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ABSTRACT Manufacturing systems are the core of manufacturing industries that have evolved to adapt to
the ever-changing landscape. Nowadays, manufacturing systems aremore frequently exposed to disturbances
and risks that affect their everyday operations. Hence, it is imperative to analyze and design proactive and
reactive strategies to respond to those disruptive events.While there has been an increasing interest in tackling
risks from the supply chain perspective, an analysis of risks from the manufacturing system view has been
neglected. Risks are broadly classified into operational risks and disruption risks. This study presents a
literature review of different manufacturing paradigms and what operational risk considerations have been
discussed for each stage of the manufacturing life cycle. The review further analyzes how manufacturing
systems are trying to handle disruption risks. Additionally, the article maps the different manufacturing
systems and the strategies implemented to the different adaptability facets. Finally, the paper discusses
managerial insights and possible research avenues.

INDEX TERMS Disruption risks, flexible manufacturing systems, manufacturing systems paradigms,
operational risks, reconfigurable manufacturing systems, smart manufacturing systems.

I. INTRODUCTION
Manufacturing systems (MSs) (or production systems) are
comprehensive systems that involve equipment, people, and
procedures organized to accomplish the manufacturing oper-
ations of an organization [1]. The different manufacturing
system paradigms have evolved, influenced by new produc-
tion, machines, information, materials, and product technolo-
gies, as well as the evolution of organizational strategies
[2]. Therefore, the manufacturing landscape has evolved to
become leaner, more flexible, and smarter, impacting factory
design, operation, and control [3].
The COVID-19 pandemic has changed the manufacturing

panorama. On one side, industries have been exacerbated
by the increased demand and the nervousness created in the
supply chains (SCs). On the other hand, industries have halted
their production to adjust to the new needs [4]. Therefore,
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several initiatives have been proposed worldwide to tackle the
arising risk factors.

The manufacturing organizations and systems are exposed
to different risks or disruptive events that interrupt production
operations and conditions. Although the production system is
the core section of the industry, including the entire product
value chain from product design to services [5], the analysis
of risks in the MSs context is scattered. While there is a
growing body of literature on supply chain resilience [6],
manufacturing systems’ capabilities and ability to handle
different risks require further study.

Table 1 provides a sample of previous review papers
focused on MSs. From the table, the scope of prior reviews is
limited to a specific manufacturing paradigm for a particular
topic or aspects of the evolution of MSs (e.g., characteris-
tics, drivers, enablers, use cases, future perspectives, etc.).
However, there has been limited concentration on risks and
disruptions and how different manufacturing paradigms can
handle them. Further research in this area is needed. Hence,
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this research presents a literature review on the state of the
art of manufacturing paradigms (i.e., flexible manufacturing
systems, reconfigurable manufacturing systems, and smart
manufacturing systems) and how they plan, react, and cope
with different risks. Therefore, the following research ques-
tions were defined:

TABLE 1. Sample of recent reviews on manufacturing systems.

RQ1. What type of operational or disruption risks could
each manufacturing paradigm handle?

RQ2. What mitigation strategies does each manufacturing
paradigm implement when facing risks?

RQ3. What characteristics allow MSs to deal with opera-
tional and/or disruption risks?

RQ4. How can the different manufacturing paradigms be
mapped to the adaptability facets?

The main contributions of this study are: (1) to present a
literature review covering from 2000 to 2021 to assess manu-
facturing paradigms and their capabilities to deal with various
risks, (2) to map manufacturing systems characteristics to
different adaptability facets, and (3) to discuss managerial
insights and future research directions.

The remainder of this paper is organized as follows.
Section II provides several definitions significant to the arti-
cle. Section III discusses the research methodology imple-
mented. Section IV to VII classifies the state-of-the-art
related operational risk considerations in each MS’s lifecycle
stage. Section VIII reviews the literature onMSs dealing with
disruption risks. Section IX discusses the findings and the
answers to the research questions. The paper concludes by
summarizing and outlining future research opportunities in
section X.

II. RESEARCH BACKGROUND
A. MANUFACTURING PARADIGMS
Several manufacturing paradigms have been proposed
throughout history, influenced by product changes, pro-
duction technology, processes, production volume, vary-
ing degrees of automation, intelligence, and adaptation
[2]. Moreover, through industrial revolutions, prominent

manufacturing paradigm systems have been introduced. The
first industrial revolution was characterized by mechaniza-
tion. During the second industrial revolution, the mass pro-
duction strategy was enabled by dedicated manufacturing
systems to achieve economies of scale. The third indus-
trial revolution featured computers and automation, allowing
flexible and reconfigurable manufacturing systems to be
designed. In recent years, the fourth industrial revolution
has been developing based on integrating information and
communication technologies, such as cyber-physical sys-
tems and cloud computing, to enable smart manufacturing
systems [15].
Flexible manufacturing systems (FMSs) consist of

automated numerically controlled workstations connected
through handling systems under computer control for auto-
matic processing. The main advantage of FMSs is their
flexibility in managing resources to manufacture a large
variety of parts of a single family, also known as gener-
alized flexibility. However, FMSs often contain excessive
capability, resulting in unnecessary costs [16]. Flexibility
could include several categories, such as machine, produc-
tion, product, routing, volume, and expansion flexibility. The
FMS’s key characteristics are:

• Adaptability that allows changes and adaptation of pro-
cesses and production volumes within the pre-defined
limits without physically modifying the MS.

• Responsiveness to changes in products, production tech-
nology, and markets.

• Agility to launch new products for new markets and
react to change, which is achieved with the help of
computer-integrated control and operation of system
modules and production schedules.

Reconfigurable manufacturing systems (RMSs) were
introduced in the mid-1990s as a cost-effective reaction to
market demands for responsiveness and customization by
allowing a rapid change in structure (hardware and software
components) to quickly adjust production capacity and func-
tionality within a part family [9]. They can be improved,
upgraded, reconfigured, and extended rather than replaced.
RMSs have six distinguished characteristics [2], [10], which
include:

• Modularity of physical and logical modules
• Scalability to modify the production capacity by adding
or removing resources

• Convertibility to quickly transform the system’s func-
tionality

• Diagnosability to identify the sources of quality and
reliability problems requiring repair or maintenance

• Customization to allow flexibility around a product
family

• Integrability of system modules through standardized
hardware and software

Smart manufacturing systems (SMSs) are fully integrated,
collaborative MSs that respond in real-time to meet chang-
ing demands and conditions in the factory, supply net-
work, and customer needs. It includes the manufacturing
equipment and the cyber layers linked by the interface.
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The manufacturing equipment has its own intelligence, while
the cyber layer provides system-wide intelligence [17]. This
concept shares many characteristics with the Cyber-Physical
Production Systems (CPPS) and Industry 4.0 (I4). Therefore,
they are used interchangeably in the literature [2]. SMSs
employ the concepts of CPPS, the Internet of Things (IoT)
(and everything), cloud computing, service-oriented comput-
ing, artificial intelligence (AI), and data science [17]. The key
features of SMSs are:

• Data connectivity and transparency to establish
connections and gather information, among other
systems

• Virtualization to represent the physical systems
• Predictability, which analyzes the gathered data and exe-
cutes data-driven decisions

• Sustainability for products and processes development
• Interoperability for resource sharing and networking

B. OPERATIONAL VS DISRUPTION RISKS
Risks in the manufacturing environment and the SCs can be
classified into two broad categories: operational and disrup-
tive risks [18], [19]. Operational risks are recurrent and are
related to inherent uncertainties that arise from the coordi-
nation of demand and supply. Common operational disrup-
tions are machine breakdowns, transportation delays, forecast
errors, demand fluctuations, and those that can be identified
using historical data to quantify the level of risk [20]. On
the other hand, the externally rising events considered major
disruptions would last longer, and their impacts could be
propagated to different SC echelons [21]. Disruptive risks
arise from significant disruptions caused by natural and man-
made disasters.

