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ABSTRACT Automatic Generation Control (AGC) is a key control system to maintain the power system’s
balance between load and supply by maintaining its frequency in a specific range. It collects the tie-line
power flow and frequency measurements of each control area to calculate the Area Control Error (ACE) and
then adjusts power generation based on the calculated ACE. However, malicious frequency or tie-line power
flow measurements can be injected and then AGC is misled to make false power generation adjustments
which will harm power system operations. Such attacks can be carefully designed to pass the power system’s
existing bad data detection schemes. In this work, we propose Long Short Term Memory (LSTM) neural
network-based methods and a Fourier Transform-based method to detect and localize such data forgery
attacks in AGC. These methods only utilize historical data, which are already available in existing AGC
systems, making them easy to deploy in the real world. They learn normal data patterns from historical
data and detect abnormal patterns caused by attacks. To make it easier for users to use the solution, we also
propose methods to automatically find the proper detection threshold based on user needs. These methods
are tested both on real and simulated datasets and show high detection and localization accuracy.

INDEX TERMS Power grid, automatic generation control, data forgery, deep learning, attack detection,
attack localization.

I. INTRODUCTION
Automatic Generation Control (AGC) is a key control sys-
tem in the power grid which aims to keep balance between
power generation and load and maintain a stable power
system frequency. It automatically adjusts the power gen-
eration in response to the area control imbalance. A power
system usually consists of multiple interconnected control
areas. A control area is connected to its neighboring areas
through tie-lines, and power sharing between two neighbor-
ing areas occurs on these tie-lines. Each control area has its
own AGC with the function to adjust the amount of power
generation to keep its frequency in the scheduled range and
keep the power exchanges with other areas to the values
agreed upon in economic dispatch. The required adjustment
in power generation in each control area is called Area Con-
trol Error (ACE), which is calculated based on the frequency
deviation and power exchange deviation. ACE is calculated
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every 2 to 4 seconds, and then the set-point of the generator
governors participating in AGC is changed based on the
calculated ACE.

In AGC, a control center periodically collects the power
system’s frequency and tie-line power flow measurements
from meters to calculate ACE. However, the increasing num-
ber of smart devices and connections to external networks
in the power grid make power systems more vulnerable to
cyber attacks, such as data forgery attacks. Existing methods
implemented in control centers, such as State Estimation (SE)
and Bad Data Detection (BDD) [1], are unable to detect
intelligent cyber attacks nor guarantee the reliability of the
power system. The work in [2] shows that existing schemes
can be bypassed by carefully designed data forgery attacks.

If malicious tie-line power flow or frequency data is
injected into normal measurements to mislead AGC into
making miscalculations, AGC may issue wrong commands
based on the miscalculated ACEs [3]. As an example, when
ACE is positive, implying the area is over generating power,
AGC should decrease the power generation. However, if false
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tie-line power flow or frequency data is injected and results
in a negative ACE value, AGC will believe that the area is
under generating and issue a command to increase the power
generation, which exaggerates the over-generating situation.
If these attacks go undetected, they can lead to physical
damage to consumer electronics or even damage to power
grid equipment. Such attacks can also induce power grid
responses such as disconnecting generators or customer load.
Additionally, this can further lead to cascading failures and
large-scale blackouts. Attackers already have the resources
and capabilities to conduct sophisticated attacks against the
power grid to cause power outages [4], [5], [6]. AGC is a
particularly attractive target when attacking the power grid
because it is a highly automated system with minimal human
supervision or intervention. Therefore, once an AGC system
is compromised, the impact of the attack can escalate very
quickly.

In this work, we propose Neural Network-based and
Fourier Transform-based approaches to detect and localize
data forgery attacks in AGC. In the first approach, we adopt
a Long Short Term Memory (LSTM) neural network to
learn ACE patterns from historical data, predict the ACE
sequence pattern for the next detection window based on the
learned patterns, and finally compare the predictions with
the corresponding ACE sequence pattern calculated from
measurements to determine whether there is forged data in
the measurements. The LSTM model can be built with a
single feature: the historical ACE data (i.e., single-feature
LSTM). It can also include more related features (i.e., multi-
feature LSTM), such as frequency and tie-line power flow,
to achieve better performance. The LSTM-based approach is
also developed to localize attacks by checking which mea-
surement is abnormal, to know which meter is compromised.
In the second approach, we convert ACE and measurement
data from the time domain to the frequency domain by using
Fourier Transform and then check if ACE and measurement
data are normal in the frequency domain. Tomake it easier for
users to use the solutions, we also propose methods for auto-
matically finding the appropriate detection threshold based
on user needs. We test these approaches on both synthetic and
real datasets. Our detection methods can be easily deployed
since we only use historical data that are already available in
current AGC systems.

This paper’s main contributions are summarized as
follows.

• We study the use of single-feature and multi-feature
LSTM methods to detect and localize data forgery
attacks in AGC. LSTM’s great prediction accuracy on
ACE and measurement data allows these methods to
have very high attack detection and localization rates.

• We study the use of Fourier Transform methods to
detect and localize data forgery attacks in AGC. It was
observed that the ACE and measurement data vary sig-
nificantly in the frequency domain if false data was
injected. Therefore, this method also has high attack
detection and localization rates.

• We present a method to automatically generate a proper
detection threshold for our designed attack detection
methods. That makes it easier for a user to use our
solution.

• We thoroughly evaluate the effectiveness of our
designed methods using synthetic and real world data,
and compare them with an existing solution.

