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ABSTRACT Retinopathy of prematurity (ROP) is a vasoproliferative retinal disease that affects premature
infants and causes permanent blindness if left untreated. Automated retinal diagnosis from the Retinal
fundus images aid in the early detection of many pathological conditions. The low-level statistical features
used in literatures have not provided the complete ROP-specific profile, and hence it has to be replaced
by high-level features. The proposed system involves extracting Scale Invariant Feature Transform (SIFT)
- Speeded Up Robust Features (SURF) combined high-level features from the SegNet segmented retinal
vessels and classified using the Quantum Support Vector Machine (QSVM) classifier. This study aims (i)
to segment retinal vessels from the acquired fundus images using SegNet and extract their features using
the SURF and SIFT Feature Extraction method, (ii) to classify the Normal and ROP retinal vessels using
four classical machine learning classifiers such as Support Vector Machine (SVM), Reduced Error Pruning
(REP) tree, K-Star, and LogitBoost and Quantum SVM classifier, (iii) to develop a novel transformer-based
Swin-T ROP model to classify ROP from normal Neonatal fundus images, (iv) to compare the performance
characteristics of the proposed QSVM model with the Resnet50, DarkNet19, and classical machine learning
classifiers. The study is conducted using 200 fundus images, including 100 normal and 100 ROP-positive
neonatal retinal images. The machine learning classifiers such as SVM, REP Tree, K-Star, and Logit Boost
Classifiers attained accuracy of 86.7%, 75%, 74%, and 76.5%, respectively, in classifying ROP from normal
retinal images. The deep learning networks such as ResNet50 and DarkNet19 classified ROP from normal
fundus images with an accuracy of 92.87% and 89%, respectively. The Quantum machine learning classifier
outperforms the classical machine learning classifiers, Pre-trained Convolutional Neural Networks (CNN)
and SwinT-ROP in terms of classification accuracy (95.5%), sensitivity (93%), and specificity (98%). The
proposed system accurately diagnoses ROP from the neonatal fundus images and could be used in point-of-
care diagnosis to access diagnostic expertise in underserved regions.

INDEX TERMS QSVM, transformer, transfer learning, quantum classifier, retinal image processing.

I. INTRODUCTION
The associate editor coordinating the review of this manuscript and Imaging the microcirculation of the retinal layer allows the
approving it for publication was Zhen Ren "~ . diagnosis of ocular diseases and the wellness of the entire
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circulatory system and brain [1]. The retinal fundus images
aid in diagnosing many pathological conditions such as Dia-
betic Retinopathy (DR), Retinopathy of Prematurity (ROP),
Glaucoma, Macular Edema, etc., which could cause partial
to complete blindness. The prevalence of visual impairment
due to ROP is estimated to be 10% worldwide [2]. About
490000 preterm neonates survive in India annually, of which
at least 5000 neonates are diagnosed with severe ROP [3].
Jalali et al. [4] emphasize that early screening of ROP is cru-
cial in restoring the visual acuity of neonates with the least
complication. Since neonatal retinal images are acquired non-
invasively, it has a better risk-benefit ratio in diagnosing ROP.
A fundus camera captures the retinal images where the light
enters and leaves through the pupil. ROP is a proliferative
retinal disorder that affects premature neonates, which, when
left untreated, could lead to permanent blindness. Several
studies predicted the changes in retinal vessels as markers for
detecting ROP. Vaso proliferation, tortuosity, and changes in
the diameter of vessels indicate the progression of ROP [5].
Due to high variability and inter-observer inconsistency in
the diagnosis [6], [7], there is a significant need to develop
an automated system for the prediction of ROP that could
be used in the mass screening of infants. Automated diag-
nosis of the pathologies related to retinal vessels recently
involves machine Learning and deep learning techniques.
Machine learning classifiers interpret complicated and hard-
to-perceive patterns from massive data. It automatically
classifies the images into normal and pathological retinal
vessels by training the classifier based on the given extracted
features. But it requires several segmentation algorithms [8]
and feature extraction as additional steps to extract the distinct
attributes of the specific classes. Quantification of retinal
vessel features are complex in fundus image and subject to
errors. Hence the automated analysis of the retinal vessels is
crucial in accurate pathological diagnosis.

Quantum computation utilizes the quantum principle of
superposition and entanglement to the computational prob-
lems that cannot be solved by a classical computer [9].
Quantum algorithms involve qubits, which could have val-
ues 0, 1, or both simultaneously instead of bits, as in classical
computers. Quantum machine learning (QML) integrates
quantum computing approaches in machine learning tech-
niques to speed up the computation with non-linear data [10].
The proposed study focuses on the segmentation of retinal
vessels, feature extraction, and prediction of ROP in neonatal
fundus images. The novelty of the study is as follows:

o A dedicated retinal vessel segmentation algorithm is
developed to process the raw fundus images without
the involvement of human annotations. The effect of
the SIFT-SURF combined high-level features on ROP
prediction is highlighted in the study.

e In addition, a novel transformer-based Swin-T ROP
CNN with Relative Positional Encoding is developed to
predict the ROP in neonatal fundus images.

« Finally, the quantum classifier (QSVM) is utilized to
classify the ROP from the normal images and compare
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its performance with the classical machine learning clas-
sifiers, which has not been carried out in any previous
studies.

The significant contributions of the paper are as follows:

o The retinal vessels are segmented using the SegNet
CNN. The Speeded Up Robust Features (SURF) and
Scale Invariant Feature Transform (SIFT) features are
extracted from the segmented images and fused to obtain
a 50-length feature vector.

o The ten best features are selected from the fused feature
vector using the Univariate feature selection method and
classified using the machine learning classifiers.

o Geometrically augmented fundus images are classified
into normal and ROP using the ResNet50 and Dark-
Net19 networks by the process of transfer learning.

o A novel Swin-T ROP CNN with Relative Positional
Encoding is designed to classify the ROP from the nor-
mal fundus images.

o The selected 10 features are translated into quantum
features and classified using a Quantum Support Vec-
tor Machine (QSVM) classifier. A comparison of the
performance metrics is carried out between the QSVM,
ResNet50, DarkNet19 CNN, Swin-T transformer, and
the Classical machine learning classifiers.

This study aims (i) to segment retinal vessels from the
acquired fundus images using SegNet and extract their
features using the SURF and SIFT Feature Extraction
method, (ii) to classify the Normal and ROP retinal
vessels using four classical machine learning classi-
fiers such as SVM (Support Vector Machine), REP
(Reduced Error Pruning) tree, K-Star, and LogitBoost
and Quantum SVM classifier. (iii) to develop a novel
transformer-based Swin-T ROP model to classify ROP
from normal Neonatal fundus images. (iv) to compare
the performance characteristics of the proposed QSVM
model with the Resnet50, DarkNetl9, and classical
machine learning classifiers.
This paper is organized as follows: Section II demonstrates
the procedure of data collection, Methods involved in the seg-
mentation of Retinal vessels, and classification using several
machine learning classifiers and Deep Learning networks.
Section III presents the performance of different classifiers
and methods. The implications of the observations are char-
acterized in Section IV. Finally, section V includes the
conclusion of the article.

