a single model without
any signal pre-processing. Furthermore, it can automatically

95382

adjust wavelet scale by leveraging neural network training.
Here, the wavelet scale is a critical parameter of the CWT,
but there is no effective algorithm to find its optimal value.
As aresult, we could mitigate the inefficiency and inaccuracy
of CWT as well as improve the performance of the deep
learning model. We experimentally evaluate the proposed
method using ASCAD [9] datasets, a de facto standard for
deep learning side-channel analysis. And we confirmed that
performance can be improved by simply inserting ASW-CL
into existing state-of-the-art CNN models.

Contributions. The following is the summary of the major
contributions of this paper:

o To overcome the limitations of CWT and utilize its
advantages, we combined CWT with deep learning
techniques. In this context, we propose an ASW-CL,
a novel feature extraction layer for deep learning-based
side-channel analysis. The proposed method enables a
deep learning model (CNN) to perform on-the-fly multi-
frequency analysis in a single model with automatically
adjusted parameters (wavelet scales) of CWT.

o We investigated the power of CWT, which has rarely
been used in the field of side-channel analysis because of
several limitations related to parameter (wavelet scale)
selection. As aresult, we show that the CWT with appro-
priately selected parameters can outperform the DWT,
which is often adopted for processing side-channel chan-
nel signals.

o We reveal problems related to the reliability of Ntg,,
a commonly used evaluation metric in deep learning-
based side-channel analysis. And we propose a solution
to mitigate the problems.

Organization. The remainder of this paper is organized
as follows. Section II presents a preliminary background.
Section III introduces related works, including studies sim-
ilar to ours and deep learning-based side-channel analysis.
Section IV proposes a novel ASW-CL for the deep learning-
based side-channel analysis. Section V evaluates our ASW-
CL using an open dataset ASCAD and discusses open prob-
lems. Finally, Section VI concludes this paper.

Il. PRELIMINARIES

A. SIDE-CHANNEL ANALYSIS

Side-channel analysis is a type of attack that reveals internal
information by analyzing signals unintentionally leaked from
hardware. Here, internal information includes not only data
values such as cryptographic keys but also the instructions
of a processor. For this reason, it is possible to recover
the instructions operating in the microprocessor by analyz-
ing the side-channel signal [8]. To exploit data-dependent
components of side-channel leakage, an adversary should
define a leakage model (power consumption model). Because
of the limited information about target devices, the adver-
sary can only define a coarse-grained leakage model, which
allows the leveraging of relative differences in power con-
sumption according to values. There are two leakage models

VOLUME 11, 2023

D. Bae et al.: ASW-CL for Deep Learning-Based Side-Channel Analysis

IEEE Access

that reflect hardware characteristics: Hamming distance and
Hamming weight models. The Hamming distance model is
based on the fact that dynamic power is consumed when a
bit flip occurs due to the characteristics of the CMOS (Com-
plementary Metal-Oxide—Semiconductor) circuit, which is
adopted by modern semiconductors. For given pre-state value
x and post-state value y, Hamming distance function HD(x, y)
is as described in (1) where x; denotes M bit of x =
(Xp—1Xp—2 ... x0)2, and the same is true for y;.

n—1
HD(x,y) = > x; @ yi (1)
i=0
whereas, the Hamming weight model characterizes the leak-
age caused by precharge of internal buses [10]. For given
state x, Hamming weight function HW(x) is as follows:

n—1
HW(x) = Zx,-. (2)
=0

In terms of attack scenario and ability of an adversary, side-
channel analysis is divided into two types: non-profiled and
profiled side-channel analysis. In the case of non-profiled
side-channel analysis, the adversary can only access a tar-
get device. And they can acquire side-channel leakages and
additional information (e.g., plaintext or ciphertext) related to
cryptographic operations. Then, they recover a cryptographic
key by analyzing the side-channel leakage using statistical
methods. This type of analysis includes SPA (Simple Power
Analysis) [11], DPA [2], CPA (Correlation Power Analysis)
[12], and DDLA (Differential Deep Learning Analysis) [13].

In the case of the profiled side-channel analysis, an adver-
sary analyzes a target device using a profile generated from a
profiling device. Here, the profiling device is an open copy of
the target device used to characterize the leakage in advance.
To generate a leakage profile, the adversary needs to know the
inputs (key, plain/ciphertext) of the profiling device to calcu-
late intermediate values of a cryptographic algorithm. This
type of analysis includes template attack [14] and machine
learning-based side-channel analysis [15].

B. WAVELET TRANSFORM

Wavelet transform is one of the signal processing methods
for compressing or decomposing signals using a wavelet [16].
Here, the wavelet is a waveform that oscillates briefly around
zero and must satisfy the following (3) where /() denotes a
mother wavelet function over time ¢.

/°° y(t)dt =0 3)

Well-known wavelets include Ricker (Mexican hat),
Gaussian, Daubechies, and Morlet wavelets. This paper pro-
poses and uses a wavelet kernel, which is a one-dimensional
CNN kernel in the shape of a wavelet. And we adopt the
Ricker wavelets in all experiments of this paper. This is
because the Ricker wavelet showed the largest SNR improve-
ment over the other wavelets (see Section V-E). The Ricker

VOLUME 11, 2023

wavelet Y¥picker Over time ¢ is as described in (4), where s is
a scale that determines the frequency to be decomposed. The
wavelet is stretched or shrunk along the #-axis depending on
the wavelet scale s.

"pRicker(t) =

2

=P i@
354 §

The wavelet transform F of a signal x using a wavelet
Y is described in (5). Here, s, 7, and x(¢) are denotes a
wavelet scale, a time shift factor, and a target signal over 7,
respectively. And, converting (5) to a discrete operation is
described in (6).

Fj;(r) = \/% /_Z x(OY(— t)dt 5)
Fi(t) = ﬁ Zx(r)wa —1) (6)

We can describe (6) as (7) using the convolution operator
(*). That is, if i is a kernel and there is no multiplied
constant term (\/ITT\) in (7), it is the same as the convolution
of the one-dimensional convolutional neural network (CNN).
Therefore, we replaced the kernel of 1D-CNN with a wavelet
to indirectly perform the wavelet transform in a single model
(see Section IV).

1

Fw(r) = o

(x * Y)(7) (N
The relation between the wavelet scale s and an extracted
frequency f; is as described in (8) where f. and A denote
the central frequency of the mother wavelet and sampling
period, respectively. Here, the central frequency of the Ricker
wavelet is 0.25(Hz). Our approach is to automatically deter-
mine an optimal scale s, which can improve guessing (classi-
fication) performance, using neural network training.

Jfe

:Axs

fs (®)
C. ADVANTAGES OF WAVELET TRANSFORM IN
SIDE-CHANNEL ANALYSIS

There are several studies where two types of wavelet trans-
form have already been investigated in side-channel analysis:
DWT and CWT.

The DWT compresses a signal by repeatedly performing
the same process, and the number of repetitions denotes the
level. In each level of DWT, an input signal passes through
low-pass and high-pass filters, which operate by wavelet
transform, respectively. Then, the length of the signal passing
through the filters is downsampled by half. The next level
uses the signal that passed through the low-pass filter of the
previous level. Here, we do not need to specify a scale factor
since frequencies corresponding to power-of-two scales are
to be filtered. Therefore, DWT is used to reduce space or
analysis complexity rather than performance improvement in
side-channel analysis.

On the other hand, CWT is used to generate a spectro-
gram composed of time and frequency axes for given scales,

95383

IEEE Access

D. Bae et al.: ASW-CL for Deep Learning-Based Side-Channel Analysis

i.e., decompose the frequency. Therefore, we can extract
multi-frequency information using CWT by selecting the
wavelet scales. Here, data size increases in proportion to
the number of selected scales (data size is multiplied by the
number of scales). And there is no deterministic algorithm
for finding an optimal scale to improve side-channel anal-
ysis performance. For this reason, CWT is rarely used in
side-channel analysis unless it is used with exhaustive search
and feature extraction algorithms such as side-channel-based
disassembler implementation [17]. In another case, CWT is
sometimes used to convert a 1-dimensional time-axis signal
into 2-dimensional time-frequency data in order to utilize
2D-CNN [18]. As described above, the CWT is not even
studied due to disadvantages (i.e., scale selection problem
and data size increasing problem) in the field of side-channel
analysis.

To show the advantages of CWT, we compare SNR using
an open dataset ASCAD [9] (see Section V-A). To calcu-
late SNR, we use 50k profiling traces of ASCAD (fixed
key, v1). The target algorithm is first-order masked (sbox
recomputation-based) AES-128 implemented in assembly
language, and the SNR is calculated for the following
four intermediate values in the same as [9] (except useless
SNR1 of [9]).

o SNR2: HW(sbox(p[3] @ kle]) @ rour)

e SNR3: HW(7pur)

o SNR4: HW(sbox(p[3] @ kle]) @ r[3])

o SNRS5: HW(r[3])

Here, r,,; and r[3] are the output mask of the
recomputed-sbox and linear mask of the AES state,
respectively. We show the SNR calculated from the raw traces
and the CWT coefficients for the previous four values in
Figure 1 (jitter-free) and Figure 2 (jittery). To apply CWT,
we divided the range from 1.6MHz to 32MHz into 100 equal
parts and used the corresponding wavelet scales (see eq. (8)),
i.e., data size increases 100 times. We confirmed that the SNR
can be higher than raw traces at specific frequencies. This is
the same for the jitter-free version (desyncQ) as well as the
jitter-added versions (desync50, desync100). The following
Table 1 summarizes the SNR values for the raw traces,
CWT coefficients, and the DWT results. The result indicates
that the CWT can significantly contribute to performance

TABLE 1. Comparison of maximum SNR according to jitter and wavelet
transform methods for four intermediate values (SNR2-SNR5). The SNR is
the highest when CWT is applied, which is significantly higher than DWT.