The remainder of this paper is organized as follows.
We discuss related work in Section II. Section III describes
the basics of AGC systems and attack models used in this
work. The proposed detection and localization methods are
presented in Section IV. Section V describes the simulated
system and the simulated and real datasets. Section VI shows
the performance of the proposed methods on both simulated
and real data. We conclude our work in Section VII.

II. RELATED WORK
Much work has been done in power grid security [7], [8].
Here, we mainly review related work on attacks in AGC.

The work in [9] developed a model-based method that
predicts ACE values every 5 minutes and then compares the
predictions with real ACEs to detect anomalies. However, the
predictions depend heavily on the load forecast, which might
be affected by any errors in the load forecast. In [10], the
authors proposed a two-tier intrusion detection system, which
first predicts the next ACE value based on the current ACE
value and then passes the ACE to the second tier to verify
whether the ACE deviates from its prediction. However, that
work only used one time point’s ACE for prediction and is
prone to error.

The work in [11] utilizes a Kalman filter to predict sig-
nal states or actual measurements. Next, the predicted val-
ues are sent to a χ2 detector in order to detect attacks.
Another work [12] employs a two-stage Kalman filter to
simultaneously estimate attack-free and potentially forged
measurements. This allows users to perform attack detection.
However, Kalman filter-based approaches are sensitive to
noise or disturbances in measurements.

The work in [13] proposed an approach to predict how
much false data was potentially added from a false data
injection attack. However, it only looked at attacks to the fre-
quencymeasurement, and it only considered two attack types:
constant or periodic false data injection. Another work [14]
developed a solution to predict what the actual signal mea-
surement would be if the signal were forged. A limitation
of this work is that it considers a threat model where the
attacker is only able to attack one signal at a given time.
Therefore, the proposed method will not work well when
multiple signals are attacked. Moreover, only ramp attacks
and pulse attacks were considered. The work in [15] uti-
lized an autoencoder network to reconstruct input sample
sequences with minimum reconstruction residual and detect
attacks based on it. The nature of this autoencoder approach
makes it easy to overfit the model in such a way that attacks
that could agree with the correlation of the original system
cannot be detected. These works mainly focus on recovering
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the original signal measurement. Different from them, our
work focuses on detection and localization of data forgeries.

The work in [16] proposes an ensemble method consisting
of K-means clustering and support vector machines (SVMs)
to be applied to area-level features to detect attacks in a
decentralized manner. This method requires the installation
of this software on all local generators in the grid.

The work in [17] and [18] utilize fuzzy theory with
machine learning methods such as support vector machines
or deep neural networks with LSTM to detect attacks. These
methods consider the impact of various false data injection
attacks to classify the characteristics of the attacks. These
methods are rigid and can be weak against hybrid attacks or
attack types that were not included in the training.

The work in [3] explored how to launch effective attacks in
the shortest time, but it did not provide any detection method.
Another work [19] presented how to determine the best
response strategies against attacks based on a security game
model. Our previous work [20] proposed a physics-based
method to detect and localize data forgery attacks in AGC.
The method utilizes an alternative way of computing ACE
by using a more detailed power system model of the control
area, but it requires more noise-free measurements and more
complex computations. A deep learning-based method, Con-
ditional Deep Belief Network, was developed to detect data
forgery attacks [21]. It requires attacked data to be the training
dataset, and thus the model performance heavily depends on
what types of attacks are included in the training dataset. If an
attack type is not included in the training dataset, it will be
difficult to detect. Additionally, there are not many available
attacked data in practice that can be used as training data.

The preliminary versions of this work [20], [22] stud-
ied using a single-feature LSTM model for attack detec-
tion/localization and using a Fourier Transform basedmethod
for attack detection, but they did not consider multi-feature
LSTM nor Fourier Transform based attack localization. This
paper also extends the author’s dissertation [23] by proposing
methods for automatic generation of detection thresholds for
the two detection methods and evaluating their effectiveness.

III. PRELIMINARY
A. AGC SYSTEM
Each control area has an AGC to keep its frequency in a
scheduled value by adjusting power generation. AGC is an
automated control system and its workflow is illustrated in
Fig. 1. It periodically (every 2×4 seconds) receives frequency
measurements from the control area, receives tie-line power
flow measurements between this area and neighboring areas
from field devices, and then calculates the ACE according to
the equation:

ACE = (Ptieline − Psch) + B(f − fsch) (1)

where Psch and fsch are the scheduled tie-line power flow and
the scheduled frequency respectively. Ptielnie and f are mea-
surements. B is the frequency bias factor, which is constant
for each power system and is estimated annually. Then AGC

FIGURE 1. AGC system.

adjusts the power generation of generators according to the
calculated ACE.

B. ATTACK MODELS
To cause miscalculations of ACEs, attackers can inject false
data to frequency measurements or tie-line power flow mea-
surements. ACE is within a specific range under normal
conditions. Once ACE exceeds the limit, an alarm will be
triggered to human operators and the AGC may be sus-
pended [24]. If an attacker injects a significant attack into the
measurements, such as tie-line power flow, it might trigger
the alarm. Thus, the attacker might only modify the measure-
ments slightly so that the attacks do not trigger the alarm.
However, a single marginally forged data measurement may
not be enough to introduce a significant impact on the power
grid. According to [3], the shortest time to stealthily mislead
the system frequency to breach the safety condition without
triggering AGC suspension is at least 10 AGC cycles, which
means that in order to achieve expected effects, the attacker
needs to inject a series of false data to indirectly control the
generator for a period of time.