II. LITERATURE REVIEW

Prediction of ROP using Artificial Intelligence has evolved in
recent years. The handcrafted features could be used in clini-
cal studies of ROP classification. Bayraktar and Boyraz [11]
compared the performance of different feature descriptors
such as Features from Accelerated Segment Test (FAST),
Binary Robust Independent Elementary Features (BRIEF),
Oriented FAST and Rotated BRIEF (ORB), SIFT, and SURF
and their 23 different combinations in image localization.
Their results emphasize that the SIFT-SURF combination
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TABLE 1. Identified Research gap in previous studies involving Prediction of ROP.
Dataset
Year Author Dataset . Methodology Performance Research Gap
Quantity
- Utilised only one complex pre-trained
network for classification.
) . - The dataset was pre-processed using
Ch t P t 94% S tivit
2021 en ¢ rvate 11,849 ResNet152 % Sensitivity o\ (Contrast Limited Adaptive
al. [23] Dataset and 0.99 AUC . L. .
Histogram Equalization) and Weiner
filter, and hence it does not represent
the real-time images.
U-Net segmentation with
tic Di ter Detecti
Optic ISC_Cen er Detection - The statistical features extracted do
Vessel tracing, and feature L. X K
Yildiz ot Privat tracti The classif not represent the discriminative details
ildi ri raction. ifier
2020 e vate 5512 extractio R e. classihe S 0.94 AUC of the segmented and traced vessels.
al. [24] Dataset 1 used are Logistic regression,
- No state of art CNN networks were
SVM, and Fully connected . . . .
. utilized in classification.
Multilayer Perceptron
classifiers
91.8% A GoogLeNet i t ific to ROP
. Worrall et Cannada Modified GoogLeNet and % Accuracy Aoog e. b 15 ot spect ,c ©
2016 1459 K and 82.5% diagnosis and computationally
al. [25] Dataset Bayesian CNN o .
Sensitivity expensive.
Five convolutional layers with batch
) ) . 92.23% Accuracy NP .
2021 Huang et Private 11372 Five Convolutional layered d 96.14% normalization is utilized where the
an .
al. [26] Dataset CNN . ¢ need for batch normalization is not
Sensitivity .
justified.
. 91% Accuracy The system is not specific to ROP
Brown et Private . . . . .
2018 5511 UNet and Inception V1 and 93% diagnosis and is computationally
al. [27] Dataset - .
Sensitivity expensive.
Perf f th -trained
sop0  Dinget Private | . Mask R-CNN with 67% A etr Omkla,nce © 1 y I;re ;,al?el
ccurac
al. [15] Dataset ResNet 101 () y network is very less for clinica

diagnosis.

yields maximum classification accuracy of 98.41% com-
pared to individual and other combinations of features.
Bansal et al. [12] studied the performance of three feature
descriptors such as, SIFT, SURF, and ORB, and their com-
binations in object detection using the Caltech-101 public
dataset. It is evident from their study that the SIFT-SURF
feature combination surpasses the performance of these indi-
vidual feature descriptors. The extraction of handcrafted
features is time-consuming and increases the complexity
of the classifier for a vast dataset [13]. But when there
is a need to obtain better accuracy of the classification
problems with a large dataset, a Convolution Neural Net-
work (CNN) is employed. CNN is a deep-learning network
known for self-training the given images and classifying
them with better accuracy without requiring manual fea-
ture maps [14]. Many pre-trained models such as Alexnet,
GoogleNet, ResNet, and SqueezeNet were able to classify the
images with pre-existing knowledge.

Ding et al. [15] developed a hybrid system ensembling object
detection and a pre-trained classification network to predict
ROP. Mask R-CNN is utilized to detect the demarcation lines
and ridges, followed by the Resnet-101 for the classifica-
tion of various stages of ROP. Although the performance of
their developed system is not promising, the authors sug-
gested that object detection in classification could improve

94308

the stability of ROP prediction. Staal et al. [16] extracted the
pixel-based feature vectors related to the retinal vascular
ridges using the retinal images obtained from the DRIVE
Database. But the images are classified using a supervised
k-NN classifier which requires the annotated ground truth
images. Soares et al. [17] used a supervised method to seg-
ment the retinal vessels from the DRIVE Database and
extracted their features using two dimensional (2D) Gabor
wavelet transform. The authors then classified them using a
Bayesian classifier. This method failed to segment the thin
vessels, which are rarely perceived by human annotations.
You et al. [18] designed a semi-supervised algorithm ensem-
bling SVM with a self-training classifier. They extracted the
retinal vessels in images from DRIVE and STARE databases
based on radial projections and extracted the features using
steerable complex wavelet transform. But their method fails
to detect several vessels in pathological regions and provides
misclassified results.

Jelinek et al. [19] developed an automated vessel segmenta-
tion technique with a two-dimensional retinal vessel profile
tracking model. They used the Naive Bayes classifier to
categorize the vessels using the eight features estimated
from the mean and standard deviation of the segmented ves-
sels from the Red, Green, Blue, and Hue regions. But the
authors suggested that the performance of the classification
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could further be improved by selecting more vessel-specific
high-level features. Ooi et al. [20] segmented the retinal
blood vessels using a Canny edge detector. But the complete
system is a Graphical User Interface, where when the cursor
is pressed with a single left click and traced over the vessel,
edge detection will be carried out to obtain the segmented
vessel. This semi-automated system requires an interactive
session from the user and still fails to detect the complete
edges. This segmentation method is very time-consuming
as well as prone to errors. Li et al. [21] combined the UNet
with the DenseNet to segment the retinal vessels. But their
method requires the additional step using fusion limited con-
trast histogram equalization. The utilized Dense-UNet has
89 convolutional layers, which increases the complexity of
the system.