III. RESEARCH METHODOLOGY
A systematic review was performed using the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) guidelines proposed by Moher et al. [22]. The
literature search covered 2000 to 2021 using the SCOPUS
database. The initial investigation was conducted on January
21, 2022.

The search was performed in two stages. The first stage
corresponds to the general analysis of MSs and risk inte-
gration. Therefore, the bibliographic search on the articles’
title, abstract, and keywords was carried out using the follow-
ing search terms: (‘‘manufacturing system’’ OR ‘‘production
system’’) AND (‘‘disruption’’ OR ‘‘risk). This search was
intended to gather relevant works discussing different risks
and their implications for general manufacturing systems
(GMSs).

The second stage of the search corresponds to specific
manufacturing paradigms: FMSs, RMSs, and SMSs. These
three paradigms were chosen as they are the flagship systems
of the third and fourth industrial revolutions. Therefore, the
article’s title, abstract, and keywords were searched using
the following terms (‘‘flexible manufacturing system’’ OR
‘‘reconfigurable manufacturing system’’ OR ‘‘smart manu-
facturing’’) AND (‘‘disruption’’ OR ‘‘risk’’). It is important

to note that this study does not pretend to document all the
available literature but instead analyzes the most representa-
tive studies.

A. ELIGIBILITY CRITERIA AND ARTICLES SELECTION
The articles included in this study are articles published in a
journal, original contributions, full-text available, and written
in English. After implementing the search strategymentioned
in the section before, a total of 218 articles were identified.
Moreover, other sources identified additional records to add
71 extra papers. After removing duplicates, a total of 247 arti-
cles were screened.

Review articles and articles that did not explicitly tackle
risks or disruptions were excluded. Additionally, articles
focusing on SCs, inventory strategies (e.g., [23] [24]), energy
systems, and agricultural systems were removed. A total
of 96 articles were included in this review. Fig. 1 summa-
rizes the selection process and states the reasons for the
exclusion.

FIGURE 1. Literature selection.

B. DATA ANALYSIS
The articles were classified using two main categories: those
covering operational risks and those discussing disruptive
risks. The papers were further categorized for operational
risks according to the manufacturing system life cycle stages
in which the risk is considered.

The manufacturing systems life cycle includes the ini-
tial system design and synthesis, modeling, analysis and
simulation, realization and implementation, operation, and
redesign/reconfiguration phases [25]. The resource life cycle
was classified by .von Euler-Chelpin [26] into the design, pro-
duction planning, production, use, and disposal stages. There-
fore, the following four stages for the manufacturing system
life cycle are used to classify the literature: design, develop-
ment/implementation phase, operation phase, and dismantle
and/or redesign. Not all the paradigms have considered risks
in all the lifecycle stages (i.e., disposal), as presented in Fig. 2.
Therefore, sections for each lifecycle and paradigm will be
introduced if there is available literature. Otherwise, they will
be omitted.
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FIGURE 2. Studied manufacturing lifecycle stages and operational risks.

IV. OPERATIONAL RISKS IN THE DESIGN STAGE OF
MANUFACTURING SYSTEMS
The manufacturing environment has evolved to adapt to mar-
ket conditions and customer demands. Hence, the design of
MSs is a challenging activity. The design stage starts with a
stakeholder analysis to identify the design’s constraints and
degrees of freedom [27].

A. FMSS CONSIDERING RISK IN THE DESIGN STAGE
In the initial FMS conceptual design, evaluating the flexibility
required and the investment feasibility is critical. Considering
investment risks, Karsak [28] introduced a distance-based
fuzzy multicriteria decision-making method based on the
concepts of ideal and anti-ideal solutions for selecting an
FMS alternative. This framework combined economic and
strategic performance variables represented with linguistic
variables, fuzzy triangular numbers, and crisp numbers in the
evaluation process.

B. RMSS CONSIDERING RISK IN THE DESIGN STAGE
To consider the possible investment risk and demand uncer-
tainties, Andersen et al. [29] established a decision-support
tool for assessing the investment feasibility of changeable
and reconfigurable manufacturing design concepts based on
future demand predictions and their uncertainties. The tool
analyzed the discounted value of capital and operating costs
of the design concepts and the changeability extent. Sander-
son et al. [30] proposed a Function-Behaviour-Structure
methodology for Evolvable Assembly Systems to allow the
self-adaptiveness of operational parameters and reconfigura-
tion behavior. The method encompasses an ontology model
and design process, which can be beneficial in addressing
challenging environments such as I4.

C. SMSS CONSIDERING RISK IN THE DESIGN STAGE
One of the main features of SMSs is the usage of infor-
mation technologies (IT) to streamline the manufacturing
process more efficiently. However, IT systems are vulnerable
to different threats. Therefore, Häckel et al. [31] devel-
oped a risk assessment model that helps companies in the
investment decision-making process regarding IT security
measures by identifying and assessing the most critical areas
of the information network. They implemented graph theory,
matrix notation, and value-at-risk to quantify IT availability
risks.

V. OPERATIONAL RISKS IN THE DEVELOPMENT STAGE
OF MANUFACTURING SYSTEMS
During the process development phase, the rough solutions
from the design phase are refined to a level that allows inves-
tigation with analysis tools. This phase refers to the system
definition, where one solution is refined to a detail that will
enable starting system implementation. This stage is char-
acterized by system integration, where previously defined
subsystems are composed into a complete system [32], [33].

A. GMSS CONSIDERING RISK IN THE DEVELOPMENT
STAGE
Different authors have considered the design of risk assess-
ment frameworks and methods to evaluate and overcome
various risk factors. For instance, Lazov [34] introduced
a risk-based analysis of a single workstation facility using
system information and entropy. The system information
represents a loss function; the system entropy (uncertainty
associated with the system) means the risk function. They
determined the system parameters to control the system risk
in a unified way. On a narrower view, risk assessment of tool
failure has also been considered. For instance, Khalaj et al.
[35] employed the Dempster-Shafer method and risk assess-
ment diagram to calculate tool failure risk when the correct
data is lacking or incomplete. Their method defines an inter-
val for the consequence impact and determines the likelihood
of failure relative to risk and reliability. Similarly, He et al.
[36] proposed the functional risk concept of a MS, which
includes explicit (product dimension variations caused by
geometric machine errors) and implicit (infant product failure
during the usage phase) risks. Additionally, they introduced
a method for fault detection of high-quality manufacturing
processes.

1) SAFETY RISK
The development stage allows the identification of possible
risks and failure modes that could arise during the opera-
tion stage. For instance, Silvestri et al. [37] incorporated the
failure, mode, effects, and criticality analysis with economic
variables to consider the risk and minimize the total safety
costs. They defined a total risk priority number index. The
index is established using the improved risk priority number
in combination with the analytic network process.

