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ABSTRACT Neuromorphic computing utilizes spiking neural networks (SNNs) to offer power/energy-
efficient solutions for complex machine-learning problems in hardware. However, neural circuits are prone
to faults caused by variability in the manufacturing flow, process variations, and manufacturing defects.
This work proposes a mapping approach, R-MaS3N, that leverages the reuse of existing neurons for robust
mapping of SNNs to a 3D-NoC-based neuromorphic system (NR-NASH). A heuristic-based partitioning
technique is employed to partition neurons in the layers of an SNN application using neuron firing patterns.
Moreover, a neuronal partitioning approach cluster mapped neurons in the layers of the neuromorphic neural
circuits based on connectivity patterns and spiking activities. Evaluation results show that the proposed
fault-tolerant mapping method maintains a remapping efficiency of 100% with a fault rate of 40% in the
3D NoC-based neuromorphic system. With a NoC system configuration of 4 × 4 × 4 and 256 neurons per
cluster, our approach has a remapping time of 71× less than the previous approach with the same NoC
system configuration parameters. In addition, the mean time to failure (MTTF) of the mapping method for
system configuration 5× 5× 5 NoC size at a 40% fault rate surpasses the previous method at 20% fault rate
by 16% for 4 × 4 × 4 NoC size.

INDEX TERMS Reliable neuromorphic, mapping, neural reuse, 3D-NoC, clustering.

I. INTRODUCTION
Spiking neural network (SNN) models mimic the brain’s
biological computations. SNN models communicate through
synapses which are links between neurons [1], [2], [3].
The accuracy of SNNs is inferior to that of state-of-the-art
artificial neural networks (ANNs) [4]. Nevertheless, their
biological plausibility and their unique energy efficiency
characteristics have drawn interest [4], [5].
These applications are implemented in neuromorphic

computing hardware such as ODIN [2], NASH [6], [7], IBM
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Truenorth [2], Loihi [8], and SpiNNaker [5], [8] in order
to explore their energy-efficient capabilities. Similar to the
human brain, these computing hardware have multiple neural
circuits interconnected by a shared interconnect in the form
of tile-based architectures [4], [5], [6], [9], [10]. Each tile
consists of a neuron or synapse circuit, peripheral logic, and
a network interface (NI) for passing AER packets across the
network [5], [11].
To execute SNNs on neuromorphic hardware, neurons and

synapses must be mapped to their neuronal and synaptic
circuits. However, the brain’s neuronal circuit could be
susceptible to faults from various sources, such as noise
in synaptic transmission and fluctuations in post-synaptic
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FIGURE 1. Motivation example 1: Relationship between scaling factor
and number of redundancy neurons in large scale NoC-based
neuromorphic systems.

potentials [12], eventually leading to errors in neuronal circuit
outputs. Likewise, neural circuits in neuromorphic hardware
may fail due to electrical interference and cross-talk between
neurons [12], [13].

SNNs have been mapped to neuromorphic hardware using
several approaches and methodologies. Existing techniques,
notably in [14], [15], [16], and [17], emphasized hardware
performance at the expense of resiliency and robustness,
which are critical factors for maintaining reliable compu-
tation output for optimal performance. Consequently, it is
imperative to find the most efficient way to map SNN
applications to neuromorphic hardware which would have
significant implications for the performance and reliability of
the application.

A. BACKGROUND AND MOTIVATION
Recent research shows that the human brain can tolerate
or recover from synaptic or neuron faults by reorganizing
structurally and functionally [24], [25], [26]. Nevertheless,
the time required to recover depends on the type of fault [25].
Additionally, neural networks exhibit some intrinsic fault
tolerance properties. However, these properties are limited
and cannot be generalized to all neural network models [24].
Our previous fault injection experiments in [7] and [26]
showed that SNNs have some inherent fault tolerance
properties. Furthermore, the experiments demonstrate the
impact of faults on SNN accuracy in digit classification
tasks. As neuromorphic hardware utilizes SNNs for efficient
computations and low power consumption, resiliency and
fault tolerance are key areas to consider before deployment
in critical systems [27], [28].

0This footnote provides additional information about Fig. 1:
* For a NoC-based system with N as the number of neurons/cluster,

W as the NoC size, the total neurons P in the system is
N ×W .

* For example, let N=256 and W=5× 5× 5, P=256×5× 5× 5=32000.
The required S for the NoC system for k=0.25 is 0.25 × 32000=8000

* The scaling factor (k) depends on various factors such as the system
architecture and reliability requirements.

FIGURE 2. Motivation example 2: (a) A neural network application
mapped to a neural circuit having redundancy. (b) A neural network
application mapped to a neural circuit having redundancy depleted after
several failures occurred at double rates.

A popular fault-tolerant technique is the addition of
redundancies [24]. This concept has widely been used to
achieve resilience and robustness in computing systems. This
technique is effective, which is one of its apparent advantages.
Our work in [7] and [26] rely on augmented redundancy for
neuron mapping to a 3D NoC-based neuromorphic hardware
to ensure fault tolerance and reliability recovery.

However, as neuromorphic systems continue to scale up
in size and complexity, and with a high degree of fault,
the number of spare neurons required for repairs in the
neuromorphic system also increases in size. Fig. 1 describes
this scenario. In the context of a neural system, let P represent
the total number of neurons, and S denote the count of spare
neurons required for fault tolerance. A linear relationship
between P and S can be expressed as S = k × P, where k is
a scaling factor determining the proportion of spare neurons
needed for each 3D NoC-based neuromorphic system. Fig. 1
illustrates that as the size of a 3D NoC-based neuromorphic
system scale up, there is a corresponding increase in the
demand for spare neurons necessitating additional physical
space to accommodate them. In addition, It may also require
extensive computational efforts to design an optimal mapping
solution. This poses significant cost challenges in the design
of integrated circuits and other hardware implementations.
Another downside of redundancy is that it is finite despite
being highly effective and reliable.

