
Received 7 August 2023, accepted 29 August 2023, date of publication 1 September 2023, date of current version 8 September 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3311359

Improved Multi-Sensor Fusion Positioning
System Based on GNSS/LiDAR/Vision/IMU With
Semi-Tight Coupling and Graph Optimization
in GNSS Challenging Environments
JIAMING ZHU , HAN ZHOU, ZIYI WANG, AND SULI YANG
School of Earth Sciences and Engineering, Hohai University, Nanjing 211100, China

Corresponding author: Jiaming Zhu (2009030215@hhu.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 42004014, in part by the Natural
Science Foundation of Jiangsu Province under Grant BK20200530, and in part by the Fundamental Research Funds for the Central
Universities under Grant B230201015.

ABSTRACT With the development of autonomous driving, precise positioning capabilities are becoming
increasingly important. GNSS (Global Navigation Satellite System) is normally utilized for vehicle posi-
tioning, but is susceptible to factors such as urban canyons, especially in increasingly urbanized scenario
nowadays. The interpretation of relative positioning information by means of multi-source sensors such as
LiDAR (Light Detection And Ranging) or camera, has also been widely investigated, but there are deficien-
cies in the precision and reliability of the sensors due to their operating principles. For GNSS challenging
environments, we give a semi-tightly coupled sensor fusion system based on factor graph optimization. The
system is tightly coupled with the raw observations from the LiDAR, camera, and inertial measurement unit.
Based on this, the back end is optimized by means of the factor graphs, which ultimately give optimized
positional information of the vehicle, and the GNSS sensor is decoded to reduce the cumulative error, which
is regarded as the loosely coupled component of graph optimization.We selected three representative datasets
from publicly available datasets in different categories and conducted experiments respectively. The results
indicate that this semi-tightly coupled system outperforms both the GNSS strategy and the typical SLAM
(Simultaneous LocalizationAndMapping) strategies in terms of precision and possesses very high reliability,
exhibiting the best performance.

INDEX TERMS GNSS, SLAM, LiDAR/Vision/IMU, semi-tightly coupling, factor graph optimization.

I. INTRODUCTION
Navigation and positioning systems have become the key to
autonomous driving [1]. While autonomous driving depends
on continuous and precise localization anywhere anytime
during its whole course for simultaneous localization and
environmental perception [2]. In outdoor environments, the
GNSS (Global Navigation Satellite System) is currently
the main tool for vehicle simultaneous position and nav-
igation. However, due to the error sources such as multi-
path effects and other interference, it is easy to produce
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insufficient accuracy or positioning errors [3]. Single GNSS
sensors make it difficult to guarantee the precision and
reliability of the input information in GNSS challenging
environments. At the same time, other sensors such as
LiDAR (Light Detection And Ranging) and camera are
also being used for SLAM (Simultaneous Localization
And Mapping). The precision and dependability of loca-
tion and navigation are further enhanced by the redundant
and complementary information about the same environ-
ment that is provided by the fusion of multi-source sen-
sors. Multi-sensor fusion is becoming one of the major
trends in the field of navigation, positioning, and mapping
today [4].
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Since GNSS is a commonly utilized technology that
effectively provides precise positioning regardless of time
and location, there are many studies based on RTK
(real-time kinematic) positioning. RTK positioning is a rela-
tive positioning procedure, where the unknown position of the
receiver is determined with respect to a stationary base station
of known coordinates [5]. RTK positioning obtains position
information by performing differential calculations on carrier
phase observations. But along with the increased urbaniza-
tion, the signals are easily reflected, refracted, diffracted, and
even blocked, which will usually cause site-specific obser-
vation errors [6], [7]. There are some main reasons for this,
one is the presence of substantial multipath error, and the
second one is a decrease in the number of satellites that are
visible [8]. Furthermore, the limitations of receiver hardware
are also a significant factor as well, taking the most common
smartphone as an example, the carrier-to-noise ratio (C/N0)
of smartphone GNSS signals is lower than that of geodesic
receivers by 7.5–10 dBHz [9]. It is seriously inconsistent with
the expectation of high-precision positioning.

Meanwhile, relative positioning techniques based on the
processing of information from multi-source sensors are
also emerging. Contrary to the GNSS approach, which only
occasionally provides positioning coordinates that satisfy
precision requirements in the global coordinate system,
multi-source sensors solve the issue of continuous positional
acquisition of subjects in the local coordinate system by col-
lecting several types of environmental data. One of the most
important features and advantages of multi-source sensor
positioning is the possibility of SLAM [10], [11]. LiDAR,
camera (also called Vision) and IMU (Inertial Measurement
Unit) are the most common sensors in the positioning sys-
tems. Although the LiDAR could immediately capture depth
information, it is vulnerable to degradation and even failure
in regions without evident structural features. The camera can
quickly capture colours and textures in the environment but
is susceptible to drift. The IMU provides high accuracy over
a short period, but inevitably there are cumulative errors over
a long period [12]. Depending on the use of major sensors,
the positioning algorithms of SLAM can be divided into two
categories: Vision-based positioning and LiDAR-based posi-
tioning [13]. A common vision-based positioning algorithm
is the monocular VINS (visual-inertial system). VINS is a
tightly coupled method, recovering the scale via a monocular
camera and IMU [14]. Once the picture is blurred or the image
is lost, the camera positioning will fail; On the other hand,
a common LiDAR-based positioning algorithm is LOAM
(LiDAROdometry andMapping) [15], which utilizes LiDAR
information to calculate odometry information for position
acquisition by aligning the laser point cloud between frames,
but at the same time it is difficult to perform loop closure
detection to correct for drift.