2) ERGONOMIC RISK
Automation for MSs has achieved a high production rate.
However, system flexibility is often provided by human
dexterity and the cognitive capabilities of the workforce.
Therefore, workers are exposed to ergonomic risk due to
repetitive manual tasks. To find the optimal job rotation
schedules in assembly lines, Mossa et al. [38] introduced a
mixed-integer programming model that maximizes the pro-
duction rate, minimizes the ergonomic risk, and balances
human workloads. Similarly, Moatari-Kazerouni et al. [39]
developed an occupational health and safety risk estimation
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tool for MSs by integrating occupational health and safety
(OHS) matters into facility design models.

B. FMSS CONSIDERING RISK IN THE DEVELOPMENT
STAGE
Researchers have also tried to identify possible risks in the
development of FMSs. Therefore, risk assessment meth-
ods have been proposed in the literature. For instance,
Zhang et al. [40] suggested the combination of Fault Tree
Analysis and Fault Mode and Effect Analysis (FMEA) to
establish functional fault modes by criticality analysis. They
used the TOPSISmethod to assess the priority ranking of fault
modes/causes.

1) ERGONOMIC RISK
Research has been conducted to prevent human factor-related
disruptions and ergonomic risk in FMSs. Arocena et al. [41]
investigated the impact of risk prevention practices and orga-
nizational factors on occupational injuries, which consist of
occupational safety measures (intensity and the orientation of
risk prevention), the implementation of quality management
tools, the enhancement of workers empowerment, and the use
of flexible production technologies. They found that firms
with more flexible production technologies are significantly
affected by higher accident levels. Likewise, Bautista et al.
[42] developed optimization models to solve the assembly
line balancing problem by considering temporal, spatial, and
ergonomic attributes. They suggested a risk category classifi-
cation that merges various evaluation methods of risk factors
(postural loads, repetitive movements, and manual handling).

C. RMSS CONSIDERING RISK IN THE DEVELOPMENT
STAGE
To define the detailed design, Abdi and Labib [43] analyzed
RMS key-design attributes such as capacity value, functional-
ity degree, and reconfiguration time and described them with
fuzzy sets to consider the uncertain demands of product fam-
ilies. They proposed an integrated structure of the analytical
hierarchical process (AHP) and fuzzy set theory, providing
insights into a RMS design feasibility by contemplating tech-
nical and economic aspects.

1) RESOURCE FAILURE
To determine the probability of human errors in RMSs,
Elmaraghy et al. [44] developed a model centered on task
characteristics, work environment, and workers’ capabilities
by applying a multi-attribute utility analysis based on a col-
laborative negotiation approach. The model is intended to be
employed to evaluate the level of acceptable human error.

2) SAFETY RISK
RMSs offer high versatility thanks to critical characteris-
tics (e.g., modularity, integrability, etc.), which allow the
systems to ‘‘plug and produce.’’ Although RMSs offer signif-
icant functional improvement, the issue of safety guarantee

during runtime is still an issue. Koo et al. [45] analyzed
the requirements for machinery safety demanded by estab-
lished standards in the European Union. They discussed
the challenges of implementing an automated solution for
assessing the safety of plug-and-produce systems. Similarly,
Berger et al. [46] addressed the safety issue of humans
cooperating with RMSs and proposed to design a safety
bubble. Hence, they devised a methodology of deployment
with offline/online systems to validate the safety of the coop-
eration of safe robotized units and to detect any intrusion of
the operators in the robotized areas.

D. SMSS CONSIDERING RISK IN THE DEVELOPMENT
STAGE
Several researchers have carried out risk assessments for
the implementation of SMSs. For instance, Helu et al.
[47] defined an Implementation Risk Assessment Frame-
work for smart manufacturing (SM) to identify higher risks
and weaknesses. The framework classifies manufacturing
technology implementation barriers and ranks them using
community-developed standards and tools. Sarwar et al. [48]
introduced a FMEA, which integrates rough set theory and
ELimination and Choice Translating Reality (ELECTRE) II
method to consider subjectivity and uncertainty in decision
makers’ assessments. The rough numbers are considered to
recognize the risk priority of technical failures, eliminate
them, and evaluate the risks from design, system, and process.

Riddick et al. [49] studied the SM concept for a food
production network. They introduced a Smart Manufactur-
ing Platform, a software and services platform designed
to decrease the risks of ingredient variability and improve
efficiency.

1) SAFETY RISK
OHS in SM is a challenging factor to address. For instance,
Dombrowski et al. [50] employed real-time physics simula-
tion using a virtual factory model to understand better the
risks involved in human-robot collaboration. Users can inter-
act with components and tools and perform tasks, including
collaborative steps. Similarly, Dombrowski et al. [51] studied
risk assessment and safety certification for planning human-
robot collaboration. They investigated the requirements to
avoid direct collision between humans and robots employing
power and force limiting and proposed parameters for the
simulation of human-robot cooperation. In another study,
Mengoni et al. [52] developed a spatial augmented reality
system to support manual work in intelligent factories. The
system delivers instructions and alerts in case of risks to
human safety and ergonomic issues. The system was tested
in two factories and is more efficient than an LED monitor-
based system.

With the advent of new technologies, OHS needs to be
linked with Human-Computer Interaction (HCI) and cyber-
security for functional safety, as it can lead to a potential
risk for humans. Therefore, Korfmacher [53] emphasized
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that standards are an appropriate resource for considering
functional safety and cybersecurity. This view is supported
by Ehrlich et al. [54]. They examined the alignment of safety
and security risk assessment processes and the possibility
of automation for MSs in the I4 context. They mentioned
that current risk assessments are not adaptive and undermine
the I4 flexibility. Therefore, they highlighted the need for a
common taxonomy of both domains.

Etz et al. [55] envisioned designing a self-organizing safety
system to discover all safety-related devices and automati-
cally produce a proper safety configuration. The configura-
tion is deployed to the system automatically after adaptation
and validation, which minimizes engineering efforts and
machine downtime.

VI. OPERATIONAL RISKS IN THE OPERATION STAGE OF
MANUFACTURING SYSTEMS
The operational phase of the MS refers to the use phase of
the resources, which includes production activities such as
maintenance and improvements [26].

A. GMSS CONSIDERING RISK IN THE OPERATION STAGE
Different risks could arise during the operation phase, such
as material unavailability, resource failures, unavailability
of operators, and rush orders. Therefore, researchers have
proposed different methods to cope with those disturbances.
For instance, Darmoul et al. [56] proposed an immune-based
framework to monitor and control MSs that effectively deal
with unexpected events. Based on analogies from the biologi-
cal immune system to face threats (viruses, cancers, etc.), they
implemented the prototype using a multiagent approach to
show the feasibility of the framework. Likewise, Bayar et al.
[57] proposed a biological immunity to guide the design of a
knowledge-based approach to handling disruptions and risks
(detection, identification of consequences, and reaction to
disturbances). They developed and implemented a prototype
using ontologies and multi-agent systems to highlight the
importance of the approach.

Scheduling and rescheduling approaches have been pro-
posed to react to a possible disturbance in the MS. For
instance, Vieira et al. [58] highlighted the importance of
rescheduling when facing different operational disruptions
and provided a framework to classify the various rescheduling
strategies, policies, and methods. Similarly, Tanimizu et al.
[59] considered the rescheduling problemwhen facing distur-
bances such as manufacturing operations delays and adding
new jobs. Therefore, they proposed a reactive scheduling
method activated only when unscheduled disruptions occur
during manufacturing.