Maximum Signal-to-Noise Ratio
Dataset WT | SNR2 SNR3 SNR4 SNRS
Fized Raw 2.45 0.78 9.87 2.59
1xre
ASCADdesyncO DWT 2.45 0.81 10.8 2.98
CWT 3.31 0.89 12.1 3.20
] Raw | 0.0029 0.0028 0.0048 0.0054
ASCADCfl“”ed DWT | 0.026 0.058 0.038 0.40
esyncb0
CWT 0.66 0.35 1.34 1.49
] Raw | 0.0032 0.0028 0.0037 0.0032
ASCAD(];;:EUZ 100 | DWT | 0.032 0.049 0.068 0.34
ync
CWT 0.20 0.16 0.60 0.82

95384

improvements over the DWT, which are often used for side-
channel analysis. This paper proposes the feature extraction
layer ASW-CL to take advantage of CWT while mitigat-
ing disadvantages using neural networks (see Section IV).
Meanwhile, if the CWT is used only for signal processing
(not with deep learning), the Least-Squares Wavelet Analysis
(LSWA), which has better time-frequency resolution, can be
considered [19].

D. DEEP LEARNING TECHNIQUES

Deep learning is a kind of machine learning that trains and
infers data using neural networks for function approxima-
tion. Various deep-learning models have been investigated for
side-channel analysis. Among them, we introduce MLP, the
most basic neural network, and CNN, which was adopted by
numerous state-of-the-art works [20].

1) MULTI-LAYER PERCEPTRON (MLP)

Multi-Layer Perceptron is a well-known example of a feed-
forward neural network that can approximate functions. The
MLP consists of an input layer, hidden layers, and an output
layer. According to the universal approximation theorem,
aneural network composed of one or more hidden layers with
an activation function that satisfies specific conditions can
approximate any function [21]. Each layer consists of per-
ceptrons that accumulate input values and apply a non-linear
activation function. Well-known non-linear activation func-
tions include ReLU, Sigmoid, and tanh functions. The layers
are fully connected by weights, which are important parame-
ters for approximating functions. The structure of MLP (fMLp)
is as described in (9) where s, n, o, A, and o denote the softmax
function, the number of layers, an activation function, the
fully connected layer, and function composition, respectively.
And [denote an input layer, which is the identity function.
Here, the fully connected (1) denotes matrix multiplication
between input and weights.

fuLp = so0po0Arpo---0ay oA ol ©)]

2) CONVOLUTIONAL NEURAL NETWORK (CNN)

Convolutional Neural Network refers to a deep learning
model that combines convolutional layers for feature extrac-
tion and a multi-layer perceptron (fully-connected layer)
for classification [22]. The convolutional layer extracts fea-
tures (patterns) by performing the convolution between input
data and kernels. The Dimension of the kernel determines
the overall structure of the CNN model. That is, CNN with
one-dimensional kernels can handle time-series data, whereas
CNN with two-dimensional kernels can handle image data.
All values of the CNN kernels are trainable parameters of the
model and are automatically adjusted to extract features that
can improve the classification performance during the neural
network training phase. The features extracted through the
convolutional layer are downsampled to the max./min./avg.
values for the specific window size in the pooling layer. The
output values of the pooling layer do not change significantly

VOLUME 11, 2023

D. Bae et al.: ASW-CL for Deep Learning-Based Side-Channel Analysis I E E E ACC@SS

SNRdesyncO SNRdesyncO
~ 245 ~ 0.78
Z 123 . N SNR z 039 . il SNR
N 64] 3.31 N 64 I 0.89
= ‘3“23 2.20 = ‘313 0.59
g 16 1.10 g- 16 0.30
£ 16 0.00 = 1.6 0.00

0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700
Time samples Time samples
SNRiesyncO SNRgesyncO

E! M " ! SNR DZ‘ %gg E! MM | SNR
64

87
.94
V}é? 64 T T T T T T 12.10 V)-:[:]\ T T T T T T 3.20
= gg 8.06 = ‘31% 2.13
= ¢ 403 = ¢ 1.07
[} [}
216 0.00 £ 16 0.00

0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700
Time samples Time samples

FIGURE 1. The SNR values of raw traces and CWT coefficients for ASCADZ’G‘:}‘,’” co- The CWT coefficient shows high SNR over a wide frequency band.

1 1
- SNthiesync 00 ~ SNRdesync 00
[Iy= 3.15 = 2.78
Sz 158 MV\]MWNMMMMMN s\ 22 139 P bt oottt snr
X N T 1 X N T T
Z & 64 0.20 Z T 64 0.16
= 48 0.13 s 48 0.11
— 32 — 32
> 16 0.07 o 16 0.05
£ 1.6 0.00 £ 1.6 0.00
100 200 300 400 500 600 700 100 200 300 400 500 600 700
Time samples Time samples
- SNRdesynclOO ~ SNRdesynclOO
-~ 3.71 Lo 3.28
= %}86 SNR = i1-64 SNR
¥ 647 060 X X 647 0.82
= 48 0.40 = 48 0.55
— 32 — 32
> 16 0.20 > 16 0.27
£ 1.6 0.00 £ 1.6 0.00
100 200 300 400 500 600 700 100 200 300 400 500 600 700
Time samples Time samples
FIGURE 2. The SNR values of raw traces and CWT coefficients for ASCADZ:;’}‘,’H <100+ The CWT coefficient shows high SNR in a narrow frequency band.
even if there is a change in the position of the input features. an adjusted weight, and the partial derivative, respectively.
This property is called translation invariance, which is why The loss function calculates the error between f and f, and

CNN can defeat jitter-based hiding countermeasures. The the learning rate determines the degree of adjusting.
structure of CNN (fcyn) is as described in (10) where ny,
Neom» 8, and y d - oL

convs O y denote the number of fully-connected layers, Woew—a.- (11)
the number of convolutional layers, a pooling layer, and a aw

convolutional layer, respectively. oL
here, the chain rule is used to calculate the gradient () for

fCNN —sofo oAl o[§o0 oyl ol (10) deep neural networks. For example, the gradient calculation
for adjusting a weight of the m™-layer of (9) is as described
in (12).

3) TRAINING NEURAL NETWORK
The training of a neural network is to reduce the error of 9L AL do, m

approximating a function by adjusting weights. Here, the m) o,) m T W, (12)
gradient descent method is used to update the weights (for

all trainable parameters). The training (adjusting) of a weight In the case of CNN, kernel values are also adjusted as same
w using the gradient descent method is as described in (11) as the weights, to extract features that can reduce the output
where L, «, w', and 3 denote a loss function of f, learning rate, error of the fully-connected layer.

VOLUME 11, 2023 95385

IEEE Access

D. Bae et al.: ASW-CL for Deep Learning-Based Side-Channel Analysis

TABLE 2. A comparison of related works (WCNN, ML-CNN, wCwNN, and HDW-CNN).

Model [Type of WTT [Wavelet scale Input data [Application Where the WT is performed
WCNN [32] DWT Fixed Image Texture Classification Across the convolutional layer (Insertion)
ML-CNN [33] DWT, IWT# Fixed Image Image Classification Across the convolutional layer (Replacement)
wCwNN [34] DWT Fixed Image Image Classification In activation functions
HDW-CNN [35] DWT Fixed Time-series Fault Diagnosis In front of the model (CNN)
Proposed (ASW-CL) CWT Autoscaled Time-series | Side-Channel Analysis | In 1D-conv. operations (using wavelet kernel)

4) APPLICATION TO THE SIDE-CHANNEL ANALYSIS

Deep learning-based side-channel analysis aims to approx-
imate a function that maps from a time series side-channel
leakage to an IV of a cryptographic algorithm using deep
learning models. It is attractive enough because an adversary
can leave out the preparation steps, such as signal preprocess-
ing and Pol (Point of Interest) selection [23]. Furthermore,
it can defeat secret sharing [24] and hiding [25], [26] counter-
measures without any obvious preprocessing, such as leakage
combination or signal alignment [27], [28]. Thanks to these
superiorities, deep learning-based side-channel analysis has
become one of the mainstream in the side-channel analysis
community and academia. Numerous papers have already
shown that deep learning models, especially CNN, can defeat
secret sharing and hiding countermeasures and outperform
classical side-channel analysis methods [28], [29], [30], [31].

For deep learning-based side-channel analysis, a deep
learning model has input nodes equal to the length of a
time-series side-channel signal and output nodes equal to the
intermediate value (to be recovered) space of a cryptographic
algorithm. That is, the deep learning model cannot directly
recover a key like other profiling attacks, but can recover an
intermediate value of the cryptographic algorithm based on
a leakage model (e.g., Hamming weight or Hamming dis-
tance). Therefore, additional information, such as plaintext or
ciphertext corresponding to each trace, is required to recover
a cryptographic key. Deep learning-based side-channel anal-
ysis was initially applied only to profiling scenarios, but B.
Timon et al. applied it to a non-profiling scenario in 2019 for
the first time [13].