In Fig. 2, we illustrate how fault tolerance mapping with
redundancy can become constrained over time and ineffective
for prior studies in [7] and [26]. Fig. 2 describes a neural
network application with 5 tasks mapped to a neural circuit
(NC) with 7 neurons. The NC is assumed to have two
redundant neurons, and one randomly fails. Mapping the
neural network application will not affect NC performance
since it has more redundant repair resources as shown in
Fig. 2a.
During run-time, in the event of an additional fault and

subsequent remapping, task X4 would remain unmapped.
This outcome occurs due to the depletion of redundant
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FIGURE 3. A taxonomy of spiking neural network-based systems based on implementation, models, and mapping
methods.

resources, a situation depicted in Fig. 2b. As a result of this
unmapping, the NC’s performance could potentially degrade
thereby exerting an adverse impact on the overall system
performance.

Several strategies may be employed, including dynamic
resource allocation [29], optimizing allocation based on fault
patterns [6], and adding additional spare neurons periodically
to replenish redundant memory resources [30], [31]. How-
ever, these options are costly especially in hardware. With
integrated chips, it is not feasible to introduce redundancy
periodically. We propose re-purposing existing neurons in
the system relying on the neural reuse theory [32], [33].
This is due to the limitations of the current state of the art,
our prior proposals in [7] and [26], and the disadvantages
of alternative solutions. Our investigation into brain fault
tolerance unveiled insights into re-purposing specific brain
areas to accommodate errors caused by faulty neurons. These
findings support our argument that a brain-inspired system
can enhance fault tolerance by reusing neuronal populations
in designated areas.

Our approach offers a clear advantage in scalability.
This is because the size of a 3D NoC-based neuromorphic
system can increase without increasing the size of neurons
required for fault tolerance. Furthermore, by eliminating
the reliance on finite fault-tolerant resources, our approach
ensures a more sustainable and efficient system with low
mapping costs. This work’s contributions are summarised as
follows:

• A robust mapping scheme (R-MaS3N) that leverages a
neuron reuse strategy for mapping spiking neural net-
works (SNNs) to 3D-NoC-based neuromorphic systems.
This mapping scheme eliminates an increase in the size
of a system due to the use of redundancy-based fault-
tolerant approaches.

• A heuristic-based method for partitioning neurons in the
layer of an SNN application. This approach provides a
striking balance between performance and reliability.

• A partitioning technique that clusters neurons within
the layers of the neuromorphic system. This approach
ensures that underutilized neurons are first leveraged for
fault tolerance and neuron utilization recovery before
most utilized.

• Design and evaluation of the proposed mapping
approach. The assessment validates the effectiveness of
the mapping strategy in achieving reliable and robust
mapping of SNNs to 3D-NoC-based neuromorphic
systems.

II. PRIOR WORKS
SNN-based systems can be implemented either in software or
hardware as depicted in Fig. 3. For hardware implementation
often referred to as neuromorphic systems, the implementa-
tion could be in a 2D or 3D platform. In Fig. 3, we present a
taxonomy of well-known related studies.

For 3D models like the dynapse processors, to implement
a fault-tolerant mapping method, its hierarchical routing grid
architecture might require more complex fault detection and
rerouting mechanisms to fully capitalize on the hierarchical
structure. On the other hand, fault-tolerant mapping on
our NR-NASH can be easily implemented since multicast
routing allows for simultaneous data distribution to multiple
destinations.

This section presents known works on fault tolerance
and mapping techniques for reliability in neuromorphic
computing systems.

A. NEURAL REUSE THEORY
Multiple cognitive functions could be performed by the brain
using existing neural circuits. Authors in [34] proposed the
neural reuse theory. The theory is a form of neuroplasticity
whereby neural elements developed for one purpose are
repurposed for another. Furthermore, the theory states that
plasticity occurs at individual neuronal levels and large-scale
brain regions [33]. While the theory is conceivable, several
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underlying assumptions must be considered [33]. As claimed
by the authors in [32], [33], and [35], some neurons in the
brain may borrow sub-components to perform specific tasks
in addition to contributing to non-primary tasks.

The authors in [32] hypothesized a redeployment perspec-
tive about the neural reuse theory. The authors suggested
that local circuits in the brain may perform low-level com-
putations. These computations can be repurposed for many
higher-level functions. The authors concluded that neural
reuse theories are not full-fledged theories of how the brain
works. Instead, the theory describes how neural resources are
deployed to support cognitive operations. Additionally, the
theory provides a framework for understanding how the brain
achieves cognitive flexibility and efficiency.

Perhaps re-purposing neural resources can inspire new
computational models and algorithms. We aim to reuse some
parts of brain-inspired hardware for continued information
processing support from an economical and fault-tolerant
perspective.

B. FAULT-TOLERANCE IN NEURAL COMPUTATION
Neural computation involves information processing and
computation performed by the human brain or artificial
neural networks (ANNs). However, like any computational
system, neural computation can be susceptible to faults or
errors. The errors could be caused by process variations,
thermal issues, and leakages that result in computational
errors [28]. These errors can affect the accuracy, reliability,
or integrity of computation output results [28]. Authors
in [36] and [37] proposed to handle these errors by utilizing
explicit redundancy for both neurons and synapses of the
neural network (NN).

In another approach, authors in [28] proposed to identify
individual NN components with different functionality. The
authors proposed to train the NN components separately with
different objectives for improved performance and higher
generalization. However, since redundancy increases the
NN structure, our previous work in [26] aimed to identify
and remove faulty components based on an idea similar to
pruning [38], [39].

Our SNN fault-tolerant method in [26] provides an
effective solution to neuron failures during computation than
the method proposed by the authors in [39]. This is because
the work by the authors in [39] targeted faulty synapse
connections instead of the whole faulty neuron. Furthermore,
this approach increases the computational overhead in
identifying and tracking faulty synapse connections. Neural
network application training and retraining with diversified
parameters is another method proposed for handling errors
in neural computation by the authors in [40] and [41]. This
method is costly and time-consuming, especially in hardware.

C. SNN MAPPING IN NEUROMORPHIC HARDWARE
The routing architecture in a neuromorphic system makes
the task of mapping applications challenging. Despite these

challenges, there have been several proposals to achieve
or maintain optimum system performance and/or determine
how to trade off hardware performance with reliability after
mapping. However, mapping applications to neuromorphic
hardware still presents non-trivial solutions.