As the research progressed, scholars found thatmulti-source
sensor fusion can improve the precision and reliability of
SLAM with its advantages of multi-sensor heterogeneity
and complementarity [16], [17], [18], [19]. The general

combination of sensors can be divided into loosely and
tightly coupled forms. For global positioning, as a loosely
coupled factor, GNSS sensors are usually used to provide
absolute position information, i.e. global position informa-
tion [20], [21], [22], [23]. VINS-Fusion [24] uses the position
information provided by GNSS sensors as a global constraint.
LIO-SAM [25] incorporates GNSS sensor information as
one of the constraints for optimization. And at the local
positioning level, algorithms such as LVI-SAM [26] tightly
couple LiDAR with Vision while adding GNSS factors to
complement the advantages of each sensor, achieving great
precision and reliability, but it depends on the initialization
parameters, and failure of the initialization can easily lead
to system failure. Another algorithm of the LVIO system,
R3LIVE, implements the colouring of the point cloud on the
basis of positioning and map building.

The purpose of adding GNSS sensors as described above
is mainly to eliminate cumulative errors. Further, the cumula-
tive errors can be reduced by using graph optimization [27].
In recent years, the graph optimization-based fusion approach
has received more and more attention, as it can integrate
diverse measurements from different types of sensors, such
as GNSS, wheel odometer, LiDAR, camera, and IMU [2],
through nonlinear optimization.

In this paper, we give an improved multi-sensor fusion
positioning system based on GNSS/LiDAR/Vision/IMUwith
semi-tightly coupling and graph optimization and also com-
pare it experimentally with a conventional sensor (fusion)
strategy. First, to compare with the semi-tightly sensor fusion
strategy, we chose four different types of sensor strate-
gies: GNSS, GNSS/LiDAR/IMU, GNSS/Vision/IMU, and
LiDAR/Vision/IMU (The strategy proposed in this paper for
GNSS-free modules) according to the variations in sensor
fusion approaches. Then, we tried each of these five strategies
using three datasets of various sorts and roles from various
sources. Finally, we determine the precision and reliability
properties of the system proposed in this paper and assess the
remaining conventional strategies by analyzing and contrast-
ing the experimental results.

II. METHODOLOGY
In this section, we provide a detailed explanation of the
semi-tightly sensor fusion system and integrate the other four
strategies.

A. POSITIONING AND NAVIGATION WITH GNSS SENSOR
The GNSS sensor, also called GNSS receiver, can simultane-
ously receive code pseudorange, carrier phase, doppler shift,
signal-to-noise ratio (SNR) observations, as well as various
error corrections. Therefore, the raw code pseudo-range and
carrier phase observation equation between satellite s and
receiver r can be expressed as [28], [29]:

Psr,i = ρsr + cδtr − cδts + ξr,i − ξ s,i + T sr
+ I sr,i +M s

r,i + εsr,i (1)
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φsr,i = ρsr + cδtr − cδts + ζr,i − ζ s,i + T sr − I sr,i
+ λN s

r,i + msr,i + esr,i (2)

where Psr,i and φsr,i denote the code pseudorange and carrier
phase observation value between satellite s and receiver r in
unit of length; i denotes the frequency; ρsr denotes the geomet-
ric distance between satellite s and receiver r at the moment
of signal transmission; c denotes the light speed in a vacuum;
λ denotes the wavelength; δtr and δts denote the receiver
and satellite clock offsets; N denotes the ambiguity of carrier
wavelength; ξ and ζ denote the code and phase hardware
delays; I and T denote the ionospheric and tropospheric
delays;M andm denote the code and phase multipath; ε and e
denote the noise of code and phase measurements. The other
systematic errors are assumed to be corrected previously,
including the phase center offset and variation, phase windup,
and earth rotation, etc.

The next phase entails using the observations along with
the broadcast ephemeris and the base station file after the
GNSS sensor receiver gets the data. Through the combination
of these data sources, we can derive precision GNSS absolute
positioning information.

For the short and medium distance (e.g., 0∼30km) base-
line, inaccuracies in the satellite and receiver clocks are
eliminated, and the ionospheric and tropospheric delays can
be ignored. Then the between-receiver and between-satellite
double differenced observation equation can be expressed
as [30], [31]:

1∇P = 1∇ρ + 1∇e (3)

1∇ϕ = 1∇ρ + λ1∇N + 1∇ε (4)

where 1∇ denotes the double-difference operator. 1∇P
denotes the code pseudo-range; 1∇ϕ denotes the car-
rier phase double-difference observation values; 1∇ρ

denotes the double-difference geometric distance between
the satellite and the GNSS receiver; 1∇N denotes the
double-difference integer ambiguity; 1∇e denotes the
double-difference code pseudo-range; 1∇ε denotes the car-
rier phase measurement noise. It’s necessary to note that the
resulting wavelength ambiguity is an integer.