In the profiling scenario, an adversary must train a deep
learning model to predict an intermediate value of a cryp-
tographic algorithm using a profiling device in advance.
Here, the adversary only needs to know the targeted inter-
mediate value regardless of the constraints of the profiling
device. Then, the adversary sends numerous trace queries
(acquired from target devices with a fixed key) to the trained
model. Finally, the adversary can guess a key using maximum
log-likelihood estimation [27].

Ill. RELATED WORKS

A. DEEP LEARNING MODELS WITH WAVELET

Related works have already been conducted to insert
wavelet transforms into deep learning models. In 2018,
Fujieda et al. proposed a Wavelet-CNN (WCNN) to per-
form multi-frequency analysis with a single deep learning

95386

t: Wavelet Transform, §: Inverse Wavelet Transform

model [32]. The WCNN extracts features by performing con-
volutional and pooling operations in the same way as classical
CNN but has the difference that high and low-frequency
signals decomposed by DWT are fed into midways of feature
extraction layers using channel-wise concatenation. In 2019,
Liu et al. proposed a Multi-Layer WCNN (ML-WCNN) to
achieve a better trade-off between receptive field size and
computational efficiency [33]. The ML-WCNN uses DWT
to create subnetworks and IWT (Inverse Wavelet Transform)
to reconstruct them, making it effective for denoising, image
super-resolution, and more. In 2021, Liu et al. proposed a
wavelet Convolutional wavelet Neural Network (wCwNN)
to improve the performance of image classification [34].
The wCwNN replaces the activation functions of the convo-
lutional layers and the fully-connected layers with wavelet
functions. In 2023, Paraskevopoulos et al. proposed a Hybrid
Discrete Wavelet-CNN (HDW-CNN) for fault diagnosis [35].
The HDW-CNN statically decomposes the signals using
DWT at the front of a conventional CNN. We show a com-
parison of related works in Table 2.

The purpose of WCNN and its variants is to perform
multi-frequency analysis with a single deep learning model,
similar to our work. However, most have a different structure
or purpose and are mostly based on DWT. The main contribu-
tions of ASW-CL over WCNN and its variants are as follows:

o Unlike DWT, which operates as low-pass and high-pass
filters, ASW-CL adopts a CWT-like method to decom-
pose signals in specific frequency bands according to
given wavelet scales.

o The wavelet scales, which are critical parameters that
determine the frequency of signals to be decomposed,
are automatically adjusted in the neural network training
phase; the wavelet scale is a trainable parameter of a
deep learning model in the proposed method.

B. DEEP LEARNING-BASED SIDE-CHANNEL ANALYSIS

For the first time, in 2013, Z. Martinasek et al. attempted
side-channel analysis using an MLP consisting of three lay-
ers: an input layer, a hidden layer, and an output layer. How-
ever, the concept of deep learning was not established at this
time and it was simply used as a machine learning algorithm,
perceptron [36]. Therefore, some papers do not classify this
paper as a deep learning-based side-channel analysis [20].
In 2016, Maghrebi et al. showed that the masking (sbox
recomputation) countermeasure could be defeated using
deep learning models, i.e., MLP and CNN, without leakage

VOLUME 11, 2023

D. Bae et al.: ASW-CL for Deep Learning-Based Side-Channel Analysis

IEEE Access

combination and knowledge about mask values [27].
After that, deep learning-based side-channel analysis has
been actively investigated. According to [20], more than
183 papers were published during 2016-2022. Among them,
most state-of-the-art works are based on the CNN model
[37]. The CNN can show outstanding performance without
signal preprocessing even for unsynchronized and noisy sig-
nals owing to characteristics of convolutional and pooling
layers. Therefore, the CNN model is capable of defeating
both masking and hiding countermeasures by itself.

More recently, non-CNN models have been applied to side-
channel analysis. In 2021, Rijsdijk et al. performed hyper-
parameter tuning using reinforcement learning [30], and in
2022, Chang et al. adopt the RNN and LSTM [38] for side-
channel analysis. In 2022, Lei et al. showed that an effective
profiling attack can be performed on high-dimensional data
with assist of an autoencoder [39]. Also in 2022, KneZevié
et al. proposed an activation function for side-channel analy-
sis rather than a specific model [40]. However, the previous
works on deep learning-based side-channel analysis are not
very relevant to our work as we propose a new feature extrac-
tion layer that is a modification of CNN primitive. Therefore,
in this paper, we conduct experiments by applying our ASW-
CL to the genuine CNN-based models in [9] and [37], which
are the most state-of-the-art to date.

IV. ASW-CL: AUTOSCALED-WAVELET CONVOLUTIONAL
LAYER
As shown in Section [I-C, CWT can improve the performance
of side-channel analysis by increasing the SNR of signals if
optimal wavelet scales are selected. Here, one might think
that, just like we did when calculating the SNR of Figure 1,
anyone could determine the optimal scale by performing an
exhaustive search of specific a frequency range. But, consid-
ering the attack scenarios, it is usually unfeasible. That is,
it is difficult to acquire the random numbers used in masking
countermeasures even if an adversary can access the profiling
device and can calculate the intermediate value (unmasked)
of the cryptographic algorithm for profile generation unless
an open dataset. Therefore, the adversary has no choice but
to calculate the SNR using only unmasked values; this is
useless because there is no first-order leakage. In the case
of a non-profiling scenario, it is also unfeasible because the
SNR cannot be calculated unless the key is known. The
adversary can also analyze entire decomposed data, which
can lead to a huge increase in analysis complexity. Further-
more, the frequencies we select at uniform intervals may
not contain the optimal frequencies to improve side-channel
analysis performance. It can occur much more frequently
for jittery traces. Therefore, the adversary has to select fre-
quencies more tightly, which also increases the complexity.
To overcome these limitations and take advantage of CWT,
we propose a novel feature extraction layer ’Autoscaled-
Wavelet Convolutional Layer (ASW-CL)’.

The proposed ASW-CL has a ’wavelet kernel’, a modi-
fied version of the classical one-dimensional kernel of the

VOLUME 11, 2023

CNN. And the scale parameter of the wavelet kernel is
designed to be trainable, which is automatically determined
during the neural network training. As a result, an adversary
does not have to consider scale parameters and can perform
one-the-fly multi-frequency analysis with a single model to
improve side-channel analysis performance. The main dif-
ference between the wavelet kernel and the classical kernel
is where the trainable part is, as shown in Figure 3. When
we only pay attention to the kernel value, our ASW-CL is
not trainable, whereas all values of the classical kernel are
trainable. However, the wavelet kernel is generated from a
wavelet function (e.g., Ricker wavelet) and a wavelet scale.
Here, the wavelet scale is a trainable parameter. Then, the
scales are adjusted automatically to extract features that can
improve the key recovery performance in the training process.

- Classical 1D-CNN Kernel
: § Trainable parameter:
N weights wg 1+, Wo 1, (size: Ly)
~|
Ak O
: trainable parameter
. : non-trainable value
ASW-CL Kernel (wavelet kernel)
Trainable parameter :
<@ scales (size: 1)
~ [2 02\ Lzz
= IR ﬁ(l -(3)) ®

FIGURE 3. A structure of wavelet kernel and classical kernel.

Training and updating the wavelet scales can be done in
the same context as updating the kernel values in a classical
1D-CNN. Suppose the first convolutional layer in the previ-
ous (10) is ASW-CL. Then, the wavelet scale s can affect the
output of f ; the f is a function composed of s. Therefore, the
scale s can be adjusted as described in (13) where L is the loss
function of f .

, oL
S «—s—a-— (13)
as
here, the gradient of s (%—%) can be calculated by (14) in the
same context as updating the kernel values in the classical
CNN where ¢ is the wavelet generation function such as
previous (4).
oL 9L doy oA doy ay1 0y

o _ L9 oM 9Om 0 9 (14)
as 0o, OAi, 00y OYm oy 0s

The following Algorithm 1 is the initialization procedure
for the proposed ASW-CL. It is executed only once when the
model is created. In the initialization phase, the initial wavelet
scales are determined and converted into trainable param-
eters. The initial wavelet scale is determined by a random

95387

IEEE Access

D. Bae et al.: ASW-CL for Deep Learning-Based Side-Channel Analysis

real number within a specific range. To calculate the specific
range, the center frequency of the wavelet (f.), the given
maximum frequency to be extracted (f;;,4x), the sampling rate
(SR), the length of the kernel (L), and the type of wavelet
are used. Here, the maximum frequency can be defined by an
attacker. In general, f,,,x should be a (low) integer multiple
of the clock because there is little meaningful information
at frequencies much higher than the operating clock of DUT
(Device Under Test). For all experiments in this paper, we set
Sfmax to a 5xXDUT clock. Then, we calculate the minimum
wavelet scale as shown in line 2 of Algorithm 1. On the other
hand, the maximum wavelet scale should be determined by
the length of the kernel rather than the frequency aspect. This
is because only a small portion of a wavelet may be reflected
in the kernel if the scale is too large. Considering the shape
of the Ricker wavelet, we used L /10 as the maximum scale.
And we used the autograd module in PyTorch to convert the
scale into the trainable parameter. It can be done by creating
an instance of the ’Parameter’ class of the pytorch with the
"requires_grad=True’ option. This step is library dependent.