To map an SNN application to neuromorphic hardware,
two procedures are typically used; dividing neurons into
several clusters according to hardware constraints and placing
the clusters into hardware processors. Mapping strategies like
Espine [1], Neumap [14], SpineMap [16], PACMAN [16],
[42], and PSOPART [43] employs these two part procedure.
As part of these approaches, heuristic algorithms [14], [16],
[44] are used for the space search and particle swarm
optimization (PSO) [42] for the optimization process.

In PSOPART, neurons are mapped directly to cores using
an instance of PSO. In PACMAN, neurons are mapped
to SpiNNaker cores on a first-come, first-served basis.
The PSO optimization technique is employed in Neumap,
Espine, and SpineMap, but neuron partitioning occurs before
mapping. Although these existing methods are effective,
they have limitations especially when scaling the size of
the hardware and applications. There are two main reasons
for these limitations: First, neurons of an application can
fail independently as a result of internal and external influ-
ences [26]. Secondly, because neurons can fail independently,
scaling the application size results in more neurons that
can fail. Consequently, hardware performance could be
negatively affected. However, in these mapping methods,
reliability and resilience are traded against performance
metrics such as power consumption, spike latency, on-chip
network congestion, and throughput.

D. FAULT-TOLERANT MAPPING IN NEUROMORPHIC
HARDWARE
Limited work has been done on developing mapping
strategies with fault tolerance for neuromorphic hardware.
Redundancy, dynamic reconfiguration, and fault detection are
common mechanisms used to design fault-tolerant mapping
strategies [24], [45]. A combination of these fault-tolerant
mechanisms with common approaches such as quadratic
programming [15], [16], integer linear programming [16],
genetic algorithms [7], and min-max optimization [7], [28]
has been employed in developing robust mapping techniques
for neuromorphic hardware.

Authors in [46] proposed the fault-tolerant mapping of a
memristor-based crossbar using integer linear programming
and hierarchical clustering. This approach reduces hardware
costs while simultaneously improving the mapping rate.
However, it requires significantly more computation and
execution time and is limited to 2D neuromorphic hardware.

The authors in [47] also proposed a fault-tolerant mapping
technique based on pruning. Using the approach, applications
are successfully mapped to the hardware. However, the
pruning process complicates the mapping strategy and may
lead to incompatibility.
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FIGURE 4. A high-level view of the robust 3D NoC-based neuromorphic system (NR-NASH): (a) 4 × 4 × 4 system configuration, (b) Spiking
neuro processing core, (c) 3D Fault-tolerant router.

In our prior work in [7], we utilized min and max
and a genetic algorithm with redundancy elements to
ensure fault tolerance. The method achieves 100% mapping
success with reduced migration costs. However, the method
is time-consuming and relies on finite resources. Also,
if defective components exceed the redundancy, it becomes
ineffective. To address the limitations of our prior work in [7],
our recent work in [26] suggests that faulty neurons should
be repaired based on their contribution levels to a particular
process. This method maps even if faulty ones outnumber
redundancy components. However, some more contributing
neurons might not be selected for repairs which could
negatively impact a system’s performance. Additionally,
scaling up the system size means increasing the size of
redundancy components for repairs which could also get
exhausted over time.

Authors in [45] proposed a run-time mapping scheme
under a lifetime constraint. Themapping scheme dynamically
maps incoming applications on multi-core systems. The
mapping method adopts a borrowing strategy to manage
many-core resources at multiple scales. The technique
considers only aging parts of the hardware and not the
components of the neural circuit.

R-MaS3N differs from other methods that use traditional
fault-tolerant mechanisms. R-MaS3N uses a novel concept
based on re-purposing neurons for fault tolerance with
low mapping costs for neuromorphic circuits. The mapping
scheme eliminates the need for increased system size when

employing redundancy-based fault-tolerant approaches. Fur-
thermore, it mitigates the finite resource bottleneck lim-
iting traditional fault-tolerant methods’ scalability and
performance.

III. NEUROMORPHIC HARDWARE OVERVIEW
We discuss the neuromorphic system in this section. Accord-
ing to Fig. 4, the neuromorphic system is 3D NoC-based with
STDP adaptive capability. The system generally comprises a
spiking neuro-processing core (SNPC) and a 3D FT router.
As part of the SNPC, there is a network interface (NI).
Encoders and decoders are incorporated into the NI for
decoding and encoding spikes. The NI supports the mapping
process as part of the neuromorphic system.

A. SPIKING NEURON PROCESSING CORE (SNPC)
The SNPC (Spiking Neuro Processing Core) shown in Fig.4
consists of several components: the LIF array, synapse
memory, synaptic crossbar, network interface (NI), control
unit, and the STDP learning module.

Within the LIF array, the membrane voltage of a neuron
is computed by accumulating input synapse values. A leak
value reduces these synapse values to simulate their decay
operations, like in biological neurons. The remaining value
is compared against a voltage threshold. If the accumulated
value surpasses the voltage threshold, the neuron fires an
output spike and enters a refractory stage. On the other
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FIGURE 5. An illustration of SNN mapping example on a 3 × 3 × 3 NoC-based neuromorphic system: (a) Neural network
application, (b) Neural network application mapping to neuro cores of the 3D NoC-based neuromorphic system based on
our mapping method in [48]. However, it’s important to note that there are some faulty neurons in clusters C11,C12,C14,C15
and C16 of NL1 leading to fewer mapped neurons than the expected maximum capacity.

hand, if the accumulated value does not exceed the threshold,
no output spike is generated.

The synapse crossbar implemented using a crossbar
architecture represents the synaptic connections between
neurons. A 1-bit value represents each synapse, and the
corresponding synaptic weights are stored in the synapse
memory. Presynaptic spikes sent to the SNPC are received
at the synapse crossbar. Spikes from the postsynaptic
neurons are identified based on their synapses [48]. The
weights associated with these synapses are fetched from
the synapse memory and transmitted to the LIF neuron for
accumulation.

To facilitate learning, the STDP learning module updates
the synaptic weights using trace-based STDP learning [48].
The learning module uses 16 presynaptic spikes grouped
according to their arrival time relative to a postsynaptic
spike [48]. During the learning process, spike traces arriving
before the postsynaptic spike are incremented, while those
coming afterward are decremented.