One way to launch stealthy attacks is to find the maximum
or minimum values of normal frequency or tie-line power
flow measurements, and then inject the minimum or maxi-
mum data values as measurements. Since the maximum and
minimum values are still within the normal range, they will be
accepted by AGC. Let Ta represent the attack period, t repre-
sent time, t0 represent the time point when the attacker starts
an attack, y(t) represent the true measurement (which could
be either frequency or tie-line power flow as discussed later)
value without attacks, and y∗(t) represent the measurement
value with possible attacks.

1) MAX ATTACK
This attack replaces the measurements with the maximum
data value ymax .

y∗(t) =

{
y(t), if t /∈ Ta
ymax , if t ∈ Ta

(2)

2) MIN ATTACK
This attack replaces the measurements with the minimum
data value ymin.

y∗(t) =

{
y(t), if t /∈ Ta
ymin, if t ∈ Ta

(3)
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In addition to the Max and Min attacks, we also consider
three attack models which are also explored in the litera-
ture [9], [25]: scaling attack, ramp attack, and random attack.
In these attack models, the attacker keeps launching attacks
until they achieve the expected results. The three attack mod-
els are described as follows.

3) SCALE ATTACK
The attack scalesmeasurement values up or down by a scaling
parameter λs.

y∗(t) =

{
y(t), if t /∈ Ta
y(t) + λs · y(t), if t ∈ Ta

(4)

4) RAMP ATTACK
The attack gradually modifies measurements by adding
λr (t − t0 + 1). λr is a ramping parameter. This type of attack
could be more difficult to detect because it has very small and
unnoticeable changes at the beginning of the attack period.

y∗(t) =

{
y(t), if t /∈ Ta
y(t) + λr (t − t0 + 1), if t ∈ Ta

(5)

5) RANDOM ATTACK
The attack modifies measurement values by adding some
random values in a range with lower bound λa and upper
bound λb during the attack period.

y∗(t) =

{
y(t), if t /∈ Ta
y(t) + rand(λa, λb), if t ∈ Ta

(6)

For the same power system, the higher the attack parame-
ters λ are, the more significant the attacks are.

IV. DETECTION METHODS
The ACE time series of a control area has its specific patterns
determined by the system’s physical configurations. Fig. 4
shows the pattern of 250 cycles’ ACE data from a real dataset
denoted by Real1 [26]. If an attack is injected, the pattern
will be changed. Thus, attacks can be detected by checking
whether there are ACE data patterns that deviate from normal
patterns. Following this idea, we can learn normal patterns of
ACEs with a neural network and check whether new ACEs
match the normal patterns. The detection method overview is
shown in Fig. 2.

A. LSTM NEURAL NETWORK
To determine whether new ACEs’ pattern is normal, the
neural network model should be able to find which pattern
it resembles and link the current observations with the past
ones. Recurrent Neural Network (RNN) is designed to deal
with data with dependency [27], whose structure is shown in
Fig. 3. RNN can be regarded as multiple copies of the same
neural network which are connected successively. The output
of a neural network will be passed to its successor. Xt−1 is
the input data and ht−1 is the output data at time point t − 1.
ht−1 will be passed to the next neural network. It together

FIGURE 2. Solution overview.

FIGURE 3. Structure of recurrent neural network.

FIGURE 4. ACE data pattern.

with Xt will be the input for the next neural network. The
output is calculated as: ht = σ (WhXt + Uhht−1 + b), where
Wh,Uh, b are the parameters and σ is the activation function
in the neural network. In this way, the RNN model allows the
information to be passed and persist.

However, standard RNN is not good at addressing long-
term dependency. As the time sequence moves forward,
the previous information carried by the neural network
will become less and less, and eventually vanish. However,
in our problem, we need to find what patterns the current
observations follow, which requires the neural network to
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FIGURE 5. Prediction with LSTM.

FIGURE 6. Structure of long short term memory network.

remember and relate to previous patterns even far from the
current time point. In order to solve the long-term depen-
dency problem, a type of RNN named Long Short Term
Memory (LSTM) [28] is adopted, whose structure is shown
in Fig. 6.

In LSTM, ‘forget gate’ ft and ‘input gate’ it are added in
each neural network chunk. The forget gate is to decide which
information needs to be discarded. The input gate is to decide
which new information is going to be stored. Thus, these gates
help remove useless information while remembering useful
information for a long period of time. As shown in Fig. 6, not
only ht−1 is passed to the next neural network, but also Ct−1.
Ct is a memory cell to store remembered information. The
output ht and Ct are calculated as follows:

ft = σ (Wf Xt + Uf ht−1 + bf )

it = σ (WiXt + Uiht−1 + bi)

C ′
= tanh(WcXt + Ucht−1 + bc)

Ot = σ (WoXt + Uoht−1 + bo)

Ct = Ct−1 · ft + it · C ′

ht = Ot · tanh(Ct ) (7)

whereW ,U , b are the neural networkweight parameters. The
important information will flow through the memory cell Ct .
For our problem, LSTM is able to remember and find which
previous sequence pattern the current sequence resembles or
is similar to. Then it can predict the next sequence pattern
based on the resembled pattern.