Amin et al. [22] employed a 4-qubit-quantum circuit to detect
breast malignancy using histopathological images. But their
method proved to surpass the classical classifiers with low
computational complexity in binary classification applica-
tions. The majority of previous studies by Chen et al. [23],
Worrall et al. [25], Huang et al. [26], Brown et al. [27], and
Ding et al. [15] predicted ROP involving digital fundus
images and proved to be successful. Chen et al. [23] achieved
a sensitivity of 94% and 0.99 AUC in ROP prediction
using a ResNetl152 pre-trained network. Worrall et al. [25]
utilized Modified GoogleNet and Bayesian CNN to classify
ROP in digital fundus images with an accuracy of 91.8%
and a sensitivity of 82.5%. Huang et al. [26] designed a
five-layered CNN for detecting ROP in digital fundus images
and achieved an accuracy of 92.23% and a sensitivity of
82.5%. Brown et al. [27] classified ROP using the Inception
V1 network in neonatal retinal images with an accuracy
of 91% and a sensitivity of 93%. Similarly, Ding et al. [15]
classified ROP using a ResNet 101 network in digital fundus
images and achieved an accuracy of 67%. Table 1 provides a
comparison of the recent literature on the prediction of ROP.
The prediction of ROP using Artificial Intelligence in lit-
erature proved to require additional pre-processing and
segmentation techniques for CNN and is computationally
expensive. The low-level statistical features used in previous
studies [17], [19], [23], [24] may not provide the complete
ROP-specific profile, and hence it has to be replaced by high-
level features. Studies state that using a quantum classifier to
replace the classical machine learning classifier could lead to
better prediction performance with lower complexity. Hence,
the proposed system involves extracting SIFT-SURF com-
bined high-level features from the SegNet segmented retinal
vessels and classifying using the QSVM classifier.

lll. METHODOLOGY

A. DATA COLLECTION

This study includes 200 neonatal fundus images collected
retrospectively from SRM Medical College and Research
Centre, Kattankulathur, Tamil Nadu, India, from February
2019 to February 2022. The retinal fundus images were
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TABLE 2. Description of the images utilized in the study.

Characteristics Normal ROP
Number of Images 100 100
Average ‘Gestatlonal Age 29.8 £ 1.6 3184+ 1.56

(in weeks)
Birth weight (kg) 1.7 £0.25 1.38 + 0.31
Number of Male infants 38 43
Number of Female infants 62 57
Number of Stage 1 ROP NA 39
Neonates
Number of Stage 2 ROP NA 45
Neonates
Number of Stage 3 ROP NA 23
Neonates

*NA- Not Applicable

obtained from the neonates after dilating the pupil using
mydriatic drugs. The image resolution of 1024 x1024 was
acquired by trained professionals using 3Nethra Neo (Forus
Health, Bangalore) mydriatic digital wide field fundus cam-
era having a 120° Field of View. A total of 200 fundus
images, which consist of 100 Normal and 100 ROP, are
included in the proposed study as in Table 2. The certi-
fied Ophthalmologists identified and labeled the images of
normal and diseased cases separately. The images are cap-
tured from preterm infants of average gestational age of
30.3 £+ 1.2 weeks with an average birth weight of 1.47 &
0.12 kg. Neonates having congenital abnormalities such as
microphthalmia are excluded from the study. Approval from
the Institutional Ethics Committee, SRM Medical College
Hospital, and Research Centre, was obtained for the cur-
rent study with the Clearance number: 8241/IEC/2022, and
adhered to the tenets of the Declaration of Helsinki. The eth-
ical approval with its forms and sample images are uploaded
in the link: https://drive.google.com/drive/folders/101T837-
S7TFUf9-1P4vioWJZhogVcgAfP?usp=drive_link

B. PROPOSED WORK FLOW

The block diagram of the proposed study is depicted in
Figure 1. The input retinal fundus images are preprocessed
to remove the noise and then segmented to extract the ves-
sels using SegNet architecture. The uncorrelated features of
segmented vessels are obtained using the SIFT and SURF
Feature extraction methods. The extracted 50 features are
fused, and the ten best features are selected using the Uni-
variate feature selection method and given to the different
classical and quantum machine learning classifiers to classify
the normal and ROP. In the case of Deep learning techniques,
the raw retinal images are directly given to the pre-trained
networks, Swin-T ROP model, and are classified into normal
and ROP vessels.

1) RETINAL VESSEL SEGMENTATION
SegNet is a deep CNN to perform pixel-wise semantic seg-
mentation [28]. The SegNet comprises a 16-layer encoder and
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FIGURE 1. Block Diagram of the ROP Prediction Procedure depicting the classification of the input neonatal retinal images into Normal and ROP using
classical machine learning classifiers, QSVM, Pre-trained Deep learning models, and Swin-T ROP model.

corresponding decoder block, followed by a pixel-wise classi-
fication layer. The encoder block generates the low-resolution
feature maps from the input retinal image. The feature maps
are then batch normalized, and a Rectified Linear Unit Acti-
vation function (ReLU) is applied. Sixteen convolutional
layers in the decoder block upsample the feature maps
obtained from the encoder block into high-resolution feature
maps. The decoder block utilizes pooling indices of the cor-
responding encoder block to execute non-linear upsampling.
The pooling indices correspond to the locations of the retinal
vessels stored in the corresponding encoder block. The fea-
ture maps from the decoder block are given to the multi-class
soft-max classifier, where each neuron corresponds to the
class probabilities of every pixel. The illustration of SegNet
CNN is given in Figure 2.

The SegNet is trained with the images and their cor-
responding ground truth annotations from databases such
as DRIVE [29], STARE [30], and CHASE [31]. DRIVE,
STARE, and CHASE databases contain 20, 20, and
28 images, respectively, along with their corresponding
masks. The retinal RGB images are initially resized to dimen-
sions 256x256x%3 using the Bicubic Interpolation method.
It is used to ensure that all the images utilized have uni-
form dimensions. Then the resized images are normalized
using Min-Max scaling, where all the pixels in the image
are scaled to lie between 0 and 1. These 68 images are aug-
mented using geometric transformation algorithms such as
rotation at 90 and 270 degrees, flipping right, and translation
up to yield 272 images. The SegNet is trained with these
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TABLE 3. The Optimal hyperparameters chosen to train the SegNet
network.

SI.No  Parameter Tuned variable

1 Optimizer ADAM

2 Loss function Binary Crossentropy
3 Learning rate 1 x e~ !

4 Weight Decay 1 x e~ %

5 Momentum 0.99

6 batch size 64

augmented images using Adam Optimizer for 200 epochs
with a batch size of 64. After successful training, 200 fundus
images are provided to the network to extract the segmented
retinal vessels. SegNet is trained with the tuned hyperparam-
eters, as mentioned in Table 3. The optimal learning rate,
Weight decay, momentum, and batch size were tuned using
the Grid search mechanism. The optimizer and loss function
are determined by controlling the error by the trial-and-error
method. Optimizers such as ADAM, SGD, and RMSprop,
and Loss functions such as Hinge, Hinge squared, and Binary
crossentropy functions were used in both training and testing
processes to choose the optimal parameters.

2) FEATURE EXTRACTION

The SURF and SIFT features were extracted from the seg-
mented retinal vessels’ features. The SURF feature descrip-
tors describe an image based on the intensity distribution of
the pixels within the neighborhood of the region of interest.
Surf detects the point of interest using the determinant of
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FIGURE 2. The Architecture of SegNet CNN in segmentation of retinal vessels from neonatal images. The encoder blocks (green color) generate the
low-resolution features that are converted into sparse feature maps using the decoder blocks (Red color) using the pool indices. The Softmax layer
(Yellow) performs pixel-wise classification to provide the vessel segmented output.

the Hessian blob Detector [32]. It calculates the features
based on the sum of the Haar Wavelet response. SIFT feature
extractor detects the local features from the image based on
the gradients of pixels to its surroundings [33]. These fea-
tures are highly robust and invariant to scale, orientation, and
affine distortion [34]. SIFT features are extracted from the
high-contrast regions in the image, such as lines and ridges.
These are utilized in extracting the features related to the reti-
nal vessels specific to ROP. From the input image, the Haar
wavelet responses are obtained using 5 x 5 equally spaced
seed points. Hence, twenty five SURF features and 25 SIFT
features are obtained from every image using the SURF and
SIFT feature extractors, respectively.