1) LOW-QUALITY RISK
Due to different circumstances, the output from the MS
could have low quality. To avoid this risk, Tannock and
Saelem [60] studied the cost of poor-quality performance.
They defined the concept of disruption cost as a separate

category of quality cost. They simulated a manufacturing
cell incorporating inspection and rework and quantified the
disruption cost. However, validation with empirical data
was not performed. Comparably, Zhao et al. [61] analyzed
the functional risk using the correlation between product
quality decline and machine performance degradation. They
proposed a risk-oriented optimization method of integrated
maintenance considering the quality loss of work-in-process
from the production system. Likewise, quality rework loops
and random machine failures were analyzed by Zhu et al.
[62]. They developed a mathematical program based on
real-time events and data to estimate the machine production
rate. They defined the concept of permanent production loss
as a system’s real-time performance indicator.

2) MACHINE-RELATED DISRUPTIONS
Equipment failure is a common risk faced by MS. Hence,
Park and Tran [63] proposed a cognitive agent-based MS
in which the shop floor overcomes the disruptions by agent
cooperation without upper-level aids (enterprise resource
planning or manufacturing execution system). The agents use
the ant colony technique for handling equipment failures.
They implemented cognitive agent technology in amachining
shop at Hyundai Company, demonstrating the autonomous
adaptability to internal disturbances. Comparably, swarm-
based cognitive agents were developed by Park and Tran [64]
to cope autonomously with disturbances on the shop floor.

To assess the effects of resilience on lean practices,
Zarrin and Azadeh [65] developed a simulation model and
tested scenarios considering resource breakdown. The results
revealed that redundancy improves efficiency compared to
other resilience engineering principles (velocity, reporting
culture, and top management commitment).

MSs downtime can be related to reactive or pre-
ventive maintenance. Thus, critical components and a
decision-support tool for managing maintenance activities
were provided by Erozan [66]. The tool utilizes the duty
cycle, the utilization rate of capacity, the safety stock effect,
and the redundancy effect. The results were compared with
the traditional reliability function, showing that the tool
provides a more realistic impact. Similarly, Paprocka [67]
simulated predictive-reactive and proactive-reactive mainte-
nance to select a better method of production organization
that decreases costs and waste due to equipment failure. In the
predictive-reactive approach, a stable schedule is constructed.
In comparison, a schedule is developed for the best sequence
of idle times between jobs for the proactive-reactive method.
Then, robustness measures are analyzed to compute the oper-
ational efficiency of the disrupted system.

Sobaszek et al. [68] presented the time-based machine
failure prediction algorithm, which analyzes historical data
to define the failure rate of the equipment. Likewise,
Paprocka et al. [69] studied the maintenance and production
task scheduling to enable the production system to be indiffer-
ent to disruptions by developing the best predictive schedule.
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B. FMSS CONSIDERING RISK IN THE OPERATION STAGE
1) SUPPLY AND DEMAND DISRUPTIONS AND RUSH
ORDERS
Flexible resources have been adapted to mitigate demand-
supply mismatch risks. This is exemplified by Tomino et al.
[70], in which Toyota, Nissan, and Mitsubishi were surveyed
regarding integrating changing market demand information
into their production plans and collaborative practices. They
also studied the evolution from ‘‘operation-specific’’ to a
‘‘value chain-involving’’ flexible customizing system.

Mak and Shen [71] introduced an integer stochastic pro-
gramming formulation to optimize the process flexibility and
the network structure given various resources, production
costs, and demand uncertainty. Considering rush orders and
machine breakdowns, Zhang and Wong [72] suggested a
genetic algorithm to solve the integrated process planning
and scheduling in an FMS, which uses operation sequences
directly as chromosomes.

2) MACHINE-RELATED DISRUPTIONS
Machine disturbances are frequent occurrences for FMS.
Inherent to FMS, deadlocks can occur in the system caused
by the competition and indefinite waits for the shared limited
resources among parts processed concurrently in the same
sets. The three most popular strategies to handle deadlock
are detection and recovery, prevention, and avoidance [73].
Chew and Lawley [74] and Chew et al. [75] studied FMSs
where deadlocks could occur. They proposed supervisory
controllers to allow parts to continue the manufacturing
process if they are not required to use the failed resource.
Therefore, the system is not entirely shut down.

Several authors have studied the strategies to handle
machine breakdowns. Among the most popular solutions is
the consideration of scheduling/rescheduling solutions. For
instance, Piramuthu et al. [76] introduced an adaptive frame-
work for dynamic MS scheduling with a knowledge base
to decide the dispatching rules. Its relative performance is
enhanced further when the introduction of tight job due dates
and machine breakdowns causes frequent disruptions. Sim-
ilarly, Yazgan [77] proposed an analytical network process
model based on benefit, opportunity, cost, and risk to select
FMS dispatching rules using a multiple-criteria decision-
making process. They considered risks such as tool and
software failure and machine breakdown. In another study,
Gaula and Sharma [78] suggested a hybrid framework by
implementing qualitative techniques (i.e., FMEA) and quan-
titative techniques (i.e., Generalized Stochastic Petri Net and
simulation experiments) to model and analyze the failure
aspects in cells. They proposed a combination of schedul-
ing and maintenance policies to tackle the failures. In the
same vein, Alotaibi et al. [79] studied scheduling in dynamic
FMSs and introduced an energy and time-aware job-shop
using agent-based dynamic bi-objective robustness. They
considered dynamic job arrival and machine breakdown and
examined how different combinations of decision-making
policies affect the system’s resilience.

Jimenez et al. [80] proposed a switchingmechanism frame-
work in dynamic hybrid control architectures (i.e., hierar-
chical scheduling and heterarchical execution systems) that
searches for optimal coupling of predictive scheduling and
reactive control. It monitors the system dynamics online and
adapts between operating modes to obtain the most suitable
production control strategy. The switchingmechanism imple-
mentation demonstrated an improved response to disruptions
in a global performance indicator.

Regarding scheduling/rescheduling strategies, the consid-
eration of routing flexibility allows for tackling uncertain-
ties such as machine breakdown. For instance, Chen and
Chen [81] suggested an adaptive scheduling approach for the
integrated decisions of part/machine scheduling and opera-
tion/tool routing on a dynamic horizon. They used a two-state
continuous-time Markov process to analyze this problem.
Altumi et al. [82] considered tool failure’s impact on the
performance of FMSs for system reliability requirements.
They suggested a mathematical model for determining the
spare requirements of the tooling system in an FMS to
obtain the desired system reliability and minimize the cost.
In another research, Wang et al. [83] developed a robust
scheduling model for an FMS with replenishment consid-
ering uncertain machine failure disruptions. They showed
that solving a mixed-integer linear program is similar to
the optimal solution obtained by the multi-stage dynamic
scheduling problem.Mejía and Lefebvre [84] studied an FMS
with an uncertain environment (i.e., operation interruptions
and unreliable resources) using Petri nets and a graph search
algorithm. The author aimed to represent the risk of operation
disturbances and inaccessible resources and achieve robust
scheduling for FMS.

Nouiri et al. [85] introduced the Green Rescheduling
Method to study an energy-efficient scheduling/rescheduling
problem with routing flexibility to cope with machine
breakdowns. They devised a mixed integer programming
model for a flexible job-shop (FJ) to compare the method’s
performance.