B. LSTM-BASED DETECTION METHOD
In order to accurately detect attacked data through compari-
son with predictions, the LSTMmodel should make accurate
predictions. We test the LSTM model’s prediction perfor-
mance on the Real1 dataset that only contains real ACEs [26].
Here, we build amodel that predicts the next ACE value based
on the previous five ACE values. The first 67% of the Real1
dataset is used as the training dataset to train the model to
learn ACE patterns, and the latter 33% of the dataset is used to
test the trained model’s prediction accuracy, which is shown
in Fig. 5. The blue line is the real ACE values and the red line
is the predictions that fit real data very well. The results show
that the LSTM model can achieve high prediction accuracy.

The high accuracy in Fig. 5 is obtained when only ACE
data is used as the feature. The LSTM model’s performance
might be further improved by considering more relevant
features. Specifically, the ACE value depends on frequency
and tie-line power flow measurement according to Eq. 1,
while the frequency and tie-line power flow are affected
by the variance between real load and power generation.
Thus, ACE values are closely related to frequency, tie-line
power flow and real load. We consider these three factors
in addition to the past ACE . The input of each time point
will be Xt = {ft ,Pt ,Rt ,ACEt }, where ft ,Pt ,Rt ,ACEt are the
frequency, tie-line power flow, real load, and ACE at time
point t respectively.

In particular, the LSTM model should be first trained and
tuned with historical dataset and can be updated dynamically
(e.g., every year) to include newly generated data. For attack
detection, the recent data sequence is fed into the trained
model to predict the next time point’s value. The length of the
input sequence can be determined or adjusted based on dif-
ferent AGC systems to get better performances. Letm denote
the input sequence length. Xt is the data value at time point t .
Xt can be a single feature {ACEt } (single-feature LSTM)
or multiple features {ft ,Pt ,Rt ,ACEt } (multi-feature LSTM).
We use the input data sequence (X(t+1),X(t+2), . . . ,X(t+m))
to predict X(t+m+1). When a predicted data sequence with
n data points is available, the n predicted ACE values are
compared with the calculated ACE values at the same time
points to check whether the calculated ACE data sequence
deviates significantly from the predicted. If so, it is detected
as an attacked sequence. The detailed steps of the method are
shown as follows.

Step 1: Predict the next data sequence with the trained
model.

Xt−m+1,Xt−m+2, . . . ,Xt → X̂t+1

Xt−m+2,Xt−m+3, . . . ,Xt+1 → X̂t+2

. . .

Xt−m+n,Xt−m+n+1, . . . ,Xt+n−1 → X̂t+n

Step 2: Compute the distance between the calculated
ACE data sequence and the predicted one with

VOLUME 11, 2023 96003



F. Zhan et al.: Detection and Localization of Data Forgery Attacks in Automatic Generation Control

Manhattan Similarity.

d =
1
n

n∑
i=1

|ACEt+i − ÂCEt+i|

Step 3: Compare the distance with threshold θ . It is normal
data if the distance is less than the threshold; i.e.,
d < θ . Otherwise, it is regarded as attacked data.

These steps are also illustrated in Fig. 7.

FIGURE 7. LSTM-based detection overview.

C. LSTM-BASED ATTACK LOCALIZATION
After detecting the existence of an attack, it is desired to
know where the attack is from or which sensor is com-
promised. In the detection method, we detect attacks by
finding abnormal ACE patterns. Following this idea, we can
also detect which measurement is attacked by checking the
measurements’ patterns. Hence, to localize attacks, we not
only predict ACE values but also predict the frequency and
tie-line power flow values through the same LSTM model.
When abnormal ACE data is detected, we will compare the
predicted frequency and tie-line power flow values with the
frequency and tie-line power flow measurements.

df =
1
n

n∑
i=1

|ft+i − f̂t+i|/ft+i

dP =
1
n

n∑
i=1

|Pt+i − P̂t+i|/Pt+i (8)

We can set thresholds for df and dP. If df or dP are larger than
their respective threshold, that measurement is considered to
be under attack.

D. AUTOMATIC THRESHOLD GENERATION FOR LSTM
The ideal detection threshold θ depends on many factors in
the LSTM-based detection method. For example, we could

use a relatively lower threshold for a larger dataset, and
use a relatively higher threshold for a smaller dataset. This
is because the LSTM model predictions typically become
more accurate the larger the training data size, and as a
result, we can use a lower threshold to detect more attacks
without causing many false positives. Additionally, the larger
the standard deviation in a dataset, the higher our detection
threshold should be to reduce false positives. This is because
there will likely be a larger gap between predicted and real
data for a dataset with a larger standard deviation. While
it is possible to find a proper threshold by manually trying
different values and observing which one derives the best
accuracy, in practice, this causes much overhead for system
operators and, more importantly, system operators might not
have the technical capability to do so.