The operation of the SNPC is overseen by the control unit,
which operates in six distinct states. The first state is ‘‘idle,’’
during which the SNPC awaits presynaptic spikes. Once
presynaptic spikes arrive, the second state, ‘‘download,’’
is initiated to download the presynaptic spikes. Following
the download, the third state, ‘‘accumulation,’’ commences,
where the spikes are weighted and sent to the LIF neurons
for accumulation. After the accumulation, the fourth state,
‘‘leak,’’ begins allowing the membrane potential of the
neurons to leak. Subsequently, the membrane potential is
compared against a predetermined threshold in the fifth state.
If the membrane potential exceeds the threshold, an output
spike is fired. The sixth state activates the STDP learning
module. Learning is performed if the learning conditions are
met, and a signal is sent to the control unit to reset to the
idle state. If the learning conditions are unsatisfied, the SNPC
returns to the ‘‘idle’’ state.

FIGURE 6. An illustration of the mapping sequence on the 3D NoC-based
neuromorphic hardware described in Fig. 5. Neurons from each layer of
the network application are mapped to the corresponding layer of the
neuromorphic system.

The network interface (NI) is an internal component of
the SNPC and incorporates the mapping method. The NI
supports single and burst transaction modes for reading and
writing weight memory and parameters of each neuron [6].
Additionally, it ensures communication between neurons
through the on-chip network framework using an encoder and
decoder. More details about the SNPC operational dynamics
can be found in [6], [7], and [48].

B. 3D FT ROUTER
The 3D FT-router illustrated in Fig. 4 employs a multi-
cast routing algorithm called K-means clustering routing
(KMCR) for spike distribution [49]. To alleviate congestion
in packet traffic, a variant called shortest path k-means
clustering routing (SP-KMCR) was proposed and utilized.
A fault-tolerant approach known as fault-tolerant shortest
path k-means clustering routing (FTSP-KMCR) was intro-
duced to address potential faults in route links, building upon
the SP-KMCR concept [49]. This technique ensures that
spike data reaches the destination router even in the presence
of a fault along the route.

The router incorporates a random access buffer (RAB) [49]
and Bypass-on demand link [48], [49] to handle faults in
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the input buffer and crossbar during packet forwarding.
The router features seven input and output ports with four
ports designated for intra-layer connections to other routers.
The routing process within the router involves four pipeline
stages: buffer writing (BW), where received spike packets
are stored in the input buffer; routing calculation (RC) which
determines the next address in either the X, Y, or Z dimension
for the source packet; switch allocator (SA) responsible for
stall/go flow control, triggering the matrix-arbiter scheduler
to allocate the appropriate port of the next router or local
SNPC; and crossbar traversal (CT) ensuring that the packet
traverses the crossbar to the allocated output port [48]. The
3D-FT router is discussed in more detail in [6], [7], [49],
and [50].

IV. R-MaS3N: ROBUST MAPPING OF SNNs TO
NEUROMORPHIC SYSTEMS
A. PROBLEM FORMULATION
In a system with an application model, the mapping
problem can be formulated as finding a placement function
P : S → Nc.
S represents the application neurons, and Nc represents

the set of neuron cores in the neuromorphic system. The
objective of a mapping algorithm F is to determine the
optimal placement of neurons S onto Nc as represented by
the equation:

F(S,Nc) = P (1)

In a neuron core Nci , each neuron Si is mapped to its
corresponding coordinates (xi, yi) by the placement function
P. This can be expressed as follows:

P(Si) = (xi, yi) (2)

However, some S neurons of the application model may
remain unmapped after mapping due to F faulty neurons in
the Nc of the neuromorphic system. We introduce Equation 3
to represent these unmapped neurons.

U = S−M − F (3)

M represents mapped neurons as determined by Equation 2.
Neurons unmapped to any Nc during the initial mapping

process are represented by U . To address this issue, we need
to find a mapping strategy that uses Q underutilized
least active neurons to map the remaining U unmapped
neurons. The remapping algorithm aims to efficiently map
the U unmapped neurons to Q underutilized neurons for
fault tolerance and enhanced reliability. We introduce the
remapping procedure in Equation 4.

Remap(U ,Q) = P′ (4)

where P′ is the updated placement function resulting from
the remapping function that maps U unmapped neurons to Q
underutilized neurons.

B. PROBLEM DEFINITION
Fig. 5 illustrates the mapping function P presented by
Equation 1 with faulty neurons in a 3D NoC-based neuro-
morphic system. The mapping methodology we proposed
in [48] is layer-to-layer based. The mapping process involves
assigning application neurons to clusters within each layer of
the 3D NoC-based neuromorphic system. This assignment is
performed sequentially, starting with a cluster and mapping
application neurons until all available neurons within that
cluster are utilized. The process then proceeds to the next
cluster in that layer. This continues until all clusters with
available neurons in that particular layer have been mapped
with application neurons. Using the method, we map the
neural network application in Fig. 5a to the 3D NoC-based
neuromorphic system in Fig. 5b. Fig. 6 describes the mapping
sequence.

From Fig. 5b, each cluster in the 3D NoC-based neuro-
morphic system has 4 neurons. NL1 of the 3D NoC-based
neuromorphic system has 36 neurons with 1, 3, 2, 4, 3, and
3 faulty neurons in C11, C12, C13, C14, C15, and C16 clusters
respectively. L1 of the neural network application also has
36 neurons. After initial mapping, 16 application neurons are
left unmapped. Therefore, all application neurons required
for a certain process are not available on the hardware. This
may result in reduced reliability or even failure to perform the
desired tasks due to degraded or incomplete functionality.

Fig. 7 illustrates how the proposed R-MAS3N addresses
this issue to enhance system reliability. Based on the initial
mapping shown in Fig. 5b, there are 16 unmapped neurons
of L1 of the neural network application. The neurons are
partitioned into most active and least active partitions based
on their spiking behavior. After partitioning, 10 neurons
belong to the most active partition while 6 are assigned
to the least active partition as described in Fig. 7b. In the
next step, all mapped neurons in NL1 of the 3D NoC-based
neuromorphic system are partitioned into high and less-active
regions.