3) FEATURE FUSION AND SELECTION

Twenty-five SURF and Twenty-five SIFT features are fused
together to obtain a 50-length feature vector. The uncorrelated
optimal features are used to train the classifiers to achieve
greater accuracy without overfitting. In order to avoid leakage
of data during the training process, feature selection is carried
out after a 10-fold cross-validation using machine learning
classifiers [35]. The Chi-square statistic-based Univariate
feature selection is employed to select 10 best features from
the initial feature vector. The most significant ten features are
selected by calculating the dependence of the target to the
individual non-negative feature at a 95% confidence interval.

C. MACHINE LEARNING CLASSIFIERS

The current study used machine learning classifiers from
Scikit-learn Machine learning library version 1.2. Four
machine learning classifiers such as SVM, REP Tree, K-star,
and LogitBoost, are used to classify the retinal blood vessels.

1) SVM CLASSIFIER

SVM is a supervised machine learning classifier [36]
with the maximum margin between the given classes to
have minimum classification error [37]. It classifies two
classes by identifying the optimal hyperplane that marks the
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decision boundaries [38]. In the proposed study, the Radial
basis function (RBF) is chosen as the kernel to classify the
ROP neonates from normal ones. The hyperparameters of the
SVM classifier are the cost parameter C, which is chosen to
be 1, and a kernel coefficient gamma value is 0.01 to optimize
10-fold validation accuracy. In the proposed work, the SVM
classifier is implemented using the sklearn.svm package.

2) REP TREE CLASSIFIER

REP tree is a type of top-down decision tree learner that com-
putes decisions faster. In retinal vessel classification, the REP
tree generates binary classes using the discrete feature vectors
based on gain and prunes it using reduced error pruning with
back fitting. REP Tree selects the most predictive feature
and splits the current node of the decision tree based on
the selected feature. Thus, each node becomes the indicator
of a particular feature [39]. Finally, the nodes that have the
maximum gain are estimated to generate the resulting class.
The maximum depth of the tree is set as -1 for 100 trees per
batch. The minimum proportion of variance is designated as
0.001, with the minimum total weight of instances over a leaf
is given as 2. REP Tree classification is executed with the
sklearn.tree package using REP as the pruning algorithm.

3) K-STAR CLASSIFIER

K-Star classifier is an instance-based learner that classifies
the retinal vessels based on the entropy-distance function.
It has the advantage of consistency over other classifiers using
real-valued features of retinal blood vessels [40]. Here, the
features of the training instances are mapped to the classes
initially defined. And the new instance is included in the
class, which has the same features. The parameter of global
blending B is set as 20 with batch size as 100. K-star is
implemented using the sklearn and BaseEstimator packages.

4) LOGITBOOST CLASSIFIER

LogitBoost is a statistical meta-algorithm based boosting
classifier with a logistic regression function in a generalized
additive booster. It combines several weak base classifiers
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FIGURE 3. Architecture of ResNet50 CNN for the prediction of ROP. The input image is given to stacked blocks of 50 convolutional layers with residual
skip connections. The feature map thus produced is fed to Fully connected layer to generate the two-class classification of ROP and normal.

to obtain a robust base classifier with better accuracy and
minimal logistic loss. The classification of the retinal ves-
sels is achieved by generating the decision function, which
is the linear sum of the decision function of all the weak
classifiers [41]. The base classifier used in logit boost is
decision Stump with batch size of 100. The total number
of iterations to be performed is designated as 10, and the
likelihood improvement threshold is -1.79 E 308. LogitBoost
classification is carried out using the LogitBoost class cloned
on top of Scikit learn package.

D. DEEP LEARNING ALGORITHM

Lecun et al. [42] demonstrated that overfitting of CNN could
be avoided by using a vast number of ground truth images.
The pre-trained networks utilize previously acquired knowl-
edge of weights by training the images from the ImageNet
database. By altering the final classification layer of the
model, the pre-trained networks could be utilized to distin-
guish ROP images from the normal using the transfer learning
approach. Data augmentation is employed when the number
of available ground truth images is limited to generalize the
learning process of the CNN implicitly. The acquired 200 reti-
nal fundus images (100 normal and 100 ROP) are augmented
to 800 images using four geometric transformation tech-
niques such as Rotation-90°, Rotation-270°, Flipping-Right,
and Translation-Up directions. The acquired 200 images
are combined with the augmented 800 images to obtain
1000 fundus images for training and testing the CNN. These
1000 images include 500 normal and 500 ROP images. Geo-
metric transformations remove the image impairments due to
positional biases in the retinal vessels.

ResNet50 is a deep learning residual network designed
with fifty layers (48 convolutional layers, 1 Max Pool-
ing, and 1 Average pooling layer) and is developed by
He et al. [43]. This Residual Network has less time complex-
ity when compared with VGG16 or VGG19 models. Residual
networks reduce the complexity of CNN using gated recur-
rent skip connections. Consider a layer x present between
layer n and layer (x+n). If layer x does not contain features
that fit the model, it generates a skip connection from layer
n to layer (x+n). These skip connections reduce the layers
of computation and perform faster than VGG16 and VGG19
models.
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The architecture of ResNet50 CNN is shown in Figure 3.
The input image is given to a convolution layer which has
64 kernels of size 7x7 with a stride size of 2. A Max Pool-
ing layer follows it with a stride of size 2. Four stages of
three-layer convolutions are constructed with kernels 1x1,
3x3,and 1x1. The 1x1 layer reduces and increases (restor-
ing) dimensions which causes the middle 3x3 layer to be
left with smaller input and output dimensions [44]. All three
convolution layers are repeated thrice in the first stage, four
times in stage 2, six times in stage 3, and thrice in stage 4.
Finally, downsampling is carried out using a convolutional
layer of stride 2, and the features are fed to the global average
pooling layer. The retinal images are classified into binary
outputs in the fully connected dense layer with a softmax
activation function. The model requires 1.4 hours to train,
and the average testing time is 0.07 seconds. Darknet-19
is a faster and stronger pre-trained network having 19 con-
volutional layers and five max pooling layers, developed
by Redmon et al. [45]. DarkNet-19 network is built using
YOLOV?2 as the base model. It predominantly uses filters of
size 3 x 3 in the convolutional layers. The number of channels
is doubled after each max pooling layer. The architecture of
DarkNet-19 CNN is illustrated in Figure 4.