Industrial production is increasingly becoming flexible,
diversified, customized, and dynamic. Therefore, scheduling
research needs to alter its focus from traditional static, cen-
tralized decision-making to smart, dynamic, and distributed
models and methods since many assumptions of traditional
job-shop problem models become no longer valid [86]. The
introduction of Industry 4.0 has called for the implementation
of SM technologies. For instance, Yao et al. [87] introduced
a decision-support system to assist decision-making when
facing manufacturing disruptions. The system employed a
database, a discrete-event simulation model, optimization
models, and a manufacturing execution system integrated by
IoT. The system enables the scheduling and re-scheduling
of machines and autonomous guided vehicles while finding
near-optimal production schedules, prioritizing just-in-time
material delivery performance and energy efficiency of the
material transportation. Zhang et al. [86] studied a dynamic
FJ environment with the integration of SM. They con-
sidered the integrated processing planning and assembling
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scheduling with shop floor disruptions. They included an
exact solution method into a metaheuristic, finding good
results for optimizing makespan, maximum machine work-
load, and total tardiness.

Meza et al. [88] presented a dynamic hybrid control archi-
tecture to minimize myopic and nervous behavior in the pres-
ence of perturbations for a dynamic FJ scheduling problem.
The authors started by executing a metaheuristic to establish
a predictive schedule. After that, when perturbations occur,
the system uses a reactive model to update the schedule with
a heuristic algorithm. The researchers suggested strategies in
the system to minimize nervousness and myopic conduct.

C. RMSS CONSIDERING RISK IN THE OPERATION STAGE
1) MACHINE-RELATED DISRUPTIONS
To design resilient RMS, Gu et al. [89] studied machine
failure and developed three resilience measures (i.e., produc-
tion loss, throughput settling time, and total underproduction
time), which are analyzed using a Bernoulli reliability model.
The measures are intended to be used for the optimal design
for the resilience of RMS configurations, investment deci-
sions, and control strategies for risk mitigation. Similarly,
Qin et al. [90] proposed using reconfigurable machines and
movable buffers to increase the resilience of a production sys-
tem. They used a customized Markov chain model to mimic
the production system. They evaluated the production system
resilience by combining production loss, steady production
ratewith threshold, work-in-process in idle-area, process time
of work-in-process in idle-area, and investment returns.

Khan et al. [91] considered an imperfect RMS prone
to defects and quality-related concerns caused by machine
disruption and tolerance-related problems. Therefore, they
analyzed the process planning, introduced a multi-objective
model to optimize the process plan’s total cost and qual-
ity decay index, and implemented a multi-objective particle
swarm optimization. The results can aid in understanding the
effect of quality on process plan selection.

2) SUPPLY AND DEMAND DISRUPTIONS
RMSs have been designed to meet unexpected opera-
tional disturbances such as fluctuation/uncertainty of demand
and/or availability of resources. One of the most critical
decisions for RMSs is the definition of their configuration.
Rehman and Babu [92] studied the importance of several
RMS configurations utilizing an AHP-based procedure. They
considered changes in the customer arrival patterns, the num-
ber of orders per customer, and order priority rules. This
procedure helped to select the system configuration based on
several customer/system performance metrics.

Inspired by the flexibility inherent in FMS and RMS,
Copani and Urgo [93] considered two flexibility-oriented
manufacturing models, the ‘‘reconfiguration guarantee’’
and the ‘‘capacity guarantee,’’ which are invoked through-
out the RMS lifecycle based on customer requirements.
They proposed stochastic configuration methods to design
focused-flexibility production systems as a promising

methodological enabler of new flexibility-oriented business
models.

Zheng et al. [94] studied the configuration design for
robotic MSs in small and medium-sized enterprises (SMEs).
They developed a template model for defining the basic
architecture of robotic MSs, allowing rapid change from one
MS to another according to changing customer requirements.
To reconfigure a system, different criteria can be evaluated.
However, the literature tends to neglect the criteria’ definition
and importance. To assess the reconfiguration of a RMS
during the operation, Mabkhot et al. [95] suggested a broad
set of quantitative indicators and provided a framework to set
up the weights. Therefore, they introduced three weighting
methods according to the decision maker’s expertise and the
reconfiguration process’ participation. To react to changing
orders and the need for frequent reconfiguration, Koo et al.
[96] proposed a dynamic meta-model that executes a risk
assessment and FMEA process during the runtime, consid-
ering safety and production quality.

D. SMSS CONSIDERING RISK IN THE OPERATION STAGE
To prepare for disturbances and become resilient, Tomiyama
and Moyen [97] developed a design method for a resilient
architecture of a CPPS that can deal with disturbances and
failures in a discrete-event process. The design is based on
three principles: (1) different kinds of redundancy helpful for
reconfiguration, (2) a mesh topology for controllers, sensors,
and actuators, and (3) subsystems must be apart from addi-
tional subsystems to the greatest extent.

SMSs structures have been analyzed to find insights that
can boost resiliency. For instance, Moghaddam and Desh-
mukh [98] studied how control structures in CPPS affect
the resilience of manufacturing control. They considered
operational disruptions (e.g., computing errors, dysfunc-
tional/compromised controllers), which could cascade in the
control structure. They found that more heterarchical struc-
tures are more resilient against non-cascade disruptions and
less resilient against cascade disruptions. In contrast, hierar-
chical structures show the opposite behavior.

To prevent disruptions during the operation phase,
Lee et al. [99] performed risk identification and assessment in
distributed manufacturing networks. They adopted Petri nets
to make decision-makers aware of the multiplicative effect
of distributed risk. Additionally, Monte Carlo simulation
assessed how quality risk affects the cost and customer lead
time. With the intention of developing real-time production
control, Zou et al. [100] and Zou et al. [101] employed
sensor data of random disruptions to suggest an event-based
data-driven mathematical formulation to define the real-time
dynamic behavior of MSs performance and complex net-
worked structures.

Zhao et al. [102] proposed an operational risk mod-
eling and evaluation framework for discrete MSs in the
SM context. They use the operational data to quantify the
risk-oriented operational performance systematically. They
transform mission-reliability-centered indexes into levels
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of whole system health conditions. Eirinakis et al. [103]
designed a situation-aware MS that detects and forecasts
operational disruptions (e.g., machine failures, quality issues,
inventory shortages, transportation delays), assesses their
effect, and reacts promptly to restore the impacted processes.
The framework considers a complex event processing and
predictive analytics module, a cyber-physical system to mon-
itor and gather data, an optimizationmodule, and a simulation
module.

1) MACHINE-RELATED DISRUPTIONS
To provide a self-diagnosis/prognosis system, Zou et al. [104]
designed a data-driven stochasticMS. They focused on study-
ing disruptions to the system, such as equipment failure,
prolonged cycles in a manual station, and subassembly star-
vation. The model describes the production dynamics and
identifies the reasons for permanent production loss in deter-
ministic and stochastic settings. They use sensor data with the
knowledge of the production system’s physical properties to
enable real-time production control and decision-making.

Moussa and ElMaraghy [105] developed a method for gen-
erating a master assembly network with multiple alternative
assembly sequences. The master assembly network is con-
structed based on legacy data of assembly sequences for the
set of variants of a product family. Therefore, the assembly
sequences can change routes to cope with real-time workshop
disturbances (i.e., change orders, machine breakdowns, and
tool failures) in I4 assembly systems.

For predicting production line disruption, Iftikhar et al.
[106] utilized sensor data analysis through descriptive statis-
tics analysis and machine learning (ML) models such as
logistic regression. The accuracy of the models was tested
on a real-world data set, and the results’ effectiveness was
validated. However, near real-time anomaly detection mech-
anisms are still missing.

To assess perturbations in a system-of-systems approach,
Weichhart et al. [107] proposed an adaptive production sys-
tem to achieve resilient manufacturing. They concentrated on
operational disturbances such as machine breakdown. The
authors focused on scheduling and reconfiguration by sim-
ulating the production plans.