According to Fig. 7c, clusters C15, C18, and C19 belong
to the less-active region. The mapped neurons in C15, C18,
and C19 clusters are sorted to determine underutilized and
most utilized neurons using rank sorting. C18 and C19 have
2 and 3 underutilized neurons respectively after rank sorting.
1, 2, and 1 neurons appear to be most utilized in C15,
C18, and C19 clusters respectively. Since we are mapping
for fault-tolerance and enhanced reliability, R-MAS3N first
maps 10 neurons in the most active partition to underutilized
neurons in C18 and C19 clusters. Similarly, 6 neurons in the
least active partition are mapped to the most utilized neurons
in C15, C18, and C19 clusters.

C. R-MaS3N METHODOLOGY
The authors in [51] demonstrated how existing components
can be reused or repurposed for improved performance. The
authors proposed a novel method for reusing convolution
layers without adding new ones. While their objective was
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FIGURE 7. An illustration of the proposed solution on a 3 × 3 × 1 NoC-based neuromorphic system for the mapping issue described in Fig. 5:
(a) Unmapped neurons of L1 of the neural network application after initial mapping, (b) Unmapped neurons partitioned into most active and least active
partitions, (c) Partitioned unmapped neurons in most active and least active partitions are remapped to neurons in the less-active regions of the layer of
the 3D NoC-based neuromorphic system, (d) The remapping sequence in NL1.

to enhance performance, our goal is to improve reliability
through fault tolerance.

In our proposed method, mapping begins with the initial
mapping of neurons of an SNN model to clusters of a 3D
NoC-based neuromorphic system. Once the 3D NoC-based
neuromorphic system is mapped with the SNN application,
we randomly set some neurons of the 3D NoC-based
neuromorphic system to be faulty.

To achieve fault tolerance and enhanced system reliability,
R-MaS3N uses a two-step methodology. Firstly, unmapped
layer neurons are partitioned into the most active and least
active partitions based on their firing patterns. In the second
step, neurons in the 3D NoC-based neuromorphic system
are clustered into high and less-active regions. In the less
active region, neurons are rank sorted based on their spiking
activities. By partitioning, only neurons in the less active
region of the 3D NoC-based neuromorphic system are used
for mapping in order to achieve fault tolerance for enhanced
reliability. In this way, high-active neurons can avoid being
mapped high-spiked neurons.

A crucial component of the R-MaS3N approach is reusing
existing neurons. Using the reuse strategyminimizes resource
waste by utilizing existing neurons efficiently. Below,
we provide a detailed design description of two significant
procedures in the remapping step of the R-MaS3N. In this
section, clustering and partitioning are interchangeably used.

1) SNN LAYER PARTITIONING (SLP) DETAILED DESIGN
The mapping process starts after initial mapping leaves some
application neurons unmapped due to faults in the 3D NoC-
based neuromorphic system. The first step in the remapping
process is partitioning the application model neurons into
two partitions based on their firing patterns. Algorithm 1
formalizes our idea. We introduce the denotation Cmost for
the most active neurons cluster and Cleast for the least
active neurons cluster. We determined these partitions using

FIGURE 8. Example of an SNN layer partitioned into Cmost and Cleast
neuron partitions : (a) SNN application, (b) Neurons characteristics
layout, (c) Neurons cluster layout.

metrics such as spike counts and consecutive spike frequency.
Tomeasure these metrics, letN = n1, n2, . . . , nm denote the set
of all neurons in the SNNmodel, wherem is the total number
of neurons.

We denote Sc as a spike count. The Sc of a neuron ni is
the total number of spikes generated by that neuron over a
specific period. It can be calculated as follows:

Sc(ni) =

∑
j

(tj − tj−1) ∀j (5)

where tj denotes the time stamp of the j− th spike generated
by neuron ni.
Similarly, we denote the frequency of consecutive spike

counts as Fcs. The Fcs of a neuron ni is the average number
of consecutive spikes generated by that neuron. It can be
calculated as follows:

Fcs(ni) =
Sc(ni)
Nse − 1

(6)

where Nse is the total number of spike events generated by a
neuron ni.
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To perform partitioning, we calculate the average spike
count AvgSc and the average frequency of consecutive
spike counts Avgfcs across all neurons in the system using
Equations 7 and 8. Neurons with spike counts and frequency
of consecutive spike counts above the respective averages
are clustered as the most active neurons (Cmost ) according
to Equation 9. In contrast, neurons with spike counts and
frequency of consecutive spike counts below or equal to the
averages are clustered as the least active neurons (Cleast )
using Equation 10.

AvgSc =
1
m

∑
Sc(ni) ∀ni ∈ N (7)

Avgfcs =
1
m

∑
Fcs(ni) ∀ni ∈ N (8)

Cmost = {ni ∈ N | Sc(ni) > AvgSc and Fcs(ni) > Avgfcs}

(9)

Cleast = {ni ∈ N | Sc(ni) ≤ AvgSc or Fcs(ni) ≤ AvgSc}

(10)

To better understand the SNN layer neurons partitioning
method with algorithm 1, consider the example illustrated
in Fig. 8. Suppose we have a 3-layer MLP as described in
Fig. 8a. Using algorithm 1 to cluster neurons of layer 2, let’s
say neurons X4, X5, X6, X7, X8, and X9 as described in Fig. 8b
have Fcs of 7, 6, 10, 11, 4, and 5 and Sc of 200, 300, 1500,
100, 1000, and 700 respectively. The Avgfcs computed with
Equation 7 is 7. The AvgSc computed using Equation 8 is
633. We place these neurons in the Cmost and Cleast partitions
according to Equations 9 and 10. Neurons X4, X5, X7, X8, and
X9 are placed in the Cleast partition while X6 is placed in the
Cmost partition. This is described in Fig. 8c.
When addressing the mapping problem in Fig. 5, neurons

in the Cmost partition are mapped first to the underutilized
neurons, and then to the most utilized neurons from the Cless
partition of the 3D NoC-based neuromorphic system. The
same applies to unmapped applications neurons in the Cleast
partition. The SNN layer partitioning problem is distinct from
the classical graph partitioning problem [15], [16], [43]. The
classical graph partitioning problem divides a graph into
subsets to optimize objectives like edge reduction between
partitions and balanced sizes. However, similarities exist
between the two, as both involve dividing elements such as
neurons or graph nodes into groups based on specific criteria.