Finally, we can obtain the raw GNSS coordinates in the
ECEF (Earth-Centered, Earth-Fixed) geocentric coordinate
system. After the conversion, the GNSS measurement pGNSSt
in the ENU world coordinate system (or other coordinate
system) expressed as follows:

pGNSSt = [xwt , ywt , zwt ]
T (5)

where xwt , y
w
t , and z

w
t denote the coordinate components in

three directions in the ENU world, respectively.

B. MULTI-SENSOR FUSION POSITIONING SYSTEM BASED
ON LiDAR/VISION/IMU TIGHTLY COUPLING
We gather information using LiDAR, Vision, and IMU, and
we enhance the integration to finish the positioning and map-
ping function with tightly-coupled method. This process can

also be considered as a tightly coupled form of LiDAR/IMU
system and Vision/IMU system.

First, we write the robot state as:

X = [RT,PT,VT,BT]
T

(6)

where R∈ SO(3) denotes the rotation matrix, SO(3) denotes
the three-dimensional rotating groups. P denotes the robot
position, V denotes the robot speed, and B denotes the IMU
bias.

The system uses IMU to extrapolate the optimization in
real time and estimate the correction value of the optimization
result. We define that QIMU

t as the IMU observation at time
t. The velocity, position, rotation and IMU observation of the
robot at time t + 1t can be calculated as follows:

vt+1t = vt + g1t + Rt (at − bat − nat )1t (7)

pt+1t = pt + vt1t +
1
2
g1t2 +

1
2
Rt (at − bat − nat )1t

2

(8)

Rt+1t = Rtexp((ωt − bω
t − nω

t )1t) (9)

QIMU
t+1t = [vt+1t , pt+1t ,Rt+1t ] (10)

where ωt and at denote the raw IMU accelerometer and
gyroscope measurements in B at time t . vt and vt+1t denote
the velocity at time t and t + 1t , respectively; pt and pt+1t
denote the position at time t and t + 1t , respectively; Rt and
Rt+1t denote the rotation at time t and t + 1t , respectively.
Similarly, we obtain information from the LiDAR and

camera sensors for a certain rate, and the observation equation
is shown as follows:

QLiDAR
t = [θLiDARt ,ELiDAR

t ] (11)

QVision
t = [θVisiont ,EVision

t ] (12)

where QLiDAR
t and QVision

t denote the LiDAR and camera
observations, respectively; θLiDARt and θVisiont denote the laser
point cloud data and image data acquired at time t , respec-
tively; ELiDAR

t and EVision
t denote the respective parameters

of the sensors at time t , respectively.
The tightly coupled system combines the physical models

and measurement data of each sensor, and jointly optimizes
the measurement data from all sensors. Therefore, we obtain
the pose estimation X . Detailed fusion principles and pro-
cesses will be shown in subsection C and D.

C. MULTI-SENSOR FUSION POSITIONING SYSTEM BASED
ON GNSS/LiDAR/VISION/IMU SEMI-TIGHTLY COUPLING
The architecture of the proposed semi-tightly coupled posi-
tioning strategy is described, which combinesGNSS, LiDAR,
Vision, and IMU, and is depicted in Fig. 1. The system
prototypes utilized GNSS system, LIS system (LiDAR/IMU)
and VINS system (Vision/IMU). Specifically, the proposed
approach integrates three components: GNSS position mea-
surement, LiDAR odometry measurement, and vision odom-
etry measurement.
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FIGURE 1. Schematic diagram of the proposed method. The orange, blue, and green areas represent the schematic of the LiDAR, Vision and GNSS
components, respectively.

Based on the position values pGNSSt = [xwt , ywt , zwt ]
T

from GNSS sensor solution and the observations of LiDAR
(QLiDAR

t ) and camera (QVision
t ), we can now obtain the robot

pose through the GNSS/LiDAR/Vision/IMU semi-tightly
coupled system. We can describe it as:

X t = X t,1 + (X t,2 + X t,3) (13)

X t,1 = A(A(QLiDAR
t ,QIMU

t ),A(QVision
t ,QIMU

t )) (14)

X t,2 = B(pGNSSt ,A(QLiDAR
t ,QIMU

t )) (15)

X t,3 = B(pGNSSt ,A(QVision
t ,QIMU

t )) (16)

where A(Qat ,Q
b
t ) denotes the tight coupling of the sensors

a and b with their original observations; B(Qat ,Q
b
t ) denotes

the loose coupling of the sensors a and b with their position
values.

In Fig. 1, the GNSS strategy is represented by the green
arrow. Through the processing in subsection A, the GNSS
sensor outputs position information pGNSSt at a certain fre-
quency, which can be described as the GNSS measurements.
Based on (13), the GNSS/LiDAR/IMU sensor fusion strategy
can be abstractly expressed as:

X t = A(QLiDAR
t ,QIMU

t ) + B(pGNSSt ,A(QLiDAR
t ,QIMU

t )

(17)

For LIS system, the LiDAR odometry corrects laser point
cloud motion distortion by using IMU raw data and pre-
integrated data. The current frame pose is updated by scan-
to-map matching. When the pose change exceeds a certain
threshold, it is seen as a new keyframe. For the second part

of (17), the loose coupling of the GNSS is mainly reflected
as a factor of the graph optimization in part D. Likewise, the
GNSS/Vision/IMU sensor fusion strategy can be abstractly
expressed as:

X t = A(QVision
t ,QIMU

t ) + B(pGNSSt ,A(QVision
t ,QIMU

t ))

(18)

For VINS system, the observation pre-processing section
contains image data tracking and IMU data pre-integration.
After that, the initialization part based on image feature points
and IMU data, provides all necessary values, including scale
and bias. For the scale, the system uses IMU pre-integrated
values so that the scale information in pure-vision can be
matched to the IMU measurements. The initial value of the
LIS scan-to-map matching from LiDAR/IMU also can be
used as an initial value for the VINS system to optimize the
visual reprojection error and IMU measurement error, which
can speed up the LIS system and improve its accuracy. After
the initialization, the parameters enter the tightly coupled
monocular VINS system based on a sliding window.