To automatically discover MSs and create suitable digital
twins (DTs), Lugaresi and Matta [108] introduced a method
where a production system’s relevant characteristics (logical
system structure and parameters) are automatically retrieved
from the event logs. Then, they proposed an automated gen-
eration and tuning method that can contribute to real-time
simulation applications. It guarantees that an updated and
reasonably digital model can be generated within one minute
and with marginal manual involvement.
Preventive maintenance. Focusing on preventive mainte-

nance, Kiangala and Wang [109] presented an experimental
predictive maintenance framework for conveyor motors that
detects a conveyor system’s impairments and reduces the
risk of incorrect faults diagnosis. They used an ML model
that identifies if an anomaly could affect the production, and

to improve its accuracy, the authors employed time-series
imaging and a convolutional neural network. Similarly, Ale-
mayehu et al. [110] calculated the optimum time of the
constant interval of preventive replacement strategy to min-
imize maintenance costs and prevent risks that may cause
damage to resources (human and equipment) in the CPS.

2) CYBERSECURITY RISK
SM will allow connected networks where the Industrial
Internet of Things (IIoT) sensors monitor the conditions of
industrial devices and machines. Therefore, devices can be
vulnerable to many viruses, threats, and attacks. Zarreh et al.
[111] used game theory to study the risk of cyberattacks in
the SM paradigm. They evaluate the probability of attacks
from different attackers’ profiles and the quantal response
equilibrium method to find the best strategy for system
protection.

Zhu et al. [112] designed a multilevel flow model-based
dynamic risk assessment approach for cyberattacks in MSs.
They developed a Bayesian network to quantitatively analyze
the effects of cyberattacks in the production process and their
propagation. Abuhasel andKhan [113] proposed a framework
to schedule resources effectively and provide data security in
the IIoT.

Pinto et al. [114] presented an intrusion detection system
approach for CPPS using the deterministic dendritic cell
algorithm. The algorithmwas assessed using a crafted dataset
and by introducing different attacks. The results indicated that
attacks were effectively identified with the algorithm. Simi-
larly, Leander et al. [115] derived requirements and implica-
tions for access control between devices and services within
SMSs. They introduced an Attribute-Based Access Control
model and assessed it against the prerequisites in a particular
setting. In the same vein, John et al. [116] proposed using
a middleware platform and Domain-Specific Languages to
allow the safe integration of systems and interoperability in
the SM context. They analyzed a use case for a predictive
maintenance system (i.e., machine failure scenarios).

VII. OPERATIONAL RISKS IN THE DISMANTLE STAGE OF
MANUFACTURING SYSTEMS
Once the system is in the operation stage, according to
future market demands, it might be needed to retrofit it;
otherwise, substitute it. The consideration of substitution risk
has received little attention. Only one work for GMSs has
been found. In the literature, Stauder et al. [117] provided a
systematic approach to evaluate the substitution risk of pro-
duction systems regarding current and possible future product
demands. Their approach carries out a static evaluation based
on an analytical cost model. Then, a scenario analysis is
performed to derive possible future product programs. Suit-
able scenarios are defined and analyzed with a Monte Carlo
simulation based on the described scenarios. Therefore, the
user can optimize a production system at different points in
time.
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VIII. MANUFACTURING SYSTEMS AGAINST DISRUPTION
RISKS
Disruption risks can highly deteriorateMSs’ performance. To
overcome unexpected events, Ocampo et al. [118] provided a
systems approach for studying risks caused by disturbances
in their supply due to natural disasters, economic conditions,
and government policies. They implemented a supply-driven
inoperability input-output model to establish the total impact
of a given supply shift on the price rise. Therefore, mitigation
strategies can be planned to improve the resilience of manu-
facturing systems.

Anarchic manufacturing was introduced byMa et al. [119],
aiming to employ a highly distributed planning and control
philosophy. They compared hierarchical systems with anar-
chic MSs, showing that anarchic systems are as robust and
flexible as the simple hierarchical system under unanticipated
disruption. Also, these systems showed adaptability and self-
optimizing traits, providing a platform to potentially enable
the emerging digital manufacturing paradigm through the free
market structure.

A method for quantifying resilience in MSs based on
calculating the penalty of possible changes was introduced
by Alexopoulos et al. [120]. Practitioners can utilize the
resilience metric to evaluate, compare, and improve their
production systems’ resilience and determine strategic invest-
ments. They measured the resilience of additive MSs and
injection molding systems when COVID-19 disturbed their
production.

A. RMSS AGAINST DISRUPTION RISKS
Epureanu et al. [121] introduced a method to coordinate
reconfigurable manufacturing resources from multiple enter-
prises to structure production networks for critical products
(e.g., ventilators) required in emergencies (i.e., pandemics).
They proposed synchronous machine- and network-level
reconfiguration optimization models and data-driven interac-
tion algorithms.

B. SMSS AGAINST DISRUPTION RISKS
SM as a service-oriented model enables cloud manufacturing
(CM), allowing a new product development model in which
users can configure, select, and utilize customized manu-
facturing services on demand. Zhu et al. [122] designed a
manufacturing risk evaluation for a CM platform to search for
an alternative resource when original manufacturing nodes
failed unexpectedly. Therefore, the platform enables CM to
be reliable, robust, and flexible with self-repair capability.

A distributed modeling, a simulation framework, and
an interoperability platform that considers the environ-
ment to evaluate sustainability and risk were developed by
Gorecki et al. [123]. The risk management tool assumes dis-
ruption risks (weather constraints, delivery issues, or emer-
gencies) and operational risks (uncertainty of human and
machine resources), allowing the planning of SM compo-
nents and services.

Li et al. [124] proposed utilizing automated manufacturing
assets supervised by networked sensors and monitored by
intelligent decision-making algorithms to mitigate produc-
tion disruptions caused by a pandemic. They devised an
optimizationmodel to allocate intelligentmanufacturing (IM)
assets according to market demands and the severity of the
pandemic. The decision-making model is intended to define
the optimal distribution of IM resources that enhances an
existing industrial network.

Leng et al. [125] considered commissioning a new MS
under a pandemic scenario. Therefore, they proposed a
DT-based remote semi-physical commissioning to enable
remote semi-physical commissioning to allow the design
of new MSs. Similarly, Vrabič et al. [126] suggested an
intelligent agent-based architecture to enhance the robust-
ness (accuracy of representativeness) and resilience (timely
update) of a DT. The architecture can detect disruptions in
the DT and establish a response (self-adapt). The architecture
includes a learning agent that learns on operational data
and can reduce resilience loss when the same disturbance
happens.

IX. DISCUSSION
From our study, it is essential to note that most of the literature
is dedicated to operational risks, representing approximately
91% of the articles. Moreover, according to the manufactur-
ing stages, most literature provides risk considerations for
the operation stage, with 69% of the papers, followed by the
development stage with 25%, the design stage with 5%, and
the dismantle stage with only 1%.

To draw insights from the data, a keyword co-occurrence
analysis was performed using VOSviewer (www.vosviewer.
com), as shown in Fig. 3. The circle size represents the weight
of each keyword. The proximity of the circle position in
the network means the relatedness strength. Moreover, the
color bar displays the years the articles were published and
indicates how the years are mapped to colors [127]. For
instance, journals published around 2020 are yellow, while
articles published before 2012 are purple. From the network,
the evolution of the manufacturing systems can be observed,
starting from FMSs and passing to RMSs and SMSs.