2) NEURONAL PARTITIONING (NP) DETAILED DESIGN
After partitioning neurons in the layer(s) of the SNN
application, the next step is to cluster neurons on the 3D
NoC-based neuromorphic hardware into high-active and less-
active regions. Underutilized neurons are first prioritized
for reuse before the most utilized neurons. Algorithm 2
formalizes clustering neurons in layer(s) of the 3D NoC-
based neuromorphic system into high-active and less-active
regions. For neurons to be classified as highly active, they
must satisfy two conditions: having a high number of
positive synaptic connections (PC) than negative synaptic

Algorithm 1 SNN Layer Partitioning Algorithm
1: procedure LAYER Partitioning(N ) ▷ Input: Set of

neurons N
2: Calculate AvgSc and Avgfcs
3: Initialize empty sets Cmost and Cleast
4: for ni ∈ N do
5: if Sc(ni) > AvgScandFcs(ni) > Avgfcs then
6: Move ni to Cmost
7: else
8: Move ni to Cleast
9: end if
10: end for
11: return Cmost, Cleast ▷ Output: Neurons in Cmost and

Cleast regions
12: end procedure

Algorithm 2 Neuronal Partitioning
1: procedure NEURON Partitioning(n) ▷ Input: Set of all

mapped neuronsMn
2: Calculate AvgSc ∀ni ∈ Mn.
3: Initialize empty sets Chigh and Cless.
4: for each neuron ni ∈ Mn do
5: Calculate PC .
6: Calculate NC .
7: Calculate Sc.
8: if PC > NC and Sc > AvgSc then
9: Move neuron ni to Chigh.

10: else
11: Move neuron ni to Cless.
12: end if
13: end for
14: return Chigh, Cless ▷ Output: Neurons in Chigh and

Cless regions
15: end procedure

connections (NC) and a spike count Sc above the average
spike count. We assume these parameters to be derived
from the configuration of the 3D NoC-based neuromorphic
hardware.

We denote the set of neurons in the high active region as
Chigh and the set of neurons in the less active region as Cless.

We also denote PC as the number of positive synaptic
connections an ni has. The PC of ni is computed using
Equation 11:

PC(ni) =

∑
(Number of positive synapses connected to ni)

(11)

Similarly, we denote NC as the number of negative
synaptic connections for a neuron ni. The NC of ni is
calculated using Equation 12.

NC(ni) =

∑
(Number of negative synapses connected to ni)

(12)
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Algorithm 3 Rank-Based Sorting
1: procedure RankSort(n) ▷ Input: Set of n ∈ Cless
2: Initialize an empty list rank_list
3: for ni ∈ Cless do
4: Calculate the rank_score(ni), based on Sc
5: Append (ni, rank_score(ni)) to rank_list
6: end for
7: Sort rank_list in ascending order of rank scores
8: return rank_list ▷ Output: Sorted list of n and their

rank scores
9: end procedure

To cluster neurons into either a Chigh or a Cless region,
we apply the following criteria:

A neuron belongs to the highly active region (ni ∈ Chigh)
if Equations 13 and 14 hold true.

PC(ni) > NC(ni) (13)

Sc(ni) > AvgSc (14)

For a neuron to be classified as less active (ni ∈ Cless),
it does not meet the criteria for high activity.

Once partitioning is completed, the next step is to
identify underutilized and most utilized neurons within
the Cless region by performing rank-order sorting using
algorithm 3. We consider their Sc as the primary criterion.
First, we calculate the Sc for each neuron ni ∈ Cless region.
Next, we assign a rank score (RS) to each neuron based
on its Sc. The rank score can be derived by ranking Sc in
ascending order and assigning lower scores to neurons with
fewer Sc. Neurons are then sorted based on their rank scores
in ascending order. Neurons having the lowest rank scores
indicating fewer Sc are placed at the top of the sorted list.
Neurons in the first half of the sorted list are termed as
underutilized while neurons in the second half are termed
most utilized.

To better understand the neuron partitioning method with
algorithm 2, consider the example illustrated in Fig. 9.
Suppose we have a layer of a NoC-based neuromorphic
system as described in Fig. 9. Using the NP algorithm to
determine theChigh andCless areas in the layer of the 3DNoC-
based neuromorphic system, let’s say the neurons in each
cluster in the layer have their respective Sc and the number of
PC and NC computed according to Equations 5, 11 and 12
respectively. The AvgSc is 369 according to equation 7.
We used Equations 13 and 14 to classify neurons into the
Chigh and Cless partitions.
Clearly, all neurons in C1 to C4, C6, and neuron X9 in

C5 have Sc above AvgSc . In addition, they also have more PC
than NC . Therefore, neurons in these clusters are assigned
to the Chigh partition. All neurons in C7, C8, C9, and neuron
X10 in C5 have more NC than PC and have Sc below the
computed AvgSc . Therefore, these neurons are assigned to the
Cless partition.

FIGURE 9. Example of neurons in clusters of a 3 × 3 × 1 NoC-based
neuromorphic system partitioned into Chigh and Cless partitions using
algorithm 2.

Since the task of mapping SNNs to neuromorphic systems
remains a challenge, our mapping method is not without
constraints. The mapping constraints are the following:

From Equation 3, we earlier denoted M as the number of
mapped neurons and U as the number of unmapped neurons.
1) A neuron can be mapped to only one neuron during the

initial mapping.

M ≤ U (15)

2) A neuron can only be remapped twice. This implies
that the total number of mappings (both initial and
remapping) cannot exceed three.

M ≤ 3U (16)

3) If the number of unmapped neurons is greater than
twice the number of mapped neurons M of Cless,
reusing a neuron for mapping fails.

U > 2 ×MCless (17)

V. EVALUATION RESULTS
In this section, we present the results of our evaluation
of R-MaS3N. We provide insights into the effectiveness,
efficiency, and reliability of R-MaS3N through analysis and
discussion. The evaluation first involved SNN application
mapping experiments to a 3D NoC-based neuromorphic
system.