We define the state within the sliding window as:

χ = [x0, x1, . . . , xn, λ0, λ1, . . . , λm] (19)

xk = [pω
k , vωk , qω

k , ba, bg], k ∈ Ê[0, n] (20)

where xk denotes the corresponding state of the IMU at frame
k , λl denotes the value of the inverse depth of the feature
point relative to its first observation; n denotes the number
of keyframes. m denotes the number of all feature points in
the sliding window; pω

k denotes the pose of IMU in the world

95714 VOLUME 11, 2023



J. Zhu et al.: Improved Multi-Sensor Fusion Positioning System Based on GNSS/LiDAR/Vision/IMU

TABLE 1. Basic information for the three datasets.

FIGURE 2. Overview of the trajectories on Google Maps of the Data I
(a) and Data II (b).

coordinate system, vωk denotes the velocity of IMU, and qω
k

denotes the orientation of the body coordinate system at this
time; ba and bg denote accelerometer bias and gyroscope bias,
respectively.

Then the optimization function is written in the form of an
equation as follows:

min
x


∥∥rp −Hpχ

∥∥2 +
∑
k∈B

∥∥∥rB(ẑbkbk+1
, χ)

∥∥∥2
+

∑
(i,j)∈C

ρ(
∥∥∥rC (ẑcjl , χ )

∥∥∥2)
 (21)

where the optimization cost function consists of three com-
ponents. In the first part, i.e., the priori term, rp and Hp
denote the information obtained after marginalization; In the
second part, bk denotes the local frame, rB(ẑ

bk
bk+1

, χ ) denotes

themeasured residuals of the IMU estimator ẑbkbk+1
; In the third

part, rC (ẑ
cj
l , χ ) denotes the visual reprojection residuals of the

visual estimator ẑ
cj
l , ρ() denotes robust huber norm; B denotes

the set of IMU data and C denotes the set of feature points in
the sliding window that has at least two observations.

By relocalization, the frame of the sliding window is asso-
ciated with the past pose. Then the pose graph optimization
gets started to ensure that past poses are loaded correctly into
the global map. The camera keyframes processed by VINS
are added to the global pose graph. On the other hand, the sum
of errors is reduced, because the difference between GNSS
poses and VINS poses at the same timestamp is evenly dis-
tributed between every two adjacent VINS keyframes. In the
ENU world coordinate system, the first GNSS measurement

FIGURE 3. Overview of the trajectory on Google Maps of the Data III.

is used as the origin, and the measurement is made with the
GNSS factor expressed as follows:

zGNSSt − hGNSSt (χ) = zGNSSt − hGNSSt (xt) = pGNSSt − pwt
(22)

where z denotes the GNSS measurement, χ denotes the state
prediction and h denotes the observation equation. pwt denotes
the estimated position value.

The bag-of-words model DBoW2 for loop closure detec-
tion is used by the visual odometry to enable closed-loop
detection as well. For each new picture keyframe, the BRIEF
descriptor is retrieved and compared with the previous
descriptor for the bag-of-words. The timestamp of the loop
closure frames returned by DBoW2 is sent to the LIS, which
performs further loop closure verification.

After processing by motion bundle adjustment, we can get
the robot pose at different rates through the VINS system.

It should be noted that we employ the principle of partial
belief in selecting sensor parameters in this study. Specif-
ically, upon initialization, the sensor parameters are inde-
pendently computed and then integrated with the provided
parameters. This approach effectively mitigates the influ-
ence of incorrect parameter assumptions to a certain extent,
thereby enhancing the system’s robustness. Notably, this
constitutes a significant advantage of the proposed system
discussed in this paper.

D. MULTI-SENSOR FUSION POSITIONING SYSTEM BASED
ON GRAPH OPTIMIZATION
In the back-end optimization section, we use the factor graph
optimization method to optimize the obtained pose infor-
mation which is depicted in Fig. 1. The factor graph is an
undirected graph consisting of two types of nodes: variable
nodes representing optimization variables and factor nodes
representing factors. Since the state estimation and sensor
integration problem can be formulated as a typical Maximum
APosteriori (MAP) problem [32], subject to a Gaussian noise
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FIGURE 4. Typical urban canyon environment (a) and repetitive structural roads (b) in Data III.

distribution model, we are able to transform the problem into
a nonlinear least-squares problem. In this paper, the final cost
function to be optimized is as follows:

δX i = argmin
χ

∑
i

(
∥FGNSS∥2�GNSS,i

+ ∥FIMU∥
2
�IMU,i

+ ∥FLiDAR∥
2
�LiDAR,i

+
∥∥Floop∥∥2�loop,i

)
(23)

where the FGNSS, FIMU, FLiDAR, and Floop denote the error
function of the four factors for the constraints (the IMU pre-
integration factor, the LiDAR odometer factor, the GNSS
factor, and the loop closure factor, which can also be found in
Fig. 1);�{sensors},i denotes the informationmatrix which indi-
cates the weighting of the sensors, which is adjustable, and
will be adapted to the specific type of sensor and expectations;
The robot states X i, i.e., the positions of driving vehicles, are
also drawn in Fig. 1 as the yellow nodes.