From the reviewed articles, it is essential to highlight that
SMS articles address more risk considerations than other
paradigms. Although FMS and RMS have been in the mar-
ket for longer, considering risks have not been explicitly
accounted for or thoroughly tackled. This phenomenon can be
observed in Fig. 3. Also, it can be noted that FMSs and RMSs
have become aware of the need for risk assessment lately.
Additionally, simulation and optimization methods are closer
to those paradigms. On the other hand, SMSs deal with risk
assessment and disruption management, and methods such
as AI and DTs are employed. However, new challenges are
considered, such as cybersecurity and human factors.

Moreover, it can be highlighted that the term risk assess-
ment has been used more than the term resilience (turquoise
bubble between simulation and flexibility bubbles). However,
with the current pandemic, this trend is expected to change.
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FIGURE 3. Keyword co-occurrence network.

TABLE 2. Risks and strategies considered for GMSs.

Unexpected events (i.e., operational and disruption risks)
will always exist in the manufacturing environment. There-
fore, a proactive perspective is needed to improve the man-
ufacturing systems’ performance. More emphasis is required

on designing manufacturing systems capable of coping with a
variety of risks in an integral manner. However, a strong col-
laboration among the different stakeholders in the various life
cycle stages is needed as there could be conflicting objectives.
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TABLE 3. Risks and Strategies Considered For FMSs.

TABLE 4. Risks and strategies considered for RMSs.

A. RQ1. OPERATIONAL AND DISRUPTION RISKS
HANDLED BY EACH MANUFACTURING PARADIGM
Risk consideration in the design stage for FMS is related to
the flexibility level and decision-maker evaluation process.

For RMSs, the risk is considered for the demand uncertainties
and the investment risk in the design stage. While FMSs and
RMSs risk considerations are more limited, for SMSs, the
risk consideration is more integral, as the analysis of different
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TABLE 5. Risks and strategies considered for SMSs.

data streams allows the study of additional risks such as
machine failures, product or process quality issues, inventory
shortages, transportation delay, and investment risk.

Several authors have designed models to prevent vari-
ous risks at the development and implementation stages.
GMSs have been focused on risk assessment, safety, and
ergonomic hazards. FMSs have concentrated on risk assess-
ment and ergonomic risk, while RMSs tackle resource failure
and safety concerns. SMS models target risk assessments
and focus on safety, especially for human-robot collabora-
tion. However, as Ehrlich et al. [54] highlighted, current risk
assessments are not adaptive and contradict I4 flexibility.

Resource/machine failure is the most studied risk for
the operation stage, followed by analyzing demand uncer-
tainties or supply/demand mismatch. GMSs are focused on
low-quality risks and machine-related disturbances. FMS
and RMS are also considering supply and demand disrup-
tions. GMSs and FMSs tend to handle those disruptions by
(re)scheduling the resources. On the other hand, demand

uncertainty is well managed by RMSs as they are designed
to change their configuration by adding or removing modules
to allow scalability. For operational risks, GMSs, FMSs, and
RMSs try to establish planning and control, maintenance,
and scheduling strategies. In contrast, due to the possibility
of gathering data, SMSs look to develop monitoring and
provide prediction before such events happen. Additionally,
since one of the main foundations of SMSs is the usage of IT,
cybersecurity risk has also been addressed.

MSs are capital assets that usually require a high amount
of investment. While the investment risk has been studied,
the substitution risk has received little attention. Also, it is
relevant to consider that MSs can be retrofitted to allow the
integration of more capabilities. For instance, lately, FMSs
and RMSs are being adapted to use more advanced IT,
enabling them to boost their management capabilities.

Disruption risks are scarcely considered for MSs. While
some managers would argue that the responsibility of risk
consideration should lay on the SC analysis, MSs, the core of
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TABLE 6. Disruption risks and strategies considered for MSs.

TABLE 7. Mapping between manufacturing paradigm characteristics and risks handled.

the production, could offer more adaptability and resilience.
RMSs and SMSs have been considered to tackle disruptive
risks, and the possibility of connecting resources through

IT systems allows for this alternative. While enabling com-
munication among resources scattered in different locations
can allow flexibility and resilience to handle disruptive risks,
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considerations of connectivity and cybersecurity need to be
addressed to permit MS networks to interact, communicate,
and adapt to the manufacturing landscape.

Surprisingly, the role of DTs and CPPs in predicting, man-
aging, and recovering MSs from risks and disruptions has not
been explicitly explored. While the strings used to perform
the search could disregard important works, more detailed
literature is needed to avoid such events.

B. RQ2. MITIGATION STRATEGIES WHEN FACING RISKS
Several strategies have been implemented to tackle differ-
ent risks that are pursued to obtain redundancy and flexi-
bility. Flexibility strategies encompass scheduling, routing,
and capacity adjustment. For redundancy, usually, there is a
backup of resources to utilize when there are failures in the
primary resources. The redundancy strategy is one of themost
effective ways to continue working and delivering products.

However, it is expensive and inefficient. Therefore, redun-
dancy is not usually considered unless the resource is highly
critical. Also, it has been observed that most of the analyzed
studies focus on reactive strategies to overcome the different
operational risks. For all the paradigms, planning and control-
ling is the most used strategy.

Planning and controlling (e.g., scheduling, maintenance,
etc.) as a general strategy encompassing the analysis
of foreseeable risks through risk management/assessments
(e.g., FMEA, decision trees, etc.) and developing possi-
ble solutions. However, the controlling part follows already
defined strategies to optimize established objectives, leav-
ing aside the possibility of providing strategies that could
improve the performance system. Moreover, the controlling
activities react to the risks instead of preventing them. How-
ever, the recognition of having some plans after the risks
occur needs to be acknowledged.

Resource/machine failure is the most studied risk for the
operation stage combined with re/scheduling strategy. Reac-
tive or adaptive scheduling was widely studied for FMS.
Another technique used to tackle machine breakdown in
FMS is re/routing. The maintenance of the resources in a
proactive-reactive way is also a strategy that can improve the
system’s performance.

In the operation stage of RMSs, the available literature
evaluates operational resilience related to machine disrup-
tions. Usually, a reconfiguration strategy is followed to adapt
the system to resource failures. Also, capacity adjustment
(i.e., scalability) is possible when demand changes occur.

Nowadays, with the possibility of harnessing data from
different sensors and systems, proactive/predictive strate-
gies are gaining more interest. The traditional strategies
(e.g., scheduling, maintenance) have been enhanced to lever-
age data and provide insights that could not be obtained in the
past. However, the full potential is still to be unveiled.

The literature shows that different risks can be handled
according to the manufacturing paradigm. Tables 2 to 5
offer the most studied risk factors and the various strategies
implemented to alleviate the system’s performance by each

paradigm. While there is no one-size-fits-all solution, the
researchers pay more attention to this relevant topic.

Additionally, the literature is homogeneous about orga-
nizations implementing different strategies to handle risks;
however, SME roles and MSs have received little attention.

Regarding disruption risks, similar strategies as utilized
for operational risks have been proposed (e.g., planning and
controlling, scheduling, and reconfiguration), as observed
in Table 6. However, monitoring and prediction have been
suggested lately, which is possible thanks to IoT and the
implementation of AI and ML algorithms. It is relevant to
highlight that those disruptive risks are difficult to predict;
therefore, awareness and preparedness must be considered.