The second part involves evaluating the performance
of our proposed mapping strategy to the 3D NoC-based
neuromorphic system having some cluster neurons randomly
set to be faulty. Lastly, we analyzed our mapping method’s
reliability in the 3D NoC-based neuromorphic system for
different NoC sizes. This was to demonstrate the robustness
of our mapping method in handling fault scenarios.
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TABLE 1. Configuration used for evaluating R-MaS3N.

A. EVALUATION METHODOLOGY
For the first stage of our evaluation, we proposed several
SNN applications with their detailed description presented
in Table 2. These proposed applications are indicated with
the ‘MLP’ preceding a number (e.g., MLP_1794) where
the number represents the total number of neurons in the
application as reported in column 4 of Table 2. Columns 2 and
3 report the applications’ topology and the total number of
neurons for each application, respectively.

We proceed to map these SNN applications with a portion
of neurons randomly set as faulty, with rates of 10%, 20%,
30%, and 40% per layer of the 3D NoC-based neuromorphic
system. This mapping is performed across NoC sizes ranging
from 3 × 3 × 3 to 5 × 5 × 5 as specified in Table 1.
Unlike our previous work in [7] and [26], where a portion
of neurons set as faulty pertains to the entire 3D NoC-
based neuromorphic system at once, potentially resulting in
an uneven distribution of faults across layers. The rationale
behind this new fault insertion approach is to ensure that each
layer of the 3D NoC-based neuromorphic system has an even
fault rate distribution.

For the second phase of the evaluation, we assessed the
proposed R-MaS3N’s output neuron mapping efficiency and
neuron utilization behavior across all fault rates considering
NoC sizes from 3 × 3 × 3 to 5 × 5 × 5 of the 3D NoC-
based neuromorphic system having 128 and 256 neurons per
cluster as outlined in Table 1. Mapping efficiency in this
context refers to the method’s ability to efficiently remap
neurons once a fault is detected in the system, which results
in unmapped neurons of the SNN application.

We also evaluated R-MaS3N mapping cost as a function
of execution time. The measurement of the mapping cost
encompasses critical stages of the mapping method such
as initial mapping, the setting of some neurons faulty,
faulty neurons detection, and subsequent remapping of
previously unmapped neurons. More importantly, we give
a time complexity analysis of the neuron remapping stage
in R-MaS3N and evaluate the remapping time under the
fault rates described in Table 1. This enabled us to make
a fair comparison with the remapping time of our previous
fault-tolerant mapping schemes.

To describe the robustness of R-MaS3N when mapping
with faults to a 3D NoC-based neuromorphic system, we per-
formed a reliability analysis of mapping the proposed SNN
applications described in Table 1. In particular, we evaluated
Mean Time To Failure (MTTF) which represents the average
time until failure occurs within the system under the fault
rates outlined in Table 1.

TABLE 2. Applications used for evaluating R-MaS3N.

The robust mapping method is developed in Python
programming language and executed in a GPU-accelerated
environment. Our 3D NoC-based neuromorphic system is
written in Verilog HDL language but was translated to
Python programming language for ease of evaluation. All our
experiments were conducted on a high-performance system
running Windows 10 with a Core i7 processor, 32-GB RAM,
and NVIDIA GeForce-GTX GPU.

B. NEURON MAPPING EFFICIENCY
We evaluated all the SNN applications presented in Table 2
on a 3D NoC-based neuromorphic system having 128 and
256 neurons per cluster for NoC sizes 3 × 3 × 3, 4 × 4 × 4,
and 5 × 5 × 5 for all fault rates outlined in Table 1. As
illustrated in Figures 10, 11, and 12, as the rate of designated
faulty neurons increases, with successive initial mappings,
the count of unmapped application neurons before repairs
(UA_BR) also increases. This phenomenon persists as long as
the fault rate continues to rise. However, after remapping to
underutilized and most utilized neurons from a selected area
of the 3D NoC-based neuromorphic system (UN_NS) in the
fault-tolerant step of the R-MaS3N, the number of unmapped
application neurons after repairs (UA_AR) becomes 0. This
applies to all the proposed SNN applications in Table 2.

C. MAPPING COST
The mapping cost was assessed based on the mapping time
of key stages in mapping the SNN applications outlined in
Table 2 to a 3D NoC-based neuromorphic system for NoCs
sizes from 3 × 3 × 3 to 5 × 5 × 5. The stages were initial
mapping, setting some neurons as faulty, initial mapping
again, and remapping the unmapped neurons. We quantify
the computational effort involved in the robust mapping of
neurons of SNN applications to clusters in the 3D NoC-based
neuromorphic system. As described in Fig. 13, the mapping
cost of our mapping method is less than 10 seconds when
mapping a large-scale SNN (i.e.,MLP_18794) to a 5× 5× 5
NoC-based neuromorphic system having 40% neurons faulty.

0This footnote provides additional information about Fig. 10,
Fig. 11, and Fig. 12:
* The data points on the left y-axis are associated with UA_BR and

UA_AR while on the right y-axis with UN_NS.
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FIGURE 10. Output neuron remapping behavior over various fault rates of
the mapping method on a 3 × 3 × 3 NoC-based neuromorphic system:
(a) MLP_1794, (b) MLP_2794.

FIGURE 11. Output neuron remapping behavior over various fault rates of
the mapping method on a 4 × 4 × 4 NoC-based neuromorphic system:
(a) MLP_4794, (b) MLP_8794.

FIGURE 12. Output neuron remapping behavior over various fault rates of
the mapping method on a 5 × 5 × 5 NoC-based neuromorphic system:
(a) MLP_9794, (b) MLP_18794.

D. NEURON UTILIZATION BEHAVIOR
It is crucial to understand neuron utilization behavior in
order to determine if a mapping strategy has restored
neuron utilization during system processes. We evaluated
neuron utilization patterns pre and post randomly setting of
some portion of neurons as faulty for the 3D-NoC-based
neuromorphic system for NoC sizes from 3×3×3 to 5×5×5.
From Fig. 14, before some neurons are set to be faulty,
the 3D NoC-based neuromorphic system achieves peak
application neuron utilization. As the count of faulty neurons
increase steadily, neuron utilization decreases. However, the

FIGURE 13. Plot of mapping cost of the mapping method for different
NoC sizes of a 3D NoC-based neuromorphic system: (a) 3 × 3 × 3,
(b) 4 × 4 × 4, (c) 5 × 5 × 5 under various fault rates.