The final convolutional layers resultin 7 x 7 features for all
the images tested, based on which the classification is made.
The Global Average pooling layer is used at the end of the
19th convolutional layers to make the predictions and com-
press the feature representations. DarkNet-19 employs batch
normalization as a crucial step in accelerating convergence
and regularizing the model. By replacing the softmax layer
with 1000 neurons by a new softmax classification layer with
2 neurons, the DarkNet-19 is employed to classify ROP from
normal images. The time taken to train the DarkNet-19 is
1 hour, and the average testing time is 0.09 seconds.

The pre-trained networks are executed using a system with an
Intel Core 17-7700 processor (3.6 GHz, 8 MB cache), 16 GB
RAM with an NVIDIA TITAN XP GPU(12 GB, 1582 MHz).

1) SWIN-T ROP

Swin-T ROP is a modified hierarchical transformer that
utilizes Relative Positional Encoding (RPE) in traditional
Vision Transformer (ViT) [46] and Swin Transformer [47].
These Positional encodings in self-attention help the model
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FIGURE 4. Architecture of DarkNet-19 Network in ROP prediction. Nineteen convolution layers (green color), along with five Maxpooling layers (blue
color) generate high-resolution feature maps, which are fed to the Average pooling layer (yellow) with Softmax Dense classification layer (Red color),
where the output classification result as ROP or normal is obtained.
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FIGURE 5. Architecture of Swin-T ROP in ROP prediction. Input image of size 256 x256 x3 is converted into 128 x 128 x 48 patches that are given to three
stages of the transformer. The local and global dependencies from the three stages are provided to the Average pooling and Dense fully connected layer

to give the final classification output as normal or ROP.

to understand the relative positions of the generated tokens.
These relative positional encodings provide additional infor-
mation about the distance or relative positions between
tokens. These encodings could enhance the model’s ability to
capture both global and local dependencies on the retinal ves-
sels. The architecture of the Swin-T ROP model is depicted

learning rate of 1xe-3 and a batch size of 64 for 100 epochs.
Pseudocode for Swin-T ROP model designed to predict ROP
Stepl: Initialise the input image and resize it to
256x256x%3
Step2: Extract 128x 128 image patches of size 2x2 from
the input image

in Figure 5. Step3: Embed the image patches using an embedding
The Swin-T ROP model extracts 128x128 non- layer

overlapping patches, known as tokens, from the input raw Step4: Add relative positional encoding to the patch

image of size 256x256x3. Each token is of size 2x2 in embeddings

three channels, with the feature dimension of 2x2x3=12. Step5: Initialise the number for stages = 0

These patches are given to a linear embedding layer and Step6: Perform shifted window attention within the stage

then to a Swin transformer block. The Swin Transformer Step7: Apply a multi-layer perceptron (MLP) to each

block has a shifted and a non-shifted window RPE, with a patch embedding

two-layer multi-layer perceptron (MLP) and an Exponential Step8: Increment stages by 1.

Linear Unit (ELU) Activation function. In order to get more Step9: Repeat Steps 6 to 8 until stages = 3

prominent features, the extracted patches are merged by Step10: Flatten the embeddings and apply them to the dense

concatenating the features, reducing the number of tokens
to 64 x 64 in the second stage and 32 x 32 in the third
stage. Finally, the local and global dependencies are obtained
from regular and shifted window-based attention blocks from
all three stages. These feature maps are fed to the global
average pooling layer and a dense classification layer with
a sigmoid activation function to classify the images into ROP
and normal. The hyperparameters involved were a window
size of 7x7 with a shift size of 2. The model is trained with a
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layer for classification.

E. QUANTUM MACHINE LEARNING CLASSIFIER

Quantum computing classifies the features in a quantum-
enhanced feature space using the kernel matrix constructed by
training the data [48], [49]. The quantum classifier interprets
the complex features based on the quantum feature maps and
kernel functions which is a difficult task for conventional
classifiers [50]. SVM classifies the instances based on the
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FIGURE 6. Quantum Circuit Implementation with ten Qubits (q0 x q9) of
Second-order Pauli-Z features for ten classical features. H represents the
Hadamard gate, P represents the Phase shift gate, and R represents the
Rotation gate of the qubits .

optimal hyperplane in the kernel feature space [51]. The
QSVM classifier is used to classify the normal images and
ROP owing to its advantage of parallelism and estimate the
maximum kernel vectors to optimize the hyperplane. Let I €
X be the classical data mapped to quantum feature space as
in equation 1.

¢(i) = U@H)]0"()0"|1U*(i) ey

where n is the number of qubits used in the unitary circuit
U(i). Quantum Kernel estimator (QKE) measures the kernel
plane on a quantum computer by evolving the initial state
|0”< with U*(i)U (i) for the frequency of the entire results 0"
[52] The cost function of QSVM is estimated by maximizing
the upper bound to the generalization error greater than & and
minimizing the upper bound less than v as in equation 2.

h h
1
Sfla,¥) = E Oy — z E (axay)(ﬁxﬁy)Nw(lm Iy) (2)
x=1 x,y=1

where the constraints are 0 < oy < C and > oxfy = 0
X

with C as the regularization parameter in QSVM [53]. QSVM
utilizes Grover’s search technique to accelerate the process of
unstructured search instead of the minimal sequential opti-
mization in a classical SVM classifier [54]. The selected ten
features from the 200 images are split to give 80% data for
training and 20% for testing. Ten qubits are used (Since the
number of features =10) to design the Quantum circuit as in
Figure 6.

The ten classical features are converted to a quantum features
map using Second-order Pauli-Z evolution. The Quantum
Kernel is trained with the feature map using Quantum Kernel
trainer with SVC Loss as the loss function. Simultaneous
Perturbation Stochastic Approximation (SPSA) optimizer is
utilized with 0.1 perturbation, a learning rate of 0.005 for a
maximum of 100 iterations. The model is executed using IBM
Qiskit with Python version 3.7. The time taken to build the
model is 24 minutes.

F. STATISTICAL ANALYSIS
In the proposed work, the t-test primarily assessed the sta-
tistical significance between the features extracted from
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FIGURE 7. a) Normal fundus image of an infant with GA of 34 weeks;
b) Ground truth of the normal fundus image; c) Segmented Retinal
Vessels using SegNet; d) Fundus image of Stage 3 Zone Il ROP of an
infant with GA of 32 weeks; e) Ground truth of the ROP image;

f) Segmented Retinal Vessels using SegNet .

the segmented vessels of ROP and Normal fundus images.
Cohen’s d effect size associated with the t-test is used
to provide information about the magnitude of the dif-
ference between the features extracted. Paired comparison
is carried out to calculate the significance of obtained
results with the networks utilized in the literature such as
ResNet (p=0.0047(<0.05), at 95% CI) and SVM classi-
fier (p=0.0092(<0.05), at 95% CI). This is found to be
in agreement with the work carried by Ding et al. [15],
Chen et al. [23], and Yildiz et al. [24]. Paired comparison is
carried out by pairing predicted labels from the proposed
method with the predicted labels from the models listed in
the literature. The selected ten features are also tested for
significance with a 95% confidence interval. All statistical
analyses are carried out in IBM SPSS software version 29.