The poses of all keyframes are updated by the optimization
of the factor graph, which includes the IMU pre-integration
factor and LiDAR odometry factor. Additionally, when the
calculated position covariance is greater than the received
GNSS position covariance, the GNSS factor is added to
the factor graph. The closed-loop constraint factor is a new
constraint factor that is added to the factor graph as VINS
provides loop closure information to the LIS system.

III. EXPERIMENTAL SETUP
In order to test the performance of this semi-tightly coupled
system, also compare the characteristics and effects of differ-
ent sensor fusion strategies, we selected several different sen-
sor systems for comparison (hereafter collectively referred to
as strategies). Following the coupling form of typical sensors
as well as the theory of the methodology above, we obtain
five different systems: the GNSS strategy (single GNSS
receiver solver), the GNSS/LiDAR/IMU strategy (Refer
to (17)), the GNSS/Vision/IMU strategy (Refer to (18)),

LiDAR/Vision/IMU strategy (the tight strategy of this paper
without GNSS module), and GNSS/LiDAR/Vision/IMU
strategy (the semi-tightly strategy proposed in this paper).

We chose three datasets for our experiments in order to
examine the precision and reliability of the semi-tightly cou-
pled system strategy in comparison to other four strategies.

As shown in Table 1, Data I and Data II are selected from
the KITTI typical dataset which is collected in and around
Karlsruhe, Germany [33]. Data I and Data II are primarily
intended to test the accuracy characteristics of the strategy.
We can therefore categorize the two datasets as being from
rural areas by looking at the top view of the two datasets in
Fig. 2 (a) and Fig. 2 (b) on GoogleMaps with the approximate
trajectories aligned with yellow lines. Furthermore, Data I is
utilized as the short-range rural region and Data II is used as
the medium-range rural area. Together, they have a combined
length of 1705.051 m and 694.697 m. The difference in
distance can be used to test the performance of the relative
positioning sensors.

Data III is selected from UrbanNav’s Hong Kong
Datasets [34], which is a localization dataset collected in
Asian urban canyons. The overview of the Data III trajectory
embedded in Google Maps is shown in Fig. 3. Since its long-
range distance, is also harsh and complex urban environments
(Fig. 4) for sensors, especially GNSS, as a GNSS challenging
environment, it is primarily used to test the characteristics and
strength of each strategy and is one of the main datasets we
need to analyze. Like the treatment of Data I and Data II,
Data III is classified as a long-range urban area.

The ground truth values (reference data) of Data I and
Data II are directly given by the output of the GPS/IMU
localization, which has a resolution of 0.02 m / 0.1◦. For
Data III, the ground truth of the vehicle is provided by high-
precision RTK/INS processing using the SPAN combination
system and IE software of NovAtel. To ensure the consistency
of the experiments, the three datasets are treated in the same
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TABLE 2. Summary of information on the configuration and processing of each data sensor.

way, and the specific setups are listed in Table 2. Each set of
experiments was run independently with the five strategies.
Note that as the focus of the monocular vision module in
this paper is on positional determination, LiDAR has an
advantage in map building. The ability to build maps is partly
reflected in the accuracy of positioning. As a result, this paper
focuses on the simultaneous positioning capabilities of each
strategy.

The metric used in this paper is the ATE (Absolute Trajec-
tory Error), which is used to measure the absolute trajectory
pose error. The absolute trajectory error is the direct dif-
ference between the estimated and true poses and is a very
intuitive reflection of the accuracy of the algorithm and
the global consistency of the trajectory. For the monocular
camera used in the strategy of this paper, the similarity trans-
formation matrix S∈ Sim (3) from the estimated poses to the
true poses needs to be calculated, defining the ATE for frame
i as follows:

Fi = Q−1
i SP i (24)

where Qi ∈ Sim (3) denotes the true pose and P i∈ Sim (3)
denotes the estimated pose; Sim (3) denotes the similar trans-
formation group.

Then the RMSE (Root Mean Square Error) is calculated as
follows:

RMSE = (
1
m

∑m

i=1
∥trans(Fi)∥2)

1
2

(25)

where trans(Fi) represents the translational part of the Fi.

IV. RESULTS AND DISCUSSION
Weuse the three separate datasets: Data I, Data II, andData III
to produce the experimental results for each of the five
strategies (GNSS, GNSS/LiDAR/IMU, GNSS/Vision/IMU,

LiDAR/Vision/IMU, and GNSS/LiDAR/Vision/IMU) in
this part, which are then comprehensively described and
analyzed.