To solve this problem, we developed a method to automat-
ically determine a proper threshold based on the user’s needs.
Themethod takes the user’s desired average false positive rate
or average true positive rate as input. The user can specify
one of the two requirements at a time. The method will
split the dataset into three parts: training, pseudo-testing, and
testing. The programwill then train the LSTMmodel with the
training dataset. With the trained model, it then generates pre-
dictions on the training dataset; i.e., it is predicting values on
the same dataset that was used to train the LSTMmodel. The
method will then calculate the absolute difference between
the predicted and real data values. For every possible series
of 8 AGC cycles (we found 8 works well in our experiments),
i.e., 8 data values that are right next to each other, we calculate
the sum of the absolute differences for each of those 8 cycle
series. Now we have a large list of absolute differences for
8 cycle series. In this list, a majority of the list will likely
be very small values. This is because the predictions on the
training dataset will be very accurate. However, there will
still be values that are relatively larger; this is because of
LSTM’s forget gate and general prediction faults. From this
list of absolute differences, we will pick a specific percentile
(we refer to this percentile as the generation percentile), and
try using the corresponding absolute difference value as the
detection threshold for the pseudo-testing dataset to see if it
meets the user’s required average false positive rate or true
positive rate. If it meets the requirement, it is selected as the
final detection threshold; if it does not meet the requirement,
we will select a different generation percentile and repeat
this process until the needed threshold is found. For example,
if we pick 100 as the generation percentile, essentially the
largest value from the list of absolute differences will be tried
as the threshold. If we pick 0 as the generation percentile,
essentially the smallest value from the list will be tried as the
threshold. When trying the generation percentiles, we follow
the descending order, i.e., from large to small percentiles.
We follow this order because as the percentile decreases, the
threshold value decreases. As the threshold decreases, more
attacks can be detected (i.e., true positive rate increases), but
more good data can be detected as attacks too (i.e., false pos-
itive rate increases). Following the descending order, we can
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find the right threshold that meets the user’s requirement on
false positive rate while maintaining as high true positive
rate as possible, or the right threshold that meets the user’s
requirement on true positive rate while maintaining as low
false positive as possible. Our method automatically creates
false data injection attacks in the pseudo-testing dataset to test
the threshold values over the dataset.

The above method can also be used to automatically find
the right threshold for attack localization based on user needs.

E. FOURIER TRANSFORM-BASED DETECTION AND
LOCALIZATION
Besides the LSTM-based approach, we also propose another
method, Fourier Transform-based data forgery detection and
localization. Although it has slightly lower performance than
the multi-feature LSTM model, it is simpler and has reason-
ably good performance as shown in evaluations.

Fourier Transform [29] can convert data from the time
domain to the frequency domain to observe data patterns.
The moving average is to calculate the average of consecutive
data to smooth fluctuations and highlight patterns, which can
make data sequence patterns more obvious. Thus, we can
calculate the moving average of data and then convert its
moving average to the frequency domain to observe patterns.
If some unexpected changes occur, they can also be reflected
in themoving average. Themoving average of attacked ACEs
and normal ones are shown in Fig. 8. The blue line shows
normal data’s moving average and the red one is the moving
average with the scale attack (λs = 0.2) when the length of
one attack period is 10 AGC cycles. It can be seen that the
patterns of moving average are more obvious in the frequency
domain, and the attacked data’s moving average is more
fluctuated than the normal ones.

FIGURE 8. Moving average of normal ACE and ACE with scale attack.

In this detection method, we first calculate the moving
average for each 10-data sequence, and then convert the mov-
ing average to the frequency domain and get the minimum
transformed value (MTV) of each sequence. As shown in
Fig. 9, the MTVs have significant differences. The MTV
of a normal moving average is around 0.0 while the ones

FIGURE 9. Fourier transform of moving average with scale attacks.

with scale attack is around -0.2. The attacked MTVs can be
separated from normal ones by setting a threshold. If a data
sequence’sMTV is larger than the threshold, it is normal data.
Otherwise, it is regarded as attacked data. Such a threshold
can be set by observing the differences between MTVs of
attacked data and normal data.

To localize attacks, we perform the same Fourier Transfor-
mation on tie-line power flow and frequency measurements.
Then we can set a threshold for each to check whether the
measurements’ converted MTV values are under attack.

F. AUTOMATIC THRESHOLD GENERATION FOR FOURIER
TRANSFORM
Similar to LSTM, we design a method to automatically gen-
erate a detection threshold for our Fourier transform detection
method too. Users can specify the desired average true pos-
itive rate or false positive rate. The method will split the
dataset into three parts: training, pseudo-testing, and test-
ing. It will calculate the moving average for each 10-data
sequence in the training dataset, and then convert the moving
average to the frequency domain and get the minimum trans-
formed value (MTV) of each sequence. All of these values are
stored in a list. From this list, the method will pick different
generation percentiles and try them over the pseudo-testing
dataset until a threshold that meets the user needs is found.
Different from the LSTM method, when trying the gen-
eration percentiles, the ascending order is followed. This
is because the threshold values are usually negative in the
Fourier transform-based method, and we detect an attack if
the MTV is smaller than the threshold. As the percentile
increases, the threshold value increases, and the true positive
rate and false positive rate increase too.

V. DATASETS
We evaluate our solutions based on one synthetic dataset and
two real datasets.

A. SIMULATED DATASET
A5-bus power system [30] as shown in Fig. 10was simulated,
which is a typical power system with two interconnected
control areas. The two control areas are connected by two
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FIGURE 10. 5-bus system with 2 control areas.

tie-lines. Area I contains buses 1, 2 and 4, and Area II
contains buses 3 and 5. Bus 4 and Bus 5 are the load buses
for Control Area I and Area II respectively. Buses 1-3 are
generator buses. Area I is equipped with two generators and
Area II is equipped with one generator. The power system
dynamics are modeled by using the structure-preserving load
model [31], [32] and the well-known generator model with
governor control [33].

Each control area is equipped with its own AGC, which
sits in the control center. The control center periodically
collects frequency and tie-line flow measurements, checks
the measurements with a state estimation method, and then
passes themeasurements to AGC.AGC calculates ACE based
on the measurement with Eq. (1) and then dispatches new
set-points to generators.