When the model is used for training or inference, the
following Algorithm 2 is used to forward input signals to the
next layer. First, the layer needs to load two kinds of kernels.
The classical can be loaded by simply reading the values from
the model. On the other hand, the wavelet kernel should gen-
erate kernel values using given scales (S[i]) and the wavelet
function (). Since the generation of wavelet kernel values
must be done every time the scale value changes, it takes
longer to train/infer than the classical kernel. Once the input
signal is padded and ready for convolution, the input signal
is convolved with two different wavelet kernels, respectively.
Finally, the layer concatenates the two convolution results and
returns them. Additional activation functions, pooling, batch
normalization, and more can be applied to the returned values
of Algorithm 2. The procedure for initializing and training the
model with ASW-CL is as follows:

1) (ASW-CL Initialization) Initialize ASW-CL using
Algorithm 1 when a model is created. Here, wavelet
scales are registered as trainable parameters of the
model.

2) (ASW-CL Forwarding) When a batch of input sig-
nals is fed into ASW-CL during the inference pro-
cess, it decomposes the frequencies on the fly using
Algorithm 2 and feeds them to the next layer.

3) Apply additional activation functions, pooling, batch
normalization, and more to the results of ASW-CL.

4) Compute the final output of the model and then calcu-
late the error using a loss function.

5) Update the trainable parameters of the model using
error backpropagation. The wavelet scales are also
updated at this time. We can delegate this task to the
engine of the library.

6) Repeat (2)-(5) until training is complete.

In order for ASW-CL to work properly, some constraints

are required. First, the ASW-CL must be at the front of the
model. That is, an input of the ASW-CL must be raw signals,

95388

Algorithm 1 Pseudo-Code for ASW-CL Initialization
Input: N,,: The number of wavelet kernels,

Ly: The length of each kernels,

fe: Center frequency of the wavelet,

Jfinax: Maximum frequency to be extracted,

SR: Sampling rate of signals (samples per second)
Ensure: ASW-CL initialization

: S <~ [0,0,---0] > Len.: (Nyx)
Smin < (fe X SR)/fimax > According to eq. (8)
Smax < calc_max_scale(Ly) > Wavelet/L-dependent
fori =1to N, do

S[i] < random_gen(Syin, Smax)
end for
set_initial_wavelet_scale(S)
convert_to_trainable(S)

D> Smin ™~ Smax

A o e

> Library-dependent

Algorithm 2 Pseudo-Code for ASW-CL Forwarding
Input: X: Batch of input signals,

Nui.: The number of classical kernels,

Nyk: The number of wavelet kernels,

S: Wavelet scales (N, scales),

Ly: The length of each kernels
Output: Signals decomposed by wavelet scales S

n_kernels < load_classical_kernels(V,;)

w_kernels < [[0,0,---0],---] > Shape: (Nyk, Lk)

: fori = 1to N, do
w_kernels[i] < ¥ (S[i], Ly)

end for

: X <« add_pad(X) > Apply ‘same padding’

: X_wk < ConvlD(X, w_kernels)

: X_nk < ConvlD(X, n_kernels)

: X <« Concatenate(X_wk, X_nk)

return X > Activation and pooling are applied after

ASW-CL forwarding

> Generate wavelets

O 0 N R W —

—_
4

not the output of a previous feature extraction layer. Since the
wavelet transformation is a signal-processing method, it can
be used as the first feature extraction layer of the model for
multi-frequency analysis. Second, ASW-CL should only be
combined with genuine CNN models. This means that ASW-
CL may not work well with models that use modified CNN
primitives. We discuss this limitation further in Section V-E.
We show an example of 1D-CNN adopting the ASW-CL with
three wavelet kernels and three classic kernels in Figure 4.
To demonstrate the feasibility of our feature extraction
layer, we show the evolution of key guessing entropy (see
Section V-B), the result of side-channel analysis, using three
different models in Figure 5. The first model is a genuine
CNN, which is the same as the model that will be used
in Section V. See Table 5 and Table 9 in Appendix A for
the structure and training information of this model. The
second model is based on the first model, with only the first

VOLUME 11, 2023

D. Bae et al.: ASW-CL for Deep Learning-Based Side-Channel Analysis

IEEE Access

<+

Update tramal;lLe wavelet scales (s, S2, 53)
(s'=s—a- =)

- .
Ve =g (1- ())e ASW-CL Update Update

One-the-fly multi-frequency analysis

2
°
=
5]

-~

Q

e
<
S

RS
v
3

=
S

]
15}

=

=)

P(t,53)
4

P(t,52)

1,
‘
E
)
\

A

1D-Conv.

Lg: Length of input signal, Lj: Length of kernel

trainable parameters weights and biases

Backpropagation

Output

Loss

Other feature extraction layers

Input layer Output layer
P Y Hidden layers P Y

E] : trainable parameters . : non-trainable values

FIGURE 4. An example of a 1D-CNN model with ASW-CL consisting of three wavelet kernels and classical kernels, respectively.

Comparison of fixed and autoscaled wavelet scales

5 0
& 10 "\ ***** Genuine CNN
S NN +Fixed-scale Wavelet
E 10! A \'\-\ "\"‘—-‘-,__“ ——= +Autoscaled Wavelet
5 S [e R
= T)
5} l
2 100 -
g 0 T T T T
0 100 200 300 400 500

The number of attack traces

FIGURE 5. Comparison of GE evolution caused by the insertion of ASW-CL
into a genuine CNN. The results show that inserting an ASW-CL with
autoscaling enabled can significantly improve performance.

convolutional layer changed to ASW-CL. See Table 7 and
Table 10 in Appendix A for the structure and training infor-
mation of this model. The third model is the same structure
as the second model, but with the autoscaling feature disabled
(fixed-scale wavelet). As aresult, we found that simply insert-
ing ASW-CL into the existing CNN model could improve
performance. Furthermore, the result shows that the perfor-
mance can be improved even when autoscaling is disabled
if randomly chosen and fixed wavelet scales can improve
the SNR for synchronous signals (see Figure 1). This result
suggests that the ASW-CL is superior in both performance
and efficiency to statically applying CWT outside the model.

V. EVALUATION AND DISCUSSION

A. EXPERIMENTAL SETUP

For our experiment, we use the ASCAD dataset, which
was released in 2018 and is the de facto standard for deep

VOLUME 11, 2023

learning-based side-channel analysis. The ASCAD dataset
is divided into two versions depending on the target hard-
ware and implementation. However, ASCAD version 2 is
rarely used because it appeared only recently; there are not
many reference results [20]. Therefore, we use only ver-
sion 1 (ATmega8515 @4MHz) which is EM side-channel
leakage measured at 2GS/s. The ASCAD version 1 is also
divided into two types depending on whether the key of the
profiling dataset is variable or fixed. We use the fixed key
version, which is mostly used for evaluation and has a lot of
reference results. In addition, the ASCAD dataset provides
an extracted version consisting of 700 samples in order to
avoid unnecessary signal processing. The extracted version
is divided into a jitter-free version and jitter-added versions
with the 50-sample and 100-sample windows. We denote
jitter-free version and jitter-added versions with 50-sample,

and 100-sample windows as ASCADZijfjn 0 ASCADZ:;;ZMSO,

and ASCADZiffjn 100> Tespectively. We train the model using
50k profiling traces and evaluate performance using 10k
attack traces in all experiments of this paper. Here, the pro-
filing traces and the attack traces do not overlap, i.e., the new
traces are used to evaluate our attacks.

We performed all the experiments in this paper using
the PyTorch (v1.12.1) library in Python (v3.9). That is,
we reconstructed the reference models written in Keras and
TensorFlow into PyTorch. And the specifications of our
experimental PC are as follows:

o CPU: Intel(R) Core(TM) 19-12900K

 RAM: DDR4-3200 128GB

« GPU: Nvidia GeForce RTX3090 Ti (24GB memory)

95389

IEEE Access

D. Bae et al.: ASW-CL for Deep Learning-Based Side-Channel Analysis

B. PERFORMANCE METRIC

Several state-of-the-art works [28], [30], [31], [37] adopt a
performance metric called Ntg, which is proposed in [37].
The Nt,. denotes the number of traces needed to reach a
constant Guessing Entropy (GE) of 0. Here, the GE denotes
the rank of a real key in a probability vector of the guessing
key. That is, the values of GE are in the range of [0, |k| — 1]
(or [1, |k|]) where |k| is the cryptographic key space. The Nt,.
is a well-defined performance metric for deep learning-based
side-channel analysis, which reflects the real world’s attack
requirements that GE must reach a constant 0.

However, Ntg is unsuitable for performance compar-
isons in academia due to the significant deviation and non-
convergence problems. The Ntz changes sensitively to even
a little error because the threshold of the GE is 0, the minimum
value of the GE. To demonstrate this, we show the Nt,.
according to the number of iterations (for calculating the
average of GE) for reliability in Figure 6 and Table 3. Here,
we indicate the threshold as a superscript of N, i.e., thfo
denotes the existing Ntz of [37]. We found that the thé,zo
does not converge and the deviation does not decrease even
when the number of iterations is increased to improve relia-
bility. Therefore, Nté@zo may not have good reliability when
comparing the performance of the models.