A. PERFORMANCE ANALYSIS IN RURAL AREAS
First, we experiment with the semi-tightly coupled strat-
egy proposed in this paper (represented as GNSS/LiDAR/
Vision/IMU in the figures and tables below) and the rest of
the typical strategies through Data I and Data II. Fig. 5 (a)
and Fig. 5 (c) show the trajectories of these five strategies
in the two datasets. In Fig. 5 (a), all five sensor strategies
show good accuracy in this scenario when the sensors are
functioning normally, meanwhile, the GNSS/LiDAR/IMU
sensor fusion strategy fails at the coordinates (−110.67,
−80.72) in Fig. 5 (a), which only shows the trajectory of
the strategies before it fails. As shown in Fig. 5 (c), the
GNSS/LiDAR/IMU sensor fusion strategy fails again and
becomes unavailable. One of the causes of the error is that
the point cloud’s distortion removal fails due to the IMU’s
pose estimation error. To demonstrate the accuracy, Fig. 5 (b)
shows the relatively discrete part of the trajectory during the
running process. We can see the sensor’s influence on the
positioning effect by looking at the loop closure endpoint in
Fig. 5 (b) and Fig. 5 (d). The worst loop closure effect is seen
with the LiDAR/Vision/IMU sensor fusion strategy. Usually,
position and rotational drift increase significantly with the
distance travelled. With the addition of the GNSS factor to
the factor graph, the cumulative drift error is significantly
reduced, as evidenced by the fact that compared with the
LiDAR/Vision/IMU sensor fusion strategy, the positioning
trajectories of the semi-tightly coupled strategy in this paper
are significantly more closely matched to the ground truth
after the addition of GNSS loose coupling, as well as the
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FIGURE 5. Positioning trajectory of each strategy and enlarged view. The
panel (a) is the graph of the global trajectories of the five strategies
shown in the labels of the figure under Data I, and the panel (b) is the
graph of the global trajectories of the five strategies shown in the labels
of the figure under Data II; The panels (c) and (d) correspond to
zoomed-in views of the final stages of the trajectories for data I and
Data II, respectively.

semi-tightly coupled strategy has a positioning effect com-
parable to absolute GNSS positioning and a close alignment
to the ground truth. As for the deviation at the starting point,
it is related to the alignment used for the trajectory plotting.
This does not affect the difference in distance between the
head and tail of these trajectories.

Besides, we are also able to obtain accurate laser point
cloud maps with this semi-tight coupling strategy as shown in
Fig. 6, thanks to the high precision and reliability positioning
results obtained from the coupled multi-sensor data informa-
tion. This will provide more operational space and foundation
for subsequent work such as navigation and positioning based
on a priori maps.

For the purpose of better demonstrating the effect of
positioning in the overall scope, and also for more specific
analysis and comparison, we plotted the ATE line graph
of the semi-tightly coupled strategy proposed in this paper
with other typical strategies over time as shown in Fig. 7.
On Data I, we only show the data of the GNSS/LiDAR/IMU
sensor fusion strategy for the effective part and which is
named with ‘‘GNSS/LiDAR/IMU/part’’. In Data II, the tra-
jectory of the GNSS/LiDAR/IMU sensor fusion strategy is
eliminated because it is not available. From the graph, it is
clear that even though the GNSS/Vision/IMU sensor fusion
strategy is successfully implemented, its accuracy is the
worst, especially at the beginning and ending parts, while
the GNSS/LiDAR/IMU sensor fusion strategy has the high-
est precision among the five strategies when it is in effect.

FIGURE 6. Plots of the point cloud mapping results for the semi-tightly
fusion strategy of Data I (a) and Data II (b).

FIGURE 7. The absolute trajectory error line graph for each moment of
the four strategies based on Data I (a) and Data II (b).

The beginning or end of the vehicle’s movement has no
bearing onGNSS, which exhibits a general accuracy globally.
Meanwhile, the LiDAR/Vision/IMU sensor fusion strategy,
the solution that removes the GNSS factor with general
accuracy, shows the best results, achieving decimeter-level
positioning over the full-time period on Data I; but on Data
II, it is in the worst state and shows poor stability. In 84.34%
of the travelled time in Data I and 39.09% in Data II, the
semi-tightly coupled strategy (GNSS/LiDAR/Vision/IMU)
achieves decimeter-level positioning, which guarantees high
precision and excellent reliability. Furthermore, we also
counted the RMSE and other statistical data in Table 3. With
this table, it is easy to see the overall accuracy of each strategy
when it is in effect.
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TABLE 3. Statistics of each sensor fusion strategy for Data I and Data II. (m).

B. PERFORMANCE ANALYSIS IN LONG-RANGE URBAN
AREA
In this experiment, the environment is much more challeng-
ing, especially for GNSS, and we will test the precision and
reliability of the semi-tightly coupled strategy proposed in
this paper (GNSS/LiDAR/Vision/IMU) against other typical
SLAM strategies in this experiment.

As to GNSS, it faces challenges in difficult urban envi-
ronments since the reception of complex multipaths will
seriously deteriorate the performance of precise positioning.
For the GNSS strategy, the results of its Standard Point Posi-
tioning (SPP) are presented in Fig. 8. The red dots represent
the position coordinates of the solution, and the green lines
represent the trajectories that connect the solution coordinates
by time series. It is easy to see that the vast majority of GNSS
positioning results in urbanized areas do not match the actual
needs. Compared to the GNSS positioning results of Data I
and Data II in the rural areas by RTK calibration, more tall
buildings in Data III cause high deterioration of GNSS signals
with error phenomena.