The system was simulated with real load consumption data
used at the load buses. Thus, the realistic ACE patterns were
inserted into the simulated AGC system. Real time actual
load measurements and the load forecast data from two areas
in NY-ISO [34] were collected, and load deviation values
for the system were generated by subtracting the forecast
values from actual load values. The load deviations were
scaled down to fit the parameters of the small simulated grid.
The AGC system was simulated under these disturbances:
deviations in loads, and generated realistic measurements
of frequency, tie-line power flows, and ACEs. To obtain
the attacked data, false data was injected into the tie-line
power flow measurements based on the attack models in
Section III-B and ACE was calculated by AGC with the
attacked tie-line power flow data.

B. REAL DATASETS
To test our approaches, we collected two publicly available
real datasets (denoted by Real1 and Real2, respectively) from

two electric utility organizations [26], [35]. The Real1 dataset
includes four years’ ACE data, from the year 2012 to 2015,
with about 2 million data records. Each record provides the
ACE value and its date and time. The Real2 dataset consists
of the ACE data of 2016 and 2017, which has about 1 million
records and the same data format as the Real1 dataset. These
datasets are considered as normal data without any attack.
To generate the attacked data, we inject false data into ACE
directly.

VI. EVALUATION
In this section, we evaluate the proposed methods. Addition-
ally, we also implemented the method in [13] for compar-
ison; we will refer to this method as the baseline method.
It works by training a model to estimate how much false
data was injected by a potential attack. We first test the
detection and localization performance of the multi-feature
LSTM-based method on the simulated dataset and compare
it with the single-feature LSTM. Then we test the Fourier
Transform-based method on the simulated dataset. Next,
we compare the performances of the multi-feature LSTM,
Fourier transform, and baseline methods on the simulated
dataset. Lastly, we test the single-feature LSTM and Fourier
Transform methods on the two real datasets. Since the real
datasets have ACE data only, the multi-feature LSTM cannot
be tested on it.

The neural network parameters and structures for multi-
feature LSTM-based, single-feature LSTM-based, and base-
line methods are detailed in Table 1.

TABLE 1. Neural network parameters and structures.

A. PERFORMANCE OF THE MULTI-FEATURE LSTM-BASED
METHOD ON THE SIMULATED DATASET
The dataset used in the experiments is the simulated dataset as
described in Section V-A. It includes about 1 million records
and each record has ACE, frequency, tie-line power flow,
and real load data. The dataset is chronologically split into
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training dataset (67%) and testing dataset (33%). The LSTM
model is built with a hidden layer with 100 neurons and an
output layer and is trained with the training dataset. In the
testing, the input data sequence length m is set as 5, and the
predicted data sequence length n is set as 10 since the shortest
attacked sequence which can negatively influence the system
is 10 as discussed in [3]. For each attack, false data is injected
into tie line power flow measurements for 10 cycles. To test
the model’s performance, we feed the attacked data and check
the True Positive (TP) detection rate, which is defined as
the fraction of attacks successfully detected. We also feed
normal data without attacks into the model to see the False
Positive (FP) detection rate, which is defined as the fraction
of normal data sequences falsely detected as attacked data.
We also test the localization rate, defined as the fraction of
attacks localized correctly.

The setting of the threshold θ is critical. If the threshold
is too low, some normal data sequences will be detected as
attacked data. If the threshold is too high, the attacked data
sequences may not be detected. The higher the threshold is,
the lower the FP rate is. In the following, we set the threshold
as 0.0375, which has an FP rate of less than 5%.

1) RANDOM ATTACK
In this experiment, we launched random attacks between λa
and λb to tie-line power flow measurements periodically.
Here we make λa = −λb.

The results are shown in Fig. 11. When λ is higher, the
TP detection rate is also higher. Higher λ means the attacks
have more significant modifications on ACE data and thus
such attacks are easier to detect (note that these attacks also
have a higher impact on the power grid). When λ = 0.1, the
attack only change ACEs by less than 2.8% (see below), but
more than 95% attacks can still be detected. The FP rates are
under 1.3% and the localization rates are above 90%. Thus,
the detection and localization performance is high.

FIGURE 11. Detection and localization of multi-feature LSTM on random
attack.

To further elaborate the detection, Fig. 14 shows the ACEs
with random attacks when λa = −0.1 and λb = 0.1.
The red line shows ACEs with random attacks and the blue
line shows normal ACE data. The average of normal ACEs

is about −3.5. The random attacks change ACEs by less
than 0.1 on average, which is only about 2.8%. The LSTM
model will calculate the distances between predicted ACEs
and observed ACEs and then compare the distances with
the threshold, as we discussed in Section IV-B. The calcu-
lated distances are shown in Fig. 17. The red bars show the
distances between attacked ACEs and predicted ACEs, and
the blue bars show the distances between normal ACEs and
predicted ACEs. As aforementioned, the threshold is set as
θ = 0.0375. It can be seen that almost all the distances of
normal ACEs are under the threshold while the distances of
attacked ACEs are above the threshold, even if the attack
only changes ACEs by 2.8%. This explains why the detection
performance is high.

2) RAMP ATTACK
Fig. 12 shows the detection and localization results. When
λ is higher, the detection is more accurate. When λ >= 0.04,
more than 97% of attacks can be detected. The FP is under
3.5% and the localization is above 90%. To elaborate on the
high performance, Fig. 15 shows ACEs with ramp attacks
when λ = 0.04. On average, the ramp attacks with λ =

0.04 add about 0.2 to normal ACEs, and that changes ACEs
by about 5%. Similar to random attacks, Fig. 18 shows that
almost all the distance bars of attacked ACEs are above the
threshold, while the distances of normal ACES are under the
threshold.