IV. RESULTS

The retinal vessel segmented output was obtained by SegNet
from the neonatal fundus images as shown in figure 7. Fig-
ures 7a and 7d are the input retinal images of Normal and
ROP neonate respectively. Figures 7b and 7e are the ground
truth images of the retinal vessels of the images 7a and 7d.
Whereas, Figures 7c and 7f are the segmented retinal vessels
obtained from the trained SegNet architecture.

The number of features from the descriptor depends
on the image complexity. Since the utilized image is a
binary segmented image with retinal vessels, more features
add unnecessary complexity by detecting false key points.
Figure 8a denotes the SIFT feature extractor using 100 key
points. It is seen that many outliers are present in the detected
features that cause decreased classification rate in the image.
It is essential to eliminate the weak key points that are sen-
sitive to noise or have no edge effect. Figures 8b and 8c
demonstrate the 25 features extracted from SIFT and SURF
feature extractors, respectively. It is seen that in reduced
feature extractions, the outliers are eliminated and are more
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FIGURE 8. a) 100 key point features extracted using the SIFT feature
extractor; b) 25 key point features extracted using the SIFT feature
extractor; c) 25 key point features extracted using the SURF feature
extractor; d) 50 length feature vectors obtained by fusing SIFT and SURF
features .
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FIGURE 9. The plot describes the change in accuracy with respect to the
change in the number of features extracted from the feature descriptors.
The red and blue lines indicate the accuracy change from the SURF and
SIFT features, respectively. Both feature descriptors yield maximum
accuracy initially using 25 features.

specific to retinal vessels. Hence the more prominent 25 fea-
tures are selected from SIFT and SURF feature descriptors
and fused as in Figure 8d.

Twenty five features are selected by the parameter tuning
mechanism using the SVM classifier. Figure 9 shows the
dependence of the accuracy of the ROP classification on the
number of features extracted from SIFT and SURF features.
In both SIFT and SURF feature extraction, it is seen that
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TABLE 4. Effect size obtained from the selected ten features used to train
the network.

Feature Effect Size d
F1 0.863
F2 0.838
F3 0.841
F4 0.644
F5 0.721
F6 0.72
F7 0.785
F8 0.642
F9 0.622

F10 0.61

the maximum performance is achieved when the number of
features is around 25.

Table 4 depicts the effect size of each selected feature in
the prediction of ROP with a CI of 95%. Since the features
extracted are high-level key point descriptors, they couldn’t
be named and described in the table. It is seen that the effect
sizes of the features F1-F3 (d>0.8) are high, and F4-F10 are
medium to high, indicating stronger to moderate relationships
with the targets and statistically significant.

The performance of the classical machine learning classi-
fiers, CNN models and QSVM is evaluated by constructing
the Confusion matrix. The primary parameters present in
the confusion matrix are True Positive (TP), True Negative
(TN), False Positive (FP), and False Negative (FN). TP and
TN denote whether the normal retinal vessels are classified
correctly or not. Similarly, FP and FN denote whether the
retinal anomaly vessels are classified correctly or not. Based
on the parameters mentioned above, specificity, sensitivity,
accuracy, Positive Predictive Value (PPV), and Negative Pre-
dictive Value (NPV) are derived. Cross-validation is carried
out by ensuring that 1/10th part of the entire data set is
kept hidden from the network while training is performed.
The network tests the hidden data, which does not intersect
with the training data, to evaluate its performance. Sim-
ilarly, in 75-25% hold-out validation, 25% data, which is
kept idle from the training data, is used to test the network
to prevent data leakage. Table 5 describes the dataset split
for 75-25% hold-out validation. In Machine learning clas-
sifiers, 25 images from each group are taken to construct a
50-length test set. 150 images are split in a 75-25% ratio to
obtain the training and validation set. Hence the classifiers are
trained and validated using 112 and 38 images, respectively,
and tested using 50 images. In CNN networks, 1000 images
are split into 552, 188, and 250 images to obtain training,
validation, and testing data sets.

The performance metrics evaluated from the machine
learning classifiers such as SVM, REP Tree, K-Star, Log-
itBoost, Deep learning CNN such as ResNet50, DarkNet19
Networks with and without augmentation, SwinT-ROP and
QSVM using 10-fold and hold-out validation are shown in
Tables 6 and 7 respectively.
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TABLE 5. Description of the Training, testing and validation datasets.

Classifier Methodology  Training Testing Validation
Machine 75-25%
learning Hold Out 112 50 38
classifiers Validation
75-25%
CNN Hold Out 552 250 188
Validation
a Predicted b Predicted
ROP Normal ROP Normal
™ N ™ N
T; ROP 93 7 —‘g ROP 23 2
2 FP ™™ E‘ FP ™™
Normal 2 08 Normal 1 24

FIGURE 10. a) Confusion matrix of the QSVM classifier using 10-fold
cross validation including 200 subjects; b) Confusion matrix of the QSVYM
classifier using 25% hold out validation including 50 subjects.

The SwinT-ROP model is built using four optimizers such
as Yogi, ADAMW (Adam with momentum using decoupled
weight decay), SGDW (Stochastic Gradient Descent with
momentum using decoupled weight decay), and RMSprop
at different learning rates as in table 8. The model achieves
the best accuracy using Yogi optimizer at the learning rate of
1 xe3.

The results of the ablation studies are given in Table 9.
Swin-T ROP with shifted window partitioning has an 8.4%
increase in accuracy compared with the regular single win-
dowing technique. Second, the SwinT-ROP network is inves-
tigated with absolute instead of relative positional encoding.
The absolute positional encoding reduces the accuracy of
the model by 20.5%. Ablations of the proposed model with
different windowing sizes and number of stages were per-
formed. The results depict that the Swin-T built on shifted
windows (window size=7 x 7) using relative positional
encoding with three stages of Swin-Transformers performs
better than the other network variants.

The confusion matrix of the Swin-T ROP and QSVM
classifier in Figures 10 and 11 depict that the false negatives
(Actual ROP predicted as Normal) in ROP prediction are
high. In the case of machine learning classifiers, all 200 sub-
jects were included in the confusion matrix obtained using
10-fold validation, and 50 subjects (25%) were included in
the hold-out validation. In case of Swin-T ROP, 1000 subjects
were included in the confusion matrix obtained using 10-fold
validation, and 250 subjects (25%) were included in the hold-
out validation.

The Receiver operating characteristic (ROC) is a graph
plotted between the true positive or detection rate and False
positive rate. The Area under ROC (AUC) measures the total
area in the ROC plot. It quantitatively gives the performance
measure of classifiers at all classifying thresholds. Figure 12
shows the ROC curve obtained from the utilized classifiers
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FIGURE 11. a) Confusion matrix of the Swin-T ROP using 10-fold
cross-validation including 1000 subjects; b) Confusion matrix of the
Swin-T ROP CNN using 25% hold out validation including 250 subjects.