To further test the effect of GNSS accuracy on the
semi-tightly coupled strategy in this paper as well as other
typical sensor strategies, we use GNSS signals based on
GPS/INS high-precision RTK/INS processing in the four
strategies other than GNSS as processing objects. The esti-
mated trajectories of each strategy are shown in Fig. 9.
As shown, the GNSS strategy positioning results are almost
unusable. For the GNSS/LiDAR/IMU sensor fusion strategy,
when passing through the tunnel as shown in Fig. 4 (a),
LiDAR degrades since laser matching in this scene has an
extra degree of freedom in one direction, i.e. the laser point
cloud acquired on this path is the same, making it diffi-
cult for the matching algorithm to accurately estimate the
motion in this direction. For the GNSS/Vision/IMU sensor
fusion strategy, when the vehicle is stationary, the bias of
the IMU continues to diverge, which can easily lead to
the occurrence of drift phenomena, such as the drift of the

FIGURE 8. GNSS position track after RTK processing. The red line
indicates the reference trajectory.

vehicle’s positioning trajectory at coordinates A (−366.805,
605.068) and B (−277.248, 577,591) in Fig. 9. And in the
city, it is common for vehicles to stop moving. So, the
GNSS/Vision/IMU sensor fusion strategy of positioning is
not recommended. It is worth noting that because of the inclu-
sion of the GNSS sensor, the strategy recovers the relative
direction of motion at coordinates C (-399.145, 566.199),
suggesting that the inclusion of GNSS can overcome errors
in the relative positioning of the sensor through absolute
positioning information. Lacking an absolute positioning sen-
sor, the LiDAR/Vision/IMU sensor fusion strategy, despite
running successfully, was unable to form a closed loop due
to cumulative errors when the vehicle returned to the starting
point at the end. The semi-tightly coupled strategy as pro-
posed in this paper brings together the precision of LiDAR
and uses Vision to improve the reliability of the solution, with
the highest accuracy in the entire range, achieve the posi-
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FIGURE 9. Trajectories of the five kinds of sensor fusion strategies using
Data I. The blue, green, red, purple, and yellow lines denote the
corresponding five strategies marked in the figure, respectively. The
dashed line indicates reference trajectories.

FIGURE 10. ATE line graph for each moment of the four strategies based
on Data III over time.

tioning effect successfully based on the GNSS challenging
environments. This confirms that the semi-tightly coupled
strategy as proposed in this paper is precise and reliable in
GNSS challenging environments, which is difficult to surpass
with other typical sensor strategies. Note that due to the low
frequency of the ground truth, we set the upper limit of the
aligned timestamp parameter to 0.1, which is to better present
comparisons between experimental results while ensuring
that it is numerically significant.

At the data level, Fig. 10 shows the line graph of ATE
over time, and we can see that GNSS performs the worst.
Due to varying degrees of degradation of the LiDAR dur-
ing the forward, middle and backward stages, a greater
degree of error occurs in the alignment of the trajectory,
resulting in the loss of high-precision characteristics. The
GNSS/Vision/IMU sensor fusion strategy drift between the
aforementioned points (A, B, and C), is represented in Fig. 10
as a sharp rise and fall in the time horizon (79200, 79400). The
LiDAR/Vision/IMU sensor fusion strategy is slightly weaker
than the semi-tightly coupled strategy of this paper at all
global scales and the semi-tightly sensor fusion strategy has
the highest precision and reliability.

FIGURE 11. Box plot of overall ATE of the five strategies of Data III.

TABLE 4. Statistics of each sensor fusion strategy for Data II. (m).

To show the overall error, we calculated the cumulative
ATE and plotted the corresponding box plots in Fig. 11, the
specific indicators of which can be found in Table 4. From
the specific data, we can see that the error decreases as the
strategy changes from left to right.

Once again, we can get the point cloud maps through
algorithms as Fig. 12. The top three panels of Fig. 12
show the global laser point cloud maps constructed
under Data III for the three types of strategies con-
taining LiDAR (GNSS/LiDAR/IMU sensor fusion strat-
egy, LiDAR/Vision/IMU sensor fusion strategy, and the
semi-tightly sensor fusion strategy of this paper). Panel (d)
displays the point cloud created by the GNSS/LiDAR/IMU
strategy for the tunnel section; As can be seen, the point cloud
only includes the tunnel’s entrance and exit points; the middle
portion is compressed due to repetitive structures on both
sides of the tunnel, which degrades the LiDAR. In panels (b)
and (c), a comparison shows that the semi-tight combination
strategy with the addition of the GNSS loose combination in
the factor graph optimization builds better graphs, such as
the tunnel region pointed to by the white arrows in the two
figures, and the results in panel (c) are significantly better.
In panel (e), the point cloud created by the final stage of
vehicle operation is shown in the white box, and comparing
it to panel (f), we can easily see the role of GNSS factor of
graph optimization in reducing the global cumulative error,
even if it is loosely coupled.
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FIGURE 12. Plots of the point cloud mapping results for the three different strategies. The panels (a) , (b), and (c) denote the mapping effects of the
GNSS/LiDAR/IMU sensor fusion strategy, LiDAR/Vision/IMU sensor fusion strategy, and the semi-tightly sensor fusion strategy, respectively. The panel (d)
is the LiDAR degradation point cloud of (a); The panels (e) and (f) denote the map building effect in the final stage of (b) and (c), respectively.

FIGURE 13. RMSE histogram for the five strategy of Data III. From left to
right, GNSS, GNSS/LiDAR/IMU, GNSS/Vision/IMU, LiDAR/Vision/IMU and
the GNSS/LiDAR/Vision/IMU sensor fusion strategies.