The problems of Nté’,iizo can be mitigated by loosening
the threshold to 1 rather than 0. We have confirmed that by
loosening the threshold from O to 1, Nz"lz,:1 converges and
shows low deviation as shown in Table 3 and Figure 6. The
th,ﬁ:l cannot completely reflect the attack requirements in
the real world, but we can compare the relative performance
more accurately and reliably. Therefore, we adopt thfé:l asa
performance metric in this paper. We describe a pseudo-code
for calculating th,Z:* of R1-SubBytes (AES-128) using
probability matrix (predicted from a deep learning model) of
Na measurements in Algorithm 3 where Nyy = |IV] and
Nk = |K|, i.e., 1-byte.

TABLE 3. A summary of thf* according to the number of iterations. In

contrast to Nef1=0, Nefi=1 converges as the number of iterations
increases.

N tg’é:* Iter. per case Mean SDT Time/case(s)F

10 720.54 237.64 1.2

N{th=0 100 1109.17 198.98 8.1
ge 1,000 1499.00 228.30 75.0
10,000 1851.43 204.55 758.8

10 293.49 77.04 1.2

Nyth=1 100 311.03 35.00 8.1
ge 1,000 310.89 11.62 75.0
10,000 310.61 3.58 758.8

F: Standard deviation, %: Using 5,000 attack traces per case.

C. EVALUATION

To evaluate the proposed ASW-CL, we analyze the per-
formance gains that can be achieved by simply inserting
our ASW-CL into state-of-the-art deep learning models.
For experiments, we selected two state-of-the-art 1D-CNN

95390

Iterations per case: 10 Ntih=0 Ntih=1
2500
:, '
£8 1000 14
Z 500 1 difadnneitmnititmamiminssie | 1 T =
0 T T T T T T T T T T T T T
100 cases th=0th=1
Iterations per case: 100 Ntih=0 o Ntih=1
2500
1, 79001 1:
£3 1000]]
S 500 1 1T -
0 T T T T T T T T T T T T T
100 cases th=0th=1
Iterations per case: 1,000 + Nt{i=0 o Ntii=1
. B
I] 154
1500 1
£% 1000 17
> 500 1 1 _
0 T T T T T T T T T T T T T
100 cases th=0th=1
Iterations per case: 10,000 + Nt{1=° Ntgp=!
2500
* 2000 1 o=
1y 1500 1=
<> 1000 1
S 7500 - i
0 T T T T T T T T T T T T T
th=0th=1

100 cases

FIGURE 6. Distributions of Nt£i=0 and Nt£i=! according to the number of

iterations (guessing entropy calculation). In contrast to th;=°, Nt;’f'
converges as the number of iterations increases.

Algorithm 3 Pseudo-Code for Calculating th,ﬁ:* of AES-
128 R1-SubBytes (IV) Using Maximum Log-Likelihood

Input: h: Threshold of Nté’,Z:*,
fold: Repetition number of GE calculation,
real_key: Real key of entire attack traces (1byte),
Pjy: Matrix of predicted probabilities (N« X Nyv),
PT: Matrix of target plaintext byte (1 x Ngg)
Output: NiJi=*

avg_ge < [0,0,---0]

for f = 1to fold do
key_prob < (0,0, ---0]
fort = 1to Ny do

I: > Len.: Ny
2:
3
4
5: r_Pry,r_PT < randomly_select,(Pyy, PT)
6
7
8
9

> Len.: Niey (= |k|)

fori=1tordo
for k = 1 to Ny, do
prob < r_Pyy[il[sbox[r_PT[i] & k]]
: key_problk] < key_prob[k] + log(prob)
10: end for

11: end for

12: ge < calculate_rank(real_key, key_prob)
13: avg_ge[t] < avg_gel[t] + (ge/fold)

14: end for

15: end for

16: return argmin,(avg_ge[n :] < th)

models for side-channel analysis from [9] and [37]. We show
the structure of the CNNs proposed in [9] and [37] in Table 5
and Table 7 of Appendix A, respectively. Here, the most

VOLUME 11, 2023

D. Bae et al.: ASW-CL for Deep Learning-Based Side-Channel Analysis

IEEE Access

> . d
E« Average guessing entropy [ASCADg:synCO)
5
£ 102 1 [9] @30ep
T A\, —— (ASW-CL + [9]) @30ep
“C,-? g 10! 4 \\.
o @ \
S & \
ug 0 1
g, 109 1 el
3] .,
s 0 T T T T
=z 0 200 400 600 800 1000
The number of attack traces
(a) Comparison of [9] and (ASW-CL+[9]) - desync0
2 Average guessing entro (ASCADﬂxed)
S ge g g Py desync0
E 102 1 [37] @50ep
=¥ \ —-— (ASW-CL + [37]) @50ep
S2 10 1N
= a:.; o
S o N
_J'g o | L
%D 10 -.'\'-\'x.
; 0 T ez T T T
z 0 100 200 300 400 500

The number of attack traces

(c) Comparison of [37] and (ASW-CL+[37]) - desyncO

? Average guessing entropy [ASCADg:;;nclOO)
=] T
§ 102 -\\ [9] @100ep
= o
T . ——=+ (ASW-CL + [9]) @100ep
£F 104 i
(=] i
S8 |
3 100 4 :
% 10 :
3 0 T T T T
z 0 2000 4000 6000 8000 10000

The number of attack traces

(b) Comparison of [9] and (ASW-CL+[9]) - desync100

? Average guessing entropy (ASCADggffncloo)
S
5 102 [37] @50ep
=¥ \,\ —-— (ASW-CL + [37]) @50ep
‘*? & 101 N N -
=5 X
ga 5
~F, 100 38
& S
5 0 T r—- T T
% 0 100 200 300 400 500

The number of attack traces

(d) Comparison of [37] and (ASW-CL+[37]) - desync100

FIGURE 7. Comparison of GE evolution changes caused by applying ASW-CL to two state-of-the-art CNN models from [9] and [37] on two datasets

model model
ASCADdesynco and ASCADdesyncloo'

The vertical lines indicate thf‘ . The results show that applying ASW-CL can improve the attack performance.

TABLE 4. A summary of the experimental results of Figure 7. The experimental results show that the ASW-CL can improve the attack performance.

Dataset [Ref.f [Model [Complexityt ~ Epoch Time(s) [N té’é:1 Difference$
() CNN proposed in [9] 66,652,544 30ep 273 782 -

ized ASW-CL + [9] 66,646,208 30ep 423 133 -649 (83%.)

ASCAD!

desync0 © CNN proposed in [37] 141,176 50ep 71 145 -

ASW-CL + [37] 143,352 50ep 103 79 -66 (47%.,)
(b) CNN proposed in [9] 66,652,544 100ep 882 8,033 -

ASC AD twed ASW-CL + [9] 66,646,208 100ep 1,230 5,512 -2,521 31%)

desyncl00) CNN proposed in [37] 141,176 50ep 71 192 -

ASW-CL + [37] 143,352 50ep 103 113 =79 (41%.,)

F: The identifier in Figure 7, §: The number of trainable parameters, §: Differences caused by ASW-CL adoption.

important consideration in selecting state-of-the-art models is
the applicability of ASW-CL. As mentioned in Section IV, the
ASW-CL is only applicable to genuine CNN models where
the primitives are not modified. Literature [9] and [37] are
state-of-the-art papers that study the performance improve-
ment of models using genuine CNNs (see Section V-E). Then,
we implemented two more models by changing the first con-
volutional layer of each model to ASW-CL. The models with
ASW-CL are described in Table 6 and Table 8, respectively.
In summary, we evaluate the pg(/)posed ASW-CL using two

datasets (ASCADij;’n «0» ASCA ;:f}d,n c100) and the following
four models:

o CNN proposed in [9] (See Table 5)

o ASW-CL + CNN proposed in [9] (See Table 6)
o CNN proposed in [37] (See Table 7)

¢ ASW-CL 4 CNN proposed in [37] (See Table 8)

Following Figure 7 shows the evolution of GE (100-fold) to
show the performance improvement caused by the ASW-CL

VOLUME 11, 2023

insertion. And Table 4 summarizes the results of Figure 7.
All of our results show that the performance can be improved
by simply inserting ASW-CL into existing state-of-the-art
CNN models. In the case of the CNN proposed in [9], thele
was reduced by 649 (83%) for the ASCA dlZ:;lnCO and by

2.521 (31%) for the ASCAD/} s, 40 When the ASW-CL was
inserted. Likewise, in the case of the CNN proposed in [37],

ixed

Nté’,’;:1 was reduced by 66 (47%) for the ASCA desyncO and
by 79 (41%) for the ASCAD)} 5, 10 When the ASW-CL was
inserted. Our experiments indicate that the degree of perfor-
mance improvement decreases as the signal is more jittery.
And, the more sophisticated the model, the fewer perfor-
mance gains are likely to be, as there is not as much scope for
performance improvement. Also, the running time increases
regardless of whether the number of trainable parameters
is increased or decreased (See section V-E). Nevertheless,
the proposed ASW-CL can improve the performance and
thus can be adopted in deep learning models. The trade-off

95391

IEEE Access

D. Bae et al.: ASW-CL for Deep Learning-Based Side-Channel Analysis

between increased time and improved performance should be
considered when applying the ASW-CL.