FIGURE 12. Detection and localization of multi-feature LSTM on ramp
attack.

3) SCALE ATTACK
Fig. 13 shows the detection and localization results. When
λ is higher, the detection rate increases. When λ >= 0.04,
More than 98% of attacks can be detected. The FP is under
2% and the localization is above 94%. Fig. 16 shows the ACE
with scale attacks when λ = 0.04. From the figure, it can be
seen that the attacks only change ACEs by about 4%, but the
threshold can still separate the distances of attacked ACEs
from the distances of normal ACES as shown in Fig. 19.

4) MIN ATTACK
In this experiment, we launched Min attacks by replacing
real ACEs with the minimum ACEs in the last 400 cycles.
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FIGURE 13. Detection and Localization of multi-feature LSTM on scale
attack.

FIGURE 14. Normal ACE and ACE with random attack.

FIGURE 15. Normal ACE and ACE with ramp attack.

Fig. 21 shows the ACEwithMin attacks. It can be seen that in
someAGC cycles, the attacks are very obvious, while in other
cycles the attacks can be negligible. This is because some
ACE values are very close to the attacked value, and the Min
attacks have almost no modification on real ACEs. In such
situations, our method cannot detect the attacks, but there is
also no need to detect them anyway since they do not have any
impact on the power system. That is why the TP rate shown in
Fig. 20 is not as high as other attacks, such as random attacks.
The FP rate is still very low, which is about 0.8% and the
localization rate is above 90%.

5) MAX ATTACK
In this experiment, we launchedMax attacks by replacing real
ACEs with the maximumACEs in the last 400 cycles. Fig. 24
shows the ACE with Max attacks. It has similar trends and
attributes with Min attacks. The TP rate is shown in Fig. 23,

FIGURE 16. Normal ACE and ACE with scale attack.

FIGURE 17. Distances of normal and random attacked ACE.

FIGURE 18. Distances of normal and ramp attacked ACE.

FIGURE 19. Distances of normal and scale attacked ACE.

which is similar to Min attacks. This is because in some AGC
cycles, the real ACEs are close to the maximum attack data.
Such attacks have no modification on real ACEs and thus
have no impacts on power systems.

B. COMPARISON BETWEEN MULTI-FEATURE AND
SINGLE-FEATURE LSTM ON THE SIMULATED DATASET
To understandwhether consideringmultiple features achieves
better performance, we compare the single-feature and
the multi-feature LSTM-based detection methods on the
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FIGURE 20. Multi-feature LSTM on min attack.

FIGURE 21. Normal ACE and ACE with min attack.

FIGURE 22. Distances of normal and min attacked ACE.

FIGURE 23. Multi-feature LSTM on max attack.

simulated dataset. For each attack, false data is injected
into tie line power flow measurements for 10 cycles. For
conciseness, we present the results for random attack, ramp
attack, and scale attack. Similar trends hold for Min and Max
attacks.

FIGURE 24. Normal ACE and ACE with max attack.

FIGURE 25. Distances of normal and max attacked ACE.

FIGURE 26. Multi-feature and single-feature LSTM on random attack.

1) COMPARISON ON RANDOM ATTACK
As shown in Fig. 26, the single-feature LSTM-based method
also has good performance on random attack detection.When
λ = 0.1, it can detect more than 95% of attacks. However, the
multi-feature LSTM-based method outperforms it, especially
when the attack parameter is low, i.e., when attacks are not
obvious.

2) COMPARISON ON RAMP ATTACK
As it can be seen from Fig. 27, the single-feature LSTM-
based method has great performance on ramp attack detec-
tion, but the multi-feature LSTM-based method still outper-
forms it in false positive rate.

3) COMPARISON ON SCALE ATTACK
As shown in Fig. 28, the single-feature LSTM-based method
performs poorly on scale attack detection. When λ = 0.05,
it can only detect about 50% of attacks. This is because
scale attacks just scale the data value up or down, without
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FIGURE 27. Multi-feature and single-feature LSTM on ramp attack.

FIGURE 28. Multi-feature and single-feature LSTM on scale attack.

changing the ACE data sequence patterns much, and thus
the single-feature LSTM model cannot differentiate them
from normal data well. On the contrary, multi-feature LSTM
considers other data features such as frequency and real load
in addition to ACEs. Even though the ACE pattern is not
changed much, attacks can still be detected with the help of
other measurement data.

C. PERFORMANCE OF FOURIER TRANSFORM-BASED
METHOD ON THE SIMULATED DATASET
In this section, we test how the Fourier transform-based
method performs on attack detection and localization.
We launched the same attacks as in the multi-feature LSTM
testing. Fig. 29 shows the results under scale, ramp, and ran-
dom attacks. The detection threshold is set as 0.00375 which
has 4.3% FP rates. As shown in Fig. 29, the Fourier
Transform-based method has high detection and localization
accuracy for scale and ramp attacks, but it does not perform
well in random attacks. It also performs well in Min and Max
attacks, as shown in Fig. 30.

D. COMPARISON BETWEEN MULTI-FEATURE
LSTM-BASED, FOURIER TRANSFORM-BASED, AND
BASELINE METHODS ON SIMULATED DATASET
We compare the multi-feature LSTM-based, Fourier
transform-based, and baseline methods on the simulated
dataset.We present the results for random attack, ramp attack,
and scale attack.

FIGURE 29. Detection and localization of Fourier transform.

FIGURE 30. Fourier transform on min and max attack.