FIGURE 14. Plot of neuron utilization for all the stages of the mapping
method for different NoC sizes of a 3D NoC-based neuromorphic system:
(a) 3 × 3 × 3, (b) 4 × 4 × 4, (c) 5 × 5 × 5.

3D NoC-based neuromorphic system restores its total opera-
tional capacity after remapping.

E. RELIABILITY ANALYSIS
In order to develop fault-tolerant or resilient systems,
reliability analysis is essential. Mean time to failure (MTTF)
is at the core of this analysis. Despite its widespread
use, the measure is also misused quite often. It has been
misinterpreted as a guarantee of a minimum lifespan. MTTF,
on the other hand, refers to the average time until the failure
of a system [52]. Fig. 15 illustrates MTTFs of the R-MaS3N
in a 3D NoC-based neuromorphic system with different NoC
sizes.

Based on the assumption that failures occur constantly
over time and are independent events, we derived the MTTF.
Our mapping method has two failure rates; the initial
mapping failure rate (IFR) and the remap failure rate (RFR).
If the remapping fails, the failure rate is one, as given in
Equation 18.

RFR =

{
1, If U > 2 ×MCless

0 Otherwise
(18)

where U represents the number of unmapped application
neurons and M_Cless the number of mapped neurons of the
3D NoC-based neuromorphic system in the Cless region.

Since our mapping method is fault-tolerant, provided
that the constraints mentioned earlier are observed during
mapping. The MTTF for a k fault-tolerant system [7] with
the mapping method is given in Equation 19:

MTTFRS =

 1

λ ·

(
k
p

)
 · t (19)

VOLUME 11, 2023 94675



W. Y. Yerima et al.: R-MaS3N: Robust Mapping of SNNs to 3D-NoC-Based Neuromorphic Systems

FIGURE 15. Mean time to failure of the mapping method for different
NoC sizes of a 3D NoC-based neuromorphic system: (a) 3 × 3 × 3,
(b) 4 × 4 × 4, (c) 5 × 5 × 5.

where λ is the initial mapping failure rate per neuron (in
failures per hour), k is the number of neurons to be mapped,
p is the number of available neurons to be used for the
remapping, and t is the time unit. Unlike in [7] where the
λ is set at a constant value, here λ is computed taking into
account the specific characteristics and conditions of the
system.

Fig. 15 shows the MTTF of R-MaS3N for mapping the
proposed SNN applications in Table 2 to a 3D-NoC-based
neuromorphic system for different NoC sizes. R-MaS3N
has a minimum MTTF of 50.73 years, 35.36 years, and
26.54 years for 3 × 3 × 3, 4 × 4 × 4, and 5 × 5 × 5 NoC
sizes with a fault rate of 40%.

F. TIME COMPLEXITY
The SLP in algorithm 1 takes N sets of unmapped layer
neurons as input and categorizes them into Cmost and Cleast
partitions. The algorithm operates in linear time. It iterates
over ni ∈ N neurons and performs averaging and comparison
to determinewhich partition to place a neuron. Due to this, the
algorithm’s time complexity is O(N ), where N is the number
of neurons.

The NP in algorithm 2 partitions theMn mapped neurons in
the 3D NoC-based neuromorphic system. The NP algorithm
is also linearly time-complex. A loop is iterated over ni ∈ Mn.
Each iteration involves a set of calculations to determine each
ni connectivity and activity pattern. The time complexity of
this scenario is O(Mn), where Mn is the number of mapped
neurons. The partitioning process can efficiently handle a
large neuron set since the time complexity of SLP and NP
algorithms is linear.

The time complexity to remap unmapped N neurons layer
to layer to existing neurons is O(N 2). Overall execution time
(Et ) for neuron remapping includes the time complexities of
SLP and NP algorithms and layer-to-layer remapping. The
mathematical expression is given in Equation 20.

Emt = O(N ) + O(Mn) + O(N 2) (20)

Table 3 shows the remapping time evaluation of the
remapping step of the R-MaS3N for the SNN applications
proposed in Table 2 under the highest fault rate (i.e. 40%).
For the 3D-NoC-based neuromorphic system with the largest

TABLE 3. R-MaS3N remapping time in the 3D-NoC-based neuromorphic
system for different SNN applications.

NoC size (i.e., 5×5x5), remapping takes less than 10 seconds.
As compared to the GA-based remapping method for the
3D-NoC-based neuromorphic system for the smallest NoC
size (i.e., 4× 4x4) in [7], the R-Mas3N remapping algorithm
time represents a 71× significant reduction and is thus
scalable.

VI. CONCLUSION AND FUTURE WORK
This work presented a mapping approach, R-MaS3N, that
leverages the reuse of existing neurons for robust map-
ping of SNNs to a 3D-NoC-based neuromorphic system
(NR-NASH). A heuristic-based partitioning technique is
employed to partition neurons in the layers of an SNN appli-
cation using neuron firing patterns. Moreover, a neuronal
partitioning approach cluster mapped neurons in the layers
of the neuromorphic neural circuits based on connectivity
patterns and spiking activities.

From the evaluation results, we conclude that the proposed
approach maintains a remapping efficiency of 100% in the
3D NoC-based neuromorphic system. With a NoC system
configuration of 4 × 4 × 4 and 256 neurons per cluster,
our approach has a remapping time of 71× less than the
previous approach with the same configuration parameters.
In addition, the MTTF of the mapping method of the
3D-NoC-based neuromorphic system (NR-NASH) with NoC
size 5×5×5 at a 40% fault rate surpasses the previousmethod
at 20% fault rate by 16% for 4 × 4 × 4 NoC size.
Thermal management strategies will be explored in

the future, in addition to power and energy consumption
evaluations. This is to enable the development of more
resilient and efficient system architectures.
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