D. HYPERPARAMETERS

The ASW-CL has three hyperparameters: the number of
wavelet kernels, the length of the wavelet kernel, and the
activation function. To show the impact of the two hyperpa-
rameters (the number of wavelet kernels and the activation
function), we show the performance variation with (a) the
number of wavelet kernels and (b) the type of activation
function in Figure 8. In (a) of Figure 8, we found that there
is no significant difference in performance depending on the
number of wavelet kernels, except when all kernels are clas-
sical kernels (same as genuine CNN). And we found that the
training performed poorly when using activation functions
that limit the scale of the output such as sigmoid and tanh,
in (b) of Figure 8. Therefore, we recommend using the ReLU-
like functions (ReLU, Leaky ReL U, SELU) as an activation
function. On the other hand, the length of the kernel should
be determined based on the operating clock of the DUT, the
sampling rate, the characteristics of countermeasure, and the
amount of jitter, rather than a grid search-based decision.

Comparison of the number of wavelet kernels

\ ——WK(0)-CK(64) ——WK(24)-CK(40) —— WK(48)-CK(16)

_

(=)
o
L

WK(8)-CK(56) ——WK(32)-CK(32) ——WK(56)-CK(8)
——WK(16)-CK(48) ——WK(40)-CK(24) — WK(64)-CK(0)

(100-fold)
Guessing entropy
=
A

100 -

o

0 100 200 300 400 500 600 700 800
The number of attack traces

(@

Comparison of the activation functions

2102
_Ew =
% = —— relu —— none
S v 10! 1
S selu tanh
gg . —— Lrelu—— sigmoid

S 100 - Shiy

© e M\

0 T T T T T T T
0 100 200 300 400 500 600 700 800

The number of attack traces

FIGURE 8. Comparison of GE evolution by hyperparameters. (a) shows
the variation with the number of wavelet kernels, and (b) shows the
variation with the type of activation function. The results show poor
performance when no wavelet kernel is used in (a) and when tanh and
sigmoid are used in (b).

E. DISCUSSIONS

1) COMPATIBLE DEEP LEARNING MODELS

The proposed ASW-CL is only applicable to CNN-like deep
learning models because it is a modification of the existing
convolutional layer. And the ASW-CL is based on the signal
processing method named CWT. Therefore, ASW-CL can
decompose the frequencies on the fly at the front of the
model and passes them to the next layer. For this reason,

95392

it is important that the frequency components decomposed
by ASW-CL can be fully utilized by subsequent feature
extraction layers. This means that it is not applicable to
some state-of-the-art models such as the Bilinear CNN pro-
posed in [31], which modifies the primitives of the CNN
by analyzing and adopting the characteristic of second-order
attacks. Therefore, the proposed ASW-CL should be applied
to genuine CNN with unmodified primitives.

2) COMPATIBLE WAVELETS

In the field of side-channel analysis, we have experimentally
confirmed that the Ricker wavelet can increase SNR the most
over wavelets such as Morlet, Daubechies, and more, in gen-
eral. We consider this as a characteristic of a side-channel
signal with a peak at the clock level. Therefore, we have
used the Ricker wavelet for all experiments in this paper.
However, all wavelets which can be differentiated using the
‘autograd’ module can be adopted by ASW-CL (in the case
of the PyTorch). The wavelet should be selected based on the
side-channel signal characteristics of the target device.

3) EFFICIENCY

Our work was carried out in terms of proof of concept, not
including sophistication and optimization (fast implementa-
tion). That is, compared to the existing models, even though
the complexity is slightly reduced, the running time of the
ASW-CL-equipped model is increased by about 40%-50%.
Therefore, follow-up studies related to sophistication and
optimization are needed for performance improvement and
reducing running time.

4) OPTIMAL WAVELET SCALE

In our work, we leveraged the neural network training process
in order to automatically search and determine the opti-
mal wavelet scale, which is a critical parameter of wavelet
transform (especially in CWT) and does not have an effi-
cient searching algorithm. Here, we need to pay attention to
the word ’optimal’. In the proposed ASW-CL, the wavelet
scale was adjusted, eventually contributing to performance
improvement. That is, the optimal scale was determined.
However, we do not know whether this optimal scale will
also be optimal in classical analysis. In other words, a deep
learning model can extract information that is helpful only to
itself but may not be to others (e.g., classical analysis). Since
deep learning is still a black box model, we cannot know
how the signals in the specific frequency bands (determined
by the model) are combined inside the model. Therefore,
follow-up studies are needed not only in terms of performance
improvement but also in exploring parameters.

VI. CONCLUSION

In this paper, we proposed a novel feature extraction layer
called ASW-CL that takes advantage of wavelet transform
and neural network training. The proposed ASW-CL enables
an evaluator to perform one-the-fly multi-frequency analy-
sis in a single model without considering the wavelet scale

VOLUME 11, 2023

D. Bae et al.: ASW-CL for Deep Learning-Based Side-Channel Analysis

IEEE Access

parameter or significantly increasing complexity. The ASW-
CL is a kind of feature extraction layer; it can be combined
with a general deep-learning model (especially CNN) for
side-channel analysis. And we confirmed that the proposed
ASW-CL could improve the performance of the side-channel
analysis using the open dataset ASCAD, which is the de facto
standard in deep learning-based side-channel analysis.

Our work goes beyond the performance improvement of
deep learning models and includes the novel part of automatic
parameter search (wavelet scale of CWT). However, this
work was a proof-of-concept on the novel ideas and the result-
ing performance improvement of deep learning-based side-
channel analysis. Therefore, as mentioned in Section V-E
above, follow-up studies are needed. We expect that research
similar to our work will be conducted to determine parameters
based on the gradient for other specific algorithms.

APPENDIX A

We describe the structure of the CNN proposed in [9], and
its combined structure with ASW-CL in Table 5 and Table 6,

TABLE 5. A structure of the CNN proposed in [9].

#Kernel
Layer #Nodes Act. / Pool.
Pool. size
Input 700 -
" Conv. 1D | 64 (len. 1) 7|~ ReLU ~ ~
Pool. 1D 2,2) Avg.
" Conv. ID | 128 (flen. 1T) | ~ ReLU ~ ~
Pool. 1D 2,2) Avg.
" Conv. ID | 256 (len. 1T) | ~ ReLU ~ ~
Pool. 1D 2,2) Avg.
" Conv. 1D | 512 (en. 1T) | ~ ReLU ~ ~
Pool. 1D 2,2) Avg.
" Conv. ID | 512(len. 1T) | ~ ReLU ~
Pool. 1D 2,2) Avg.
F.C. 10,752 -
T EC T ™ 4096 ~ | ReLU
TTEC T - 4096 ~ | ReLU
TTEC T T 256 ~ |~ Softmax

TABLE 6. A structure of the ASW-CL + CNN proposed in [9].

respectively. In the same context, we describe the structure of
the CNN proposed in [37], and its combined structure with
ASW-CL in Table 7 and Table 8, respectively. In addition,
we provide details about the training parameters for Table 5
and Table 6 in Table 9, and for Table 7 and Table 8 in Table 10,
respectively.

TABLE 7. A structure of the CNN proposed in [37].

#Kernel
Layer #Nodes Act. / Pool.
Pool. size
Input 700 -
" "Conv.ID | 32(en. 1) | SELU
Batch Norm - -
Pool. 1D 2,2) Avg.
" "Conv. 1D | 64 (len.50) | ~ SELU ~ ~
Batch Norm. - -
Pool. 1D 2,2) Avg.
" "Conv. 1D | 128 (len.3) | ~ SELU ~ ~
Batch Norm. - -
Pool. 1D 2,2) Avg.
EC. 384 -
T TFEC. T |7 T 20 | SELU
T TFEC. T |7 T 20 7| SELU
T ECT | T 256 ~ | ~ Softmax

TABLE 8. A structure of the ASW-CL + CNN proposed in [37].

#Kernel
Layer #Nodes Act. / Pool.
Pool. size
Input 700 -
" TASW-CL | 32(16/16) (len. 100) | ~ SELU ~ ~
Batch Norm. - -
Pool. 1D 2,2) Avg.
" "Conv.1D |~ 64(len.50) ~ |~ SELU =
Batch Norm. - -
Pool. 1D 2,2) Avg.
" “Conv.1D | " 128(en.3) ~ |~ SELU =
Batch Norm. - -
Pool. 1D 2,2) Avg.

EC. 384 -
TTTEC. T T T T 720 7 777 SELU
"TTEC. T | T T 720 T 777 SELU
R X 256~ T T Softmax

#Kernel
Layer #Nodes Act. / Pool.
Pool. size
Input 700 -
" ASW-CL | 64 (32/32) (len. 100) | ~ ReLU ~ ~
Pool. 1D 2,2) Avg.
" Conv. ID |~ " 128(@en. 11) ~ | = ReLU
Pool. 1D 2,2) Avg.
" Conv. ID |~ T 256 (len. 11) ~ | T ReLU
Pool. 1D 2,2) Avg.
" Conv. ID |~ " 512(en. 11) ~ | T ReLU
Pool. 1D 2,2) Avg.
" Conv. ID |~ T 512(en. 1) ~ | T ReLU
Pool. 1D 2,2) Avg.
FC. 10,752 -
T ECT | T 4096~~~ | ReLU ~~
T ECT | T 4096~~~ |~ ReLU
T ECT | T 256 Softmax

VOLUME 11, 2023

TABLE 9. Training parameters of the (ASW-CL +) CNN proposed in [9].