FIGURE 31. Comparison results on random attack.

1) COMPARISON ON RANDOM ATTACK
As shown in Fig. 31, the multi-feature LSTM-based method
has a great performance on the random attack. The Fourier
transform-based method has a poor performance when λ is
small. Similarly, the baseline method also performs poorly
when λ is small. The Fourier transform-based and baseline
method’s performance improves when λ is larger. Overall, the
multi-feature LSTM-based method significantly outperforms
the other two methods against the random attack.

2) COMPARISON ON RAMP ATTACK
As shown in Fig. 32, the multi-feature LSTM-based and
Fourier transform-based methods have a great performance
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FIGURE 32. Comparison results on ramp attack.

FIGURE 33. Comparison results on scale attack.

on the ramp attack. The baseline method has a reasonable
performance when λ is small, and improves when λ is larger.
Both of our proposed methods still outperform the baseline
method against the ramp attack.

3) COMPARISON ON SCALE ATTACK
As shown in Fig. 33, against the scale attack, themulti-feature
LSTM-based method outperforms the baseline method when
λ is 0.05 or larger. When λ goes very small, both multi-
feature LSTM’s and the baseline method’s performances
significantly degrade probably because they are both based
on machine learning and machine learning generally cannot
handle extremely minor scaling attacks well. When λ is very
small, the Fourier transform’s performance also decreases a
little, but it is better than the other twomethods in true positive
rate.

E. COMPARISON OF SINGLE-FEATURE LSTM AND
FOURIER TRANSFORM-BASED METHODS ON REAL
DATASETS
In this section, we test the LSTM-based method and Fourier
Transform-based method on the real datasets. Since there is
no frequency, tie-line power flow, and real load in the real
dataset, we are not able to test the multi-feature LSTM-based
method and hence focus on the single-feature LSTM. For the
same reason, we are not able to test the localization perfor-
mance and hence focus on detection. For each attack, false
data is injected into ACE for 10 cycles. For the power system
where the real dataset was generated, under random attack

FIGURE 34. Single-feature LSTM and Fourier transform on the Real1
dataset.

FIGURE 35. Single-feature LSTM and Fourier transform on the Real2
Dataset.

with λa = −0.1, λb = 0.1, ramp attack with λr = 0.1, and
scale attack with λs = 0.1, ACEs are changed by about 5%,
5%, and 10% on average, respectively. The detection results
of the Real1 dataset are shown in Fig. 34. The single-feature
LSTM has better performance than Fourier Transform on
random and ramp attacks. For example, when random attack’s
parameter λ = 0.1, single-feature LSTM can detect more
than 90% of random attacks. However, it performs poorly on
scale attacks, as we discussed in Section VI-B3. The Fourier
Transform method is able to detect scale attacks effectively.
Thus, we can use the single-feature LSTM-based method to
detect random and ramp attacks and use Fourier Transform
as the complementary method to detect scale attacks, when
only the ACE data is available. Fig. 35 shows the detection
results on the Real2 dataset, which have similar performance
and trends with the Real1 dataset.

F. PERFORMANCE OF AUTOMATIC THRESHOLD
GENERATION
In order to test automatic threshold generation for LSTM,
we took the results of different generation percentiles’ on ran-
dom, scale, ramp, min, and max attacks for the multi-feature
LSTM method, and averaged all collected true positive rates
and false positive rates. We also averaged the attack local-
ization accuracy. The results are shown in Fig. 36. As the
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FIGURE 36. Automatic threshold generation results for
multi-feature LSTM.

FIGURE 37. Automatic Threshold generation results for Fourier transform.

generation percentile decreases, the true positive rate and
false positive rate both increase. Choosing a generation per-
centile of 98 achieves a good balance between the two.

In order to test automatic threshold generation for the
Fourier transform-based method, we took the results of mul-
tiple generation percentiles’ performance on random, scale,
and ramp attacks. We then averaged all collected true and
false positive rates. We also averaged the attack localization
accuracy. The results are shown in Fig. 37. As the gener-
ation percentile increases, the true positive rate and false
positive rate both increase. Choosing a generation percentile
of 2.0 achieves a good balance between the two.

VII. CONCLUSION
We proposed Neural Network-based (multi-feature LSTM
and single-feature LSTM) and Fourier Transform-based
methods to detect and localize data forgery attacks in
AGC. To make it easier for users to use the methods,
we also designed an approach for automatically generat-
ing proper detection thresholds for the methods. We tested
these methods against random, ramp, scale, min, and max

attacks on real and simulated datasets. The experiments
showed that both LSTM-based and Fourier transform-based
methods have promising performance on attack detection
and localization. Specifically, multi-feature LSTM has bet-
ter performance than single-feature LSTM and the Fourier
transform-based method. The single-feature LSTM-based
method can detect most of the attacks but cannot detect
scale attacks effectively, while the Fourier Transform-based
method has good performance on scale attacks, which
means they can be used as complementary detection
methods in single-feature scenarios. Over the simulated
dataset, for random attacks (λ = 0.1), ramp attacks
(λ = 0.04), and scale attacks (λ = 0.04), the multi-feature
LSTM-based method has an overall average of 94.9% true
positive rate, 92.8% localization rate, and 1.6% false positive
rate for the three attacks; the single-feature LSTM-based
method has an overall average of 76.6% true positive rate and
4.6% false positive rate; the Fourier transform-based method
has an overall average of 87.7% true positive rate, 87.1%
localization rate, and 4.3% false positive rate.
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