SwinT-ROP (AUC=0.90)
ResNet-50 CNN (AUC=0.93)
DarkNet-19 CNN (AUC=0.88)
SVM Classifier (AUC=0.88)
LogitBoost Classifier (AUC=0.87)

-#- K-Star Classifier (AUC=0.78)

RepTree Classifier (AUC=0.82)

=& QSVM (AUC=0.97)

True Positive Rate

XX,

0.4 0.6 0.8 1.0

False Positive Rate

FIGURE 12. ROC curve obtained from utilized classifiers and networks.
QSVM classifier covers the maximum area in the plot with AUC=0.97.

and networks. When there are equal instances in groups, the
shape of the ROC curve decides the best model for making
classifications. The more the ROC curve covers the upper left
corner of the plot, the better the model does at classifying the
data. Based on the curve provided, it appears that the QSVM
classifier is more effective at distinguishing ROP images
from normal images. This suggests that the QSVM algorithm
could be used as a valuable tool for medical professionals in
identifying cases of ROP.

The Machine learning classifiers such as SVM, REP Tree,
K-Star, and Logit Boost Classifiers attained accuracy of about
86.7%, 75%, T4%, and 76.5%, respectively. The sensitivity
achieved by SVM, REP Tree, K-Star, and Logit Boost Clas-
sifiers is 87.88%, 73.15%, 75%, and 75.73%, respectively.
The specificity of SVM, REP Tree, K-Star, and Logit Boost
Classifiers are 70%, 77.17%, 73.08%, and 77.3%, respec-
tively. But the ResNet50 attained a classification accuracy
of 91.5%, with a sensitivity of 90% and specificity of 93%.
ResNet50 after data Augmentation improves the accuracy
to 92.87%, with a sensitivity of 88.88% and specificity of
79.59%. SVM, REP Tree, K-Star, and Logit Boost Classi-
fiers achieved AUC values of 0.876, 0.82, 0.77, and 0.86,
respectively. But, the QSVM classifier outperforms all these
classifiers with an accuracy of 95.5%, sensitivity of 93%, and
specificity of 98%.

V. DISCUSSION
The automated detection of ROP could be able to provide
the appropriate treatment to neonates in rural areas. The
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TABLE 6. Comparison of Performance of REP tree, K-Star, LogitBoost Classifiers, and ResNet50 CNN in ROP detection of Retinal image using 10-fold cross

validation.

Performance Metrics Accuracy (%)  Sensitivity (%)  Specificity (%) PPV (%) NPV (%) AUC

REP Tree Classifier 75 73.15 7717 79 71 0.823
K-Star Classifier 74 75 73.08 72 76 0.775
LogitBoost Classifier 76.5 75.73 77.32 78 75 0.865
SVM Classifier 86.7 87.88 70 86.67 85.18 0.876
ResNet50 CNN Wltl.lout Data Augmentz?‘tlon 91.5 90 93 92.8 90.3 0.92
With Data Augmentation 92.87 88.88 79.59 98 87.75 0.93

DarkNet19 CNN Wltbout Data Augment{itlon 84.5 84.69 87.76 83.84 85.15 0.85
With Data Augmentation 89 89.79 91.84 88 90 0.88

SwinT-ROP 94.5 92 97 96.84 92.38 0.90
QSVM Classifier 95.5 93 98 97.89 93.33 0.97

TABLE 7. Comparison of Performance of REP tree, K-Star, LogitBoost Classifiers and ResNet50 CNN in ROP detection of Retinal image using Hold Out

validation.
Performance Metrics Accuracy (%)  Sensitivity (%)  Specificity (%) PPV (%) NPV (%) AUC
REP Tree classifier 76 81.82 90.91 69.23 83.33 0.81
K-Star Classifier 72 73.91 82.61 68 76 0.72
LogitBoost Classifier 74 72 76 75 73.07 0.78
SVM Classifier 86 87.5 91.67 84 88 0.89
ResNet50 CNN Wlt%lout Data Augmenta}tlon 90 88 92 91.67 88.46 0.95
With Data Augmentation 92 92.31 84.62 92.31 91.67 0.92
DarkNet19 CNN Wlt%lout Data Augmente‘mtlon 82 76.92 80.77 86.96 77.78 0.85
With Data Augmentation 88 91.3 100 84 92 0.87
SwinT-ROP 92 88 96 95.65 88.88 0.89
QSVM Classifier 94 92 96 95.83 92.31 0.92
TABLE 8. Performance of the SwinT-ROP using different optimizers at several learning rates in ROP detection.
Optimizer | Learning rate  Accuracy (%) Sensitivity %) Specificity %) PPV (%) NPV (%)
0.1 89.1 87 91.2 90.8 87.5
YOGI 1xe-2 93.3 93.8 92.8 92.8 93.73
1xe-3 94.5 92 97 96.84 92.38
1xe-4 93.6 94.4 92.9 94.3 93.6
0.1 90.8 90 91.6 91.46 90.15
ADAMW 1xe-2 92.6 90 95.2 94.9 90.49
1xe-3 93.4 91.6 95.2 95 91.89
1xe-4 93.4 92 94.8 94.65 92.21
0.1 74.1 76.2 72 73.12 75.15
SGDW 1xe-2 85.8 86.4 85.2 85.3 86.23
1xe-3 90.29 90 92.4 90.36 90.2
1xe-4 89 86.4 91.6 91.14 87
0.1 70.2 64.8 75.6 72.6 68.2
RMSprop 1xe-2 75.9 7 74.8 75.34 76.48
1xe-3 84.3 83 85.2 84.9 83.69
1xe-4 81.1 7 85.2 83.87 78.74

earlier detection could slow down the progression of ROP
and avoid permanent blindness in the affected neonates.
The proposed work emphasizes the clinical implications of
ROP in the mass screening programs of preterm infants with
the least burden to health care professionals. In the pro-
posed study, ROP is predicted from neonatal fundus images
using a QSVM classifier, classical machine learning clas-
sifiers, and pre-trained CNN, and their performances were
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evaluated. Tong et al. [55] classified ROP using ResNet
101 and Faster-RCNN networks and achieved an accuracy
of 90.3%. A Morlet wavelet transform-based retinal vascular
segmentation method created by Soares et al. [17] exhibited
a mean accuracy of 70%. The feature vector is built using the
intensity of pixels and Morlet wavelet responses at various
scales. The morlet wavelet features extracted are then pro-
vided as an input to the Naive Bayes Classifier. But the Morlet
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TABLE 9. Results of Ablations on Swin-T ROP in Prediction of ROP.