Training parameters [Values
Optimizer RMSProb
Learning rate 0.00001

Loss function
Label

Cross Entropy (categorical)
sbox[p[3] @ k[3]] (One-hot encoding)

TABLE 10. Training parameters of the (ASW-CL +) CNN proposed in [37].

Values

Adam
0.005 (We do not use one-cycle policy)
Cross Entropy (categorical)
sbox[p[3] @ k[3]] (One-hot encoding)

Training parameters [

Optimizer
Learning rate
Loss function

Label

95393

IEEE Access

D. Bae et al.: ASW-CL for Deep Learning-Based Side-Channel Analysis

REFERENCES

[1]

[2]

3

[4]

[5]

[6]
[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

P. C. Kocher, “Timing attacks on implementations of Diffie-Hellman,
RSA, DSS, and other systems,” in Proc. Int. Crytology Conf. (CRYPTO),
Santa Barbara, CA, USA, 1996, pp. 104-113, doi: 10.1007/3-540-68697-
5.9.

P. C. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in
Proc. Int. Crytology Conf. (CRYPTO), Santa Barbara, CA, USA, 1999,
pp. 388-397, doi: 10.1007/3-540-48405-1_25.

P. Socha, V. Mikovsk, and M. Novotn, “A comprehensive survey on
the non-invasive passive side-channel analysis,” Sensors, vol. 22, no. 21,
pp. 1-37, Oct. 2022, doi: 10.3390/522218096.

T. Le, J. Clediere, C. Serviere, and J. L. Lacoume, ‘“How can signal
processing benefit side channel attacks,” in Proc. IEEE Workshop Signal
Process. Appl. Public Secur. Forensics, Washington, DC, USA, Apr. 2007,
pp. 1-7.

S. Jin, P. Johansson, H. Kim, and S. Hong, “Enhancing time-frequency
analysis with zero-mean preprocessing,” Sensors, vol. 22, no. 7, pp. 1-18,
2022, doi: 10.3390/s22072477.

C.E. Heil and D. F. Walnut, “Continuous and discrete wavelet transforms,”
SIAM Rev., vol. 31, no. 4, pp. 628-666, Dec. 1989, doi: 10.1137/1031129.
N. Debande, Y. Souissi, M. A. E. Aabid, S. Guilley, and J.-L. Danger,
“Wavelet transform based pre-processing for side channel analysis,” in
Proc. 45th Annu. IEEE/ACM Int. Symp. Microarchitecture Workshops,
Dec. 2012, pp. 32-38, doi: 10.1109/MICROW.2012.15.

D. Bae and J. Ha, “Implementation of disassembler on microcontroller
using side-channel power consumption leakage,” Sensors, vol. 22, no. 15,
pp. 1-17, Aug. 2022, doi: 10.3390/522155900.

R. Benadjila, E. Prouff, R. Strullu, E. Cagli, and C. Dumas, “Deep learning
for side-channel analysis and introduction to ASCAD database,” J. Cryp-
tograph. Eng., vol. 10, no. 2, pp. 163—-188, Jun. 2020, doi: 10.1007/s13389-
019-00220-8.

C. O’Flynn and Z. D. Chen, ““Side channel power analysis of an AES-
256 bootloader,” in Proc. IEEE 28th Can. Conf. Electr. Comput. Eng.
(CCECE), May 2015, pp. 750-755, doi: 10.1109/CCECE.2015.7129369.
R. Mayer-Sommer, “Smartly analyzing the simplicity and the power of
simple power analysis on smartcards,” in Proc. Int. Work. Cryptograph.
Hardw. Embedded Syst. (CHES), Worcester, MA, USA, 2000, pp. 78-92,
doi: 10.1007/3-540-44499-8_6.

E. Brier, C. Clavier, and F. Olivier, “Correlation power analysis with a
leakage model,” in Proc. Int. Workshop Cryptograph. Hardw. Embedded
Syst. (CHES), Boston, MA, USA, 2004, pp. 16-29, doi: 10.1007/978-3-
540-28632-5_2.

B. Timon, “Non-profiled deep learning-based side-channel attacks
with sensitivity analysis,” IACR Trans. Cryptograph. Hardw. Embed-
ded Syst., vol. 2019, no. 2, pp. 107-131, Feb. 2019, doi: 10.13154/
tches.v2019.i2.107-131.

S. Chari, J. R. Rao, and P. Rohatgi, “Template attacks,” in Proc. Int.
Workshop Cryptograph. Hardw. Embedded Syst. (CHES) Berlin, Germany,
2002, pp. 13-28, doi: 10.1007/3-540-36400-5_3.

G. Hospodar, B. Gierlichs, E. De Mulder, I. Verbauwhede, and
J. Vandewalle, ‘““Machine learning in side-channel analysis: A first
study,” J. Cryptograph. Eng., vol. 1, no. 4, pp. 293-302, Dec. 2011, doi:
10.1007/513389-011-0023-x.

E. Ghaderpour, S. D. Pagiatakis, and Q. K. Hassan, “A survey on change
detection and time series analysis with applications,” Appl. Sci., vol. 11,
no. 13, p. 6141, Jul. 2021, doi: 10.3390/app11136141.

J. Park, X. Xu, Y. Jin, D. Forte, and M. Tehranipoor, ‘‘Power-
based side-channel instruction-level disassembler,” in Proc. 55th
ACM/ESDA/IEEE Design Autom. Conf. (DAC), Jun. 2018, pp. 1-6, doi:
10.1109/DAC.2018.8465848.

A. Garg and N. Karimian, “Leveraging deep CNN and transfer
learning for side-channel attack,” in Proc. 22nd Int. Symp. Qual-
ity Electron. Design (ISQED), Apr. 2021, pp.91-96, doi: 10.1109/
ISQEDS51717.2021.9424305.

E. Ghaderpour and S. Ghaderpour, ““Least-squares spectral and wavelet
analyses of V455 andromedae time series: The life after the super-
outburst,” Publications Astronomical Soc. Pacific, vol. 132, no. 1017,
Oct. 2020, Art. no. 114504, doi: 10.1088/1538-3873/abaf04.

S. Picek, G. Perin, L. Mariot, L. Wu, and L. Batina, “SoK: Deep learning-
based physical side-channel analysis,” ACM Comput. Surv., vol. 55,no. 11,
pp. 1-35, Nov. 2023, doi: 10.1145/3569577.

95394

(21]

(22]

(23]

[24]

(25]

[26]

(27]

(28]

(29]

(30]

(31]

[32]

(33]

(34]

(35]

(36]

(37]

(38]

(391

(40]

K. Hornik, M. Stinchcombe, and H. White, ‘“Multilayer feedforward
networks are universal approximators,” Neural Netw., vol. 2, no. 5,
pp. 359-366, Jul. 1989, doi: 10.1016/0893-6080(89)90020-8.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haftner, ‘‘Gradient-based learn-
ing applied to document recognition,” Proc. IEEE, vol. 86, no. 11,
pp. 2278-2324, Nov. 1998, doi: 10.1109/5.726791.

S.Jin, S. Kim, H. Kim, and S. Hong, “Recent advances in deep learning-
based side-channel analysis,” ETRI J., vol. 42, no. 2, pp.292-304,
Apr. 2020, doi: 10.4218/etrij.2019-0163.

T. S. Messerges, “Securing the AES finalists against power analysis
attacks,” in Proc. 7th Int. Workshop Fast Softw. Encryption (FSE), Leuven,
Belgium, 2002, pp. 150-164, doi: 10.1007/3-540-44706-7_11.

J. Coron and I. Kizhvatov, “An efficient method for random delay genera-
tion in embedded software,” in Proc. Int. Workshop Cryptograph. Hardw.
Embedded Syst. (CHES), Lausanne, Switzerland, 2009, pp. 156-170, doi:
10.1007/978-3-642-04138-9_12.

N. Veyrat-Charvillon, M. Medwed, S. Kerckhof, and F. X. Standaert,
“Shuffling against side-channel attacks: A comprehensive study with
cautionary note,” in Proc. Int. Conf. Theory Appl. Cryptol. Inf. Secur.
(ASIACRYPT), Beijing, China, 2012, pp. 740-757, doi: 10.1007/978-3-
642-34961-4_44.

H. Maghrebi, T. Portigliatti, and E. Prouff, ““Breaking cryptographic imple-
mentations using deep learning techniques,” in Proc. Int. Conf. Secur,
Privacy, Appl. Cryptogr. Eng. (SPACE), Hyderabad, India, 2016, pp. 3-26,
doi: 10.1007/978-3-319-49445-6_1.

L. Wouters, V. Arribas, B. Gierlichs, and B. Preneel, “‘Revisiting a method-
ology for efficient CNN architectures in profiling attacks,” IJACR Trans.
Cryptograph. Hardw. Embedded Syst., vol. 2020, pp. 147-168, Jun. 2020,
doi: 10.13154/tches.v2020.i3.147-168.