We estimated the RMSE of each approach on Data III,
the same as how Data I was processed, and the results
are displayed in Fig. 13. As can be seen, the worst
performance was obtained by the GNSS strategy which

only resulted in a RMSE value of 137.345. Mean-
while, the RMSE of the GNSS/LiDAR/IMU sensor
fusion strategy, GNSS/Vision/IMU sensor fusion strat-
egy, LiDAR/Vision/IMU sensor fusion strategy, and the
semi-tightly sensor fusion strategy all demonstrate improve-
ments when compared to the GNSS strategy. Specifi-
cally, the RMSE of the GNSS/LiDAR/IMU sensor fusion
strategy was reduced by 13.28%, the GNSS/Vision/IMU
sensor fusion strategy was reduced by 49.20%, the
LiDAR/Vision/IMU sensor fusion strategy was reduced
by 87.23%, and the semi-tightly sensor fusion strategy
reduced by 93.02%. These improvements signify a signifi-
cant enhancement in the quality of location data in GNSS
challenging environments and provide robust support for our
conclusions.
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In conclusion, through three different data experiments,
the different strategies in this paper show different charac-
teristics. The GNSS strategy is not ideally accurate in most
cases and is highly influenced by the environments, making
it a great challenge in urban areas. The GNSS/LiDAR/IMU
sensor fusion strategy is highly precision but extremely prone
to failure and requires the fusion of other sensors to improve
stability. The GNSS/Vision/IMU sensor fusion strategy is
prone to drift in frequent stop scenarios and the incorpora-
tion of GNSS helps with absolute orientation recovery. The
LiDAR/Vision/IMU sensor fusion strategy inherits the high
precision of LiDAR, while Vision plays a crucial role in
improving stability. The semi-tightly sensor fusion strategy
adds a GNSS factor to the LiDAR/Vision/IMU sensor fusion
strategy, which can improve the accuracy of the strategy very
well during the loosely coupled process, can therefore be used
as an additional complementary element.

V. CONCLUSION AND OUTLOOK
In this paper, we give an improved multi-sensor fusion posi-
tioning system based on GNSS/LiDAR/Vision/IMU with
semi-tightly coupling and graph optimization. With three
different levels of GNSS challenging environments, we have
experimented and thoroughly analyzed the five sensor strate-
gies mentioned in this paper in order to compare the char-
acteristics of the semi-tightly coupled strategy with various
conventional sensors strategies in SLAM and investigate the
performance of all those strategies.

This semi-tightly coupled system is based on tight cou-
pling of LiDAR, Vision, and IMU with a factor graph
optimization approach at the back end, uses the abso-
lute coordinate information generated by the GNSS sen-
sor as the GNSS factor to join the factor graph for
loose coupling. To compare the performance of this sys-
tem with other strategies, in addition to the traditional
GNSS strategy, according to the different forms of sensor
combinations, we also give the GNSS/LiDAR/IMU sensor
fusion strategy, GNSS/Vision/IMU sensor fusion strategy,
and LiDAR/Vision/IMU sensor fusion strategy, in which
LiDAR/Vision/IMU sensor fusion strategy is the system pro-
posed in this paper that removes the loosely-coupled module
of GNSS.

Each of these five strategies processes a short-range rural
data, a medium-range rural data, and a long-range urban data.
As the environments changes from rural to urban, the chal-
lenges for GNSS increase. Although GNSS has been certified
to be able to provide absolute position information, urban
canyon environments tend to limit its usefulness; Although
having high precision, the GNSS/LiDAR/IMU sensor fusion
system used in this paper is reliant on the IMU’s proper
operation and is prone to malfunction in repetitive structural
environments easily; The GNSS/Vision/IMU sensor fusion
system is more stable than the GNSS/LiDAR/IMU sensor
fusion system, but its precision overall is average and it is
subject to drift in urban environments; the addition of GNSS
can correct for this drift and cumulative error; While the

LiDAR/Vision/IMU sensor fusion system, which tightly cou-
ples LiDAR, Vision and IMU, achieves the medium precision
and reliability by complementing the advantages of each sen-
sor; With the addition of the factor graph optimization with
GNSS, the semi-tightly coupled strategy has the highest pre-
cision and the best stability. In other words, this semi-tightly
coupled strategy provides as much stability and feasibility
as possible compared to the rest of the SLAM strategies,
while significantly improving the positioning accuracy of
the vehicle body compared to the GNSS strategy, leading to
precise and reliable positioning results. Furthermore, com-
pared to other multi-source sensor fusion algorithms, such as
R3LIVE and LVI-SAM, R3LIVE does not incorporate GNSS
for optimization, whereas the method in this paper has been
tested to improve the reliability and overall robustness of
GNSS compared to LVI-SAM.

By the way, we can see that currently, the integration of
GNSS with other sensors is still mostly limited to loosely
coupled method and the processing of GNSS information is
relatively simple. It is still a challenging problem to realize
high-precision GNSS positioning in most environments such
as urban canyons, as well as the better fusion strategies and
global constraint effects of GNSS in SLAM. We will attempt
to achieve a tightly coupled effect of GNSS based on the
semi-tightly sensor fusion strategy in this paper to further
explore the methods of SLAM.
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