SI.No Techniques Accuracy (%)
1 No ablation (Baseline) 94.5

2 Ablation on shifted Windows (regular windowing) 87.17

3 Ablation on Relative Positional Encoding (Absolute Positional Encoding)  78.58

4 Ablation on Window size (with window size =5) 77.45

5 Ablation on Window size (with window size =3) 74.96

6 Ablation on Stages (Removal of 3rd stage Swin-Transformer) 78.63

7 Ablation on Stages (Removal of 2nd stage Swin-Transformer) 61.25

feature extraction requires optical disc boundary detection to
track the retinal vessels.

Fraz et al. [56] used bootstrapped ensemble classifier to
classify the retinal vessels and obtained a classification rate
of 83%. Han et al. [57] developed an unsupervised auto-
mated detection model using a generative adversarial network
(Skip-GANomaly) for identifying six different ophthalmic
diseases from four real-time datasets. In the classification
of anomaly fundus images, they achieved an accuracy of
80.72%, AUC of 0.896 with a sensitivity of 82.69% and
a specificity of 82.63%. The current study improved the
classification accuracy with 86.7% in Classical SVM and
95.5% in QSVM classifier. Niemeijer et al. [58] developed a
supervised approach for classifying the retinal vessels based
on the morphological features obtained from the manually
segmented vessels. They used SVM and KNN classifiers
for the classification of retinal vessels. The authors attained
a maximum performance for k-NN classifier with an AUC
value of 0.88. The current study of retinal vessel segmentation
produced a better AUC value of 0.93 using the ResNet50
network. Desiani et al. [59] created a retinal vessel segmen-
tation model using CLAHE with U-Net and LadderNet.
The accuracy obtained by their model is 95.47% which
is significant with that of the accuracy obtained from our
proposed model. But the need for complex U-Net and Lad-
derNet does not impact the accuracy. Also, it is evident
that the SegNet yields good segmentation results on Retinal
vessels.

Ahalya et al. [50] predicted rheumatoid arthritis using a
QSVM classifier. The authors achieved an improved accuracy
of 92.7% compared with classical machine learning classi-
fiers. Akpinar et al. [60] compared the classical SVM with
QSVM classifier using multiparametric MRI tissue charac-
teristics of whole lesion in differentiating Medulloblastoma
from Ependymoma. The authors concluded that the QSVM
classifier achieved the superior performance with an accuracy
of 90%. In the proposed study, Quantum machine learning
classifiers attained 10.15% increase in the accuracy com-
pared to the classical machine learning classifiers. The deep
learning network like Swin T ROP has an 8.99% increase in
accuracy compared to the classical machine learning clas-
sifier like SVM classifier. Hence, QSVM has better ROP
detection than the machine learning classifiers and CNNs.
Yet, the data augmentation in CNN improved the accuracy
by 1.5%.
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An AUC value of 0.5 denotes that the classification accuracy
of the classifier is more random, whereas an AUC value of
1 denotes that the classifier recognition is accurate. Higher the
AUC, the better is the classification performance. The AUC
value of 0.97 indicates that the QSVM classifier has yielded
a better classification of ROP.

The majority of the works in retinal vessel segmentation [16],
[17], [59] have been carried out using the image in the
databases such as DRIVE and STARE. Also, the number
of images used from the DRIVE and STARE databases are
limited to 40. At the same time, the current study overcomes
this limitation by constructing and validating the networks
using 200 real-time retinal fundus images. Wang et al. [61]
suggested that cardiovascular diseases could be identified
several years before their onset by identifying the narrowing
of retinal vessels [61]. Thus, the proposed system of clas-
sifying retinal images based on the vascular structure finds
its broad scope of application as a risk factor in many fatal
diseases.

A study by Quinn and Vinekar [62] demonstrated a sensitivity
range for diagnosing ROP of 57% to 100% (95% CI) using
fundus images. However, the sensitivity revealed by these
authors is based on how well the retinal imaging performs in
detecting various stages of ROP. The scope of the proposed
work is limited to predicting the existence of ROP in retinal
images rather than classifying its stages. Hence the accuracy
in predicting ROP using the proposed network is high, with
a sensitivity of 93% (95% CI 89.3 - 96.7), contradicting the
study conducted by Quinn et al.

The limitation of the proposed work is that it could just
predict the presence of ROP in the fundus image, rather than
classifying it into different stages or identifying the zones.
The images utilized were obtained from the same device in
a single hospital with similar population characteristics. This
might reduce the data diversity that influences the generaliza-
tions of the proposed system in ROP diagnosis.

The study conducted by Biten et al. [63] demonstrates the
sensitivity of the original diagnosis of the ROP category as
84% [95% CI]. The confusion matrix shows that the false neg-
atives (Actual ROP predicted as Normal) in ROP prediction
are high. The network is trained and tested using the neonatal
retinal images of the infants with the annotations resulting
from the manual ophthalmoscopic examinations conducted
by pediatric ophthalmologists. The proposed network is
trained based on the annotations from the original diagnosis,
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which may have inherent errors. Hence, false negatives from
the proposed work may account due to the errors and glare
limit in the retinal image captured. A follow-up study of
the neonates may ensure whether the false positives (Normal
cases predicted as ROP) are low-grade actual ROP cases or
may develop ROP in a later stage, which is beyond the scope
of the study. This may be carried out in the future to eliminate
false positives and enhance the telemedicine approach in
ROP diagnosis. CNN-based annotation tools could be used to
provide automated annotations [64], and their influence could
be studied. Mobile Edge Computing [65] could be carried out
in future work to enable real-time processing of retinal images
by the end user.

VI. CONCLUSION

The proposed model is aimed at predicting ROP in retinal
fundus images having abnormalities in retinal vessel mor-
phology. The study achieved state-of-the-art performance on
the stated task with improved performance using real-time
retinal fundus images. The classical machine learning clas-
sifiers such as SVM, REP Tree, K-Star, and Logit Boost
Classifiers attained an accuracy of 86.7%, 75%, 74%, and
76.5%, respectively. ResNet50 and DarkNet19 CNN classi-
fied ROP from normal fundus images with an accuracy of
92.87% and 89%, respectively. Among these machine learn-
ing classifiers, the SVM classifier achieves the maximum
sensitivity of 87.88%, specificity of 70%, and AUC value
of 0.876. ResNet50 Network obtained the highest classifica-
tion performance than DarkNet19 CNN with an accuracy of
92.87%, a sensitivity of 88.88%, and a specificity of 79.59%.
The proposed SwinT-ROP model achieved an accuracy of
94.5%, sensitivity of 92%, and specificity of 97%. It is
observed that the QSVM classifier surpasses the classical
machine learning classifiers and CNN networks with a max-
imum classification accuracy of 95.5%, a sensitivity of 93%,
and a specificity of 98% with an AUC value of 0.97. The
utilization of Artificial Intelligence in the classification of
different stages of ROP could be carried out in the future.
Future research could focus on training the network using
images obtained from various localities to enhance the versa-
tility of the network. The proposed approach finds application
in point-of-care diagnosis of ROP to gain access to diagnostic
expertise in underserved regions.
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