C. RQ3. SYSTEMS’ CHARACTERISTICS TO DEAL WITH
RISKS
Each manufacturing paradigm has been designed to accom-
plish particular objectives. Therefore, they possess specific
features that help them address specific challenges. However,
the manufacturing landscape is evolving, and new opportuni-
ties and challenges arise. Thus, MSs must adapt and evolve
to catch up with the challenges ahead.

MSs can handle risks at various degree levels thanks to
different system characteristics. In Table 7, key features that
characterize each paradigm are listed andmapped to risks that
can be addressed. Also, the level at which each specific char-
acteristic contributes to managing certain risks is represented
with bubbles, as described in the table footnote.

Some features can directly be related to lessening the
impacts of specific risks. For instance, the scalability feature
of RMSs allows for adjusting the system capacity to address
the demand uncertainty. Another example is the predictability
feature of SMSs, which permits anticipate failures in the sys-
tem. However, there are other characteristics that the contri-
bution is not as evident. For example, SMSs interoperability
could help to decrease safety risks. That is, the availabil-
ity of different software, devices and their interconnection
could aid in discovering issues not noted with tools working
independently. Other features might not be applicable. For
instance, scalability and low-quality risk or interoperability
and low-quality risk might not be related.

Disruption risks consider a broad spectrum of catastrophic
situations that are not foreseeable; therefore, the manufactur-
ing system’s characteristics could, at some point, alleviate the
effects of such conditions.

Nevertheless, complete protection cannot be provided.
From Table 7, it can be observed that there is not a single
characteristic that will help to tackle all the risks. However,
combining several factors can enhance the overall manu-
facturing system’s resilience. While RMSs and SMSs are
designed to deal with certain risks, upgrading and retrofitting
FMSs with IIoT technologies could improve performance.

D. RQ4. MANUFACTURING SYSTEMS AND THEIR
ADAPTABILITY
While recovering from disruptions and springing back into
the designed system state (i.e., resilience) is critical to
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TABLE 8. Mapping between manufacturing paradigms, adaptability
facets, and adaptation strategies.

continue operations, the ability to adjust to new conditions
and be modified for a new goal, use, or purpose is required
(i.e., adaptability). ElMaraghy et al. [2] introduced a new
classification for adaptability - static, dynamic, cognitive, and
extreme.

• Static adaptability refers to built-in preplanned flexi-
bility by design, allowing flexible, resilient, and robust
behavior within the pre-defined parameters and bound-
aries (i.e., product family, scope, and scale).

• Dynamic adaptability involves physical hardware and
soft logical adaptation by reprogramming devices,
changing controls of machines and/or systems, and
revising operating and sequencing rules.

• Cognitive adaptability utilizes built-in changeability
enablers to allow agile and optimal changes in func-
tion (scope) and capacity (scale) beyond previously
anticipated and planned total.

• Extreme adaptability relies on the MS’s resilience and
capacity to recover (partially or fully) from major unex-
pected multi-dimensional extreme disruptions.

In the same vein, Ivanov [128] proposed four major
SC adaptation strategies – scalability (capacity expansion),
repurposing (process flexibility), substitution (structural
reconfiguration), and intertwining (collaboration). These SC
strategies are aligned with the manufacturing systems’ adapt-
ability facets to cope and survive in the uncertain envi-
ronment. As can be observed from Table 8, depending on
manufacturing paradigms, different levels of adaptability and
adaptation can be reached (+ signs symbolize the degree
that each paradigm could achieve for each facet). Although
FMSs have been in the market longer than RMS and SMS,
their characteristics enable only static and dynamic adapt-
ability to a certain degree. To a certain extent, RMS and
SMS could allow cognitive and extreme adaptabilities, per-
mitting the substitution and intertwining when facing chal-
lenging times such as the current pandemic. However, to fully
boost their resiliency, new capabilities need to be considered
(e.g., adaptiveness, agility, changeability, self-optimizing,
etc.).

X. CONCLUSION AND FUTURE RESEARCH AVENUES
While manufacturing systems risks have been discussed in
the literature in a segmented manner, a wide panorama was
lacking. Therefore, this paper examined the different risk
perspectives (i.e., operational and disruption risks) for several
manufacturing paradigms. The article mainly concentrated
on MSs, which are the flagships of the third and fourth
industrial revolutions (i.e., FMSs, RMSs, SMSs). As most of

the articles are focused on operational risks, the works are
further classified according to the lifecycle stage in which the
risk is considered.

The literature shows that FMSs are more concentrated on
adding capabilities to deal with disruptions by implementing
reactive strategies. On the other hand, RMSs are designed
with capabilities that allow them to adapt to uncertain demand
and machine failures. Moreover, with the advent of new
technologies, SMSs target proactive strategies to predict and
prevent disruptions.

These technologies can retrofit brownfield systems and
boost their capabilities to handle unexpected disruptions.
Although operational risks have beenwidely studied, the con-
sideration of disruption risks is still in the infancy stages for
MSs. While manufacturing environments have been planned
to be efficient and lean for just-in-time environments, MSs
will be envisioned for just-in-case situations. Therefore, it is
critical to analyze the possible risks and trade-offs to establish
proactive and reactive strategies to balance resiliency and
efficiency.

While substantial progress has been made in dealing with
disruptions, many challenges and opportunities remain to be
addressed. Future research avenues include:

• The exploration of other risks, such as accidents, non-
compliance, process/machine obsolescence, and inten-
tional disruptions

• The investigation of the layout redesign and process
planning for RMSs to tackle and efficiently reconfigure
the system when facing different risks

• The development of retrofitting paths forMSs and FMSs
to consider different risks

• The possibility of the predict-then-optimize paradigm
could boost the performance, as it could guide the exe-
cution of unscheduled activities (e.g., reconfiguration,
rescheduling, maintenance) and fully optimize the sys-
tem even before the risk occurs

• The use of AI and ML to design strategies to cope
with unexpected disturbances in a dynamic environment
system

• The study of implications of implementing DTs
to provide process and environment visibility and
transparency

• The participation of SMEs as a part of themanufacturing
systems network

• The design of dynamic and robust risk assessments
for SMSs to evaluate real-time hazards related to
safety and ergonomic risk to enable real-time strategies’
implementation

• The possibility of automatic repurposing, substitution,
and intertwining to enable self-adaptation and self-
organization aid by data-driven technologies such as
blockchain

• The analysis of the evolution of IIoT to allow
self-optimization and the development of new manufac-
turing characteristics to prepare for various risks

• The creation of new business models rooted in MSs that
allow handling disturbances
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• The interconnection of different paradigms to boost their
capabilities

• The consideration of humans and their expertise as a
central part of the systems

• The design of systems that learn from humans and exe-
cute self-learning to implement strategies to tackle the
various risks

• The development of algorithms to enable cognitive and
adaptive systems

• The possibility of self-commissioning systems
• The development of resilience metrics applicable to dif-
ferent manufacturing systems to benchmark alternatives

• The simultaneous assessment of multiple risks in dif-
ferent scenarios to holistically determine the best
alternative

• The analysis of MS’s resilience in parallel with
sustainability

• The design of MS mechanisms inspired by nature to
mimic their ability to balance the environment when
facing disruptions

Limitations of this research are related to the literature
search process, as it is based upon the definition of a set of
keywords, years, and sources. However, the authors strived
to be objective in selecting articles; the literature selection
process is subjected to bias and the subjective view of the
researchers.

Future extensions of this work consider reviewing confer-
ence articles and exploring the capabilities of other manufac-
turing paradigms, such as cloud manufacturing. Moreover,
bibliometric and text analytics tools can be used to provide
a different perspective of the analysis.
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