J. Kim, S. Picek, A. Heuser, S. Bhasin, and A. Hanjalic, ‘“Make
some noise. Unleashing the power of convolutional neural networks
for profiled side-channel analysis,” IACR Trans. Cryptograph. Hardw.
Embedded Syst., vol. 2019, no. 3, pp.148-179, May 2019, doi:
10.13154/tches.v2019.i3.148-179.

J. Rijsdijk, L. Wu, G. Perin, and S. Picek, “Reinforcement learning
for hyperparameter tuning in deep learning-based side-channel anal-
ysis,” TACR Trans. Cryptograph. Hardw. Embedded Syst., vol. 2021,
pp. 677-707, Jul. 2021, doi: 10.46586/tches.v2021.i3.677-707.

P. Cao, C. Zhang, X. Lu, D. Gu, and S. Xu, “Improving deep
learning based second-order side-channel analysis with bilinear CNN,”
IEEE Trans. Inf. Forensics Security, vol. 17, pp. 3863-3876, 2022, doi:
10.1109/TIFS.2022.3216959.

S. Fujieda, K. Takayama, and T. Hachisuka, ‘“Wavelet convolutional neural
networks,” 2018, arXiv:1805.08620.

P. Liu, H. Zhang, W. Lian, and W. Zuo, “Multi-level wavelet convolu-
tional neural networks,” IEEE Access, vol. 7, pp. 74973-74985, 2019, doi:
10.1109/ACCESS.2019.2921451.

J.-W. Liu, F-L. Zuo, Y.-X. Guo, T.-Y. Li, and J.-M. Chen, ‘“Research on
improved wavelet convolutional wavelet neural networks,” Int. J. Speech
Technol., vol. 51, no. 6, pp. 41064126, Jun. 2021, doi: 10.1007/s10489-
020-02015-5.

D. Paraskevopoulos, C. Spandonidis, and F. Giannopoulos, “Hybrid
Wavelet—CNN fault diagnosis method for ships’ power systems,” Signals,
vol. 4, no. 1, pp. 150-166, Feb. 2023, doi: 10.3390/signals4010008.

Z. Martinasek and V. Zeman, “Innovative method of the power analysis,”
Radioengineering, vol. 22, no. 2, pp. 586-594, 2013.

G. Zaid, L. Bossuet, A. Habrard, and A. Venelli, “Methodology for
efficient CNN architectures in profiling attacks,” IACR Trans. Crypto-
graph. Hardw. Embedded Syst., vol. 2020, no. 1, pp. 1-36, 2020, doi:
10.13154/tches.v2020.i1.1-36.

L. Chang, Y. Wei, S. He, and X. Pan, ‘“Research on side-channel analysis
based on deep learning with different sample data,” Appl. Sci., vol. 12,
no. 16, p. 8246, Aug. 2022, doi: 10.3390/app12168246.

Q. Lei, Z. Yang, Q. Wang, Y. Ding, Z. Ma, and A. Wang, “Autoencoder
assist: An efficient profiling attack on high-dimensional datasets,” in
Proc. Int. Conf. Inf. Commun. Secur. (ICICS), Canterbury, U.K., 2022,
pp. 324-341, doi: 10.1007/978-3-031-15777-6_18.

K. KneZevic, J. Fulir, D. Jakobovic, S. Picek, and M. Durasevic,
“NeuroSCA: Evolving activation functions for side-channel analysis,”
1IEEE Access, vol. 11, pp. 284-299, 2023, doi: 10.1109/ACCESS.2022.
3232064.

VOLUME 11, 2023

http://dx.doi.org/10.1007/3-540-68697-5_9
http://dx.doi.org/10.1007/3-540-68697-5_9
http://dx.doi.org/10.1007/3-540-48405-1_25
http://dx.doi.org/10.3390/s22218096
http://dx.doi.org/10.3390/s22072477
http://dx.doi.org/10.1137/1031129
http://dx.doi.org/10.1109/MICROW.2012.15
http://dx.doi.org/10.3390/s22155900
http://dx.doi.org/10.1007/s13389-019-00220-8
http://dx.doi.org/10.1007/s13389-019-00220-8
http://dx.doi.org/10.1109/CCECE.2015.7129369
http://dx.doi.org/10.1007/3-540-44499-8_6
http://dx.doi.org/10.1007/978-3-540-28632-5_2
http://dx.doi.org/10.1007/978-3-540-28632-5_2
http://dx.doi.org/10.13154/tches.v2019.i2.107-131
http://dx.doi.org/10.13154/tches.v2019.i2.107-131
http://dx.doi.org/10.1007/3-540-36400-5_3
http://dx.doi.org/10.1007/s13389-011-0023-x
http://dx.doi.org/10.3390/app11136141
http://dx.doi.org/10.1109/DAC.2018.8465848
http://dx.doi.org/10.1109/ISQED51717.2021.9424305
http://dx.doi.org/10.1109/ISQED51717.2021.9424305
http://dx.doi.org/10.1088/1538-3873/abaf04
http://dx.doi.org/10.1145/3569577
http://dx.doi.org/10.1016/0893-6080(89)90020-8
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.4218/etrij.2019-0163
http://dx.doi.org/10.1007/3-540-44706-7_11
http://dx.doi.org/10.1007/978-3-642-04138-9_12
http://dx.doi.org/10.1007/978-3-642-34961-4_44
http://dx.doi.org/10.1007/978-3-642-34961-4_44
http://dx.doi.org/10.1007/978-3-319-49445-6_1
http://dx.doi.org/10.13154/tches.v2020.i3.147-168
http://dx.doi.org/10.13154/tches.v2019.i3.148-179
http://dx.doi.org/10.46586/tches.v2021.i3.677-707
http://dx.doi.org/10.1109/TIFS.2022.3216959
http://dx.doi.org/10.1109/ACCESS.2019.2921451
http://dx.doi.org/10.1007/s10489-020-02015-5
http://dx.doi.org/10.1007/s10489-020-02015-5
http://dx.doi.org/10.3390/signals4010008
http://dx.doi.org/10.13154/tches.v2020.i1.1-36
http://dx.doi.org/10.3390/app12168246
http://dx.doi.org/10.1007/978-3-031-15777-6_18
http://dx.doi.org/10.1109/ACCESS.2022.3232064
http://dx.doi.org/10.1109/ACCESS.2022.3232064

D. Bae et al.: ASW-CL for Deep Learning-Based Side-Channel Analysis

IEEE Access

VOLUME 11, 2023

DAEHYEON BAE received the B.S. and M.S.
degrees in information security from Hoseo
University, South Korea, in 2021 and 2022,
respectively. He is currently pursuing the Ph.D.
degree with the School of Cybersecurity, Korea
University, Seoul, South Korea. His research
interests include side-channel attacks, hardware
security, and deep learning-based side-channel
analysis.

DONGJUN PARK received the B.S. degree
in information security from Sejong University,
Seoul, South Korea, in 2018, and the M.S. degree
in information security from Korea University,
Seoul, in 2020, where he is currently pursuing the
Ph.D. degree. Since 2018, he has been a Research
Assistant with the Institute of Cyber Security and
Privacy (ICSP), School of Cybersecurity, Korea
University. His research interests include cryptog-
raphy, hardware security, and side-channel attacks.

GYUSANG KIM received the B.S. degree in
mathematics from Yonsei University, Seoul,
South Korea, in 2020. He is currently pursuing
the joint M.S. and Ph.D. degrees in informa-
tion security with Korea University, Seoul. His
research interests include cryptography, post-
quantum cryptography, and side-channel attacks.

MINSIG CHOI received the B.S. degree in infor-
mation security from Hongik University, Seoul,
South Korea, in 2023. He is currently pursuing the
M.S. degree in information security with Korea
University, Seoul. Since 2023, he has been a
Research Assistant with the Institute of Cyber
Security and Privacy (ICSP), School of Cyber-
security, Korea University. His research interests
include cryptography and side-channel attacks.

NAYEON LEE received the B.S. and M.S. degrees
in information security from Korea University,
South Korea, in 2022 and 2023, respectively. Her
research interests include side-channel attacks and
deep learning-based side-channel analysis.

HEESEOK KIM (Member, IEEE) received the
B.S. degree in mathematics from Yonsei Univer-
sity, Seoul, South Korea, in 2006, and the M.S.
and Ph.D. degrees in engineering and informa-
tion security from Korea University, Seoul, in
2008 and 2011, respectively. He was a Postdoc-
toral Researcher with the University of Bristol,
U.K., from 2011 to 2012. From 2013 to 2016,
he was a Senior Researcher with the Korea
Institute of Science and Technology Information

(KISTI) Since 2016, he has been with Korea University. His research
interests include side-channel attacks, cryptography, and network security.

SEOKHIE HONG (Member, IEEE) received the
M.S. and Ph.D. degrees in mathematics from
Korea University, in 1997 and 2001, respectively.
From 2000 to 2004, he was with Security
Technologies Inc. From 2004 to 2005, he was
a Postdoctoral Researcher with the COSIC, KU
Leuven, Belgium. He joined the Graduate School
of Cybersecurity, Korea University. His research
interests include cryptography, public and sym-
metric key cryptosystems, hash functions, and
message authentication codes.

95395

