
Received 11 July 2023, accepted 21 August 2023, date of publication 31 August 2023, date of current version 6 September 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3310824

Reordered Exponential Golomb Error Correction
Code for Universal Near-Capacity Joint
Source-Channel Coding
ALEXANDER HAMILTON , (Member, IEEE),
MOHAMMED EL-HAJJAR , (Senior Member, IEEE),
AND ROBERT G. MAUNDER , (Senior Member, IEEE)
Department of Electronics and Computer Science, University of Southampton, SO17 1BJ Southampton, U.K.

Corresponding author: Robert G. Maunder (rm@ecs.soton.ac.uk)

ABSTRACT Joint Source-Channel Coding (JSCC) is a powerful technique that allows for the efficient
transmission of information by simultaneously considering the characteristics of both the source and the
channel. The recently proposed Exponential Golomb Error Correction (ExpGEC) and Rice Error Correction
(REC) codes provide generalized JSCC schemes for the near capacity coding of symbols drawn from large or
infinite alphabets. Yet these require impractical decoding structures, with large buffers and inflexible system
design, this was mitigated by the introduction of the Reordered Elias Gamma Error Correction (REGEC)
which itself had limited flexibility with regards to source distribution. In this paper, we propose a novel
Reordered Exponential Golomb Error Correction (RExpGEC) coding scheme, which is a JSCC technique
designed for flexible and practical near-capacity performance. The proposed RExpGEC encoder and decoder
are presented and its performance is analysed using Extrinsic Information Transfer (EXIT) charts. The flex-
ibility of the RExpGEC is shown via the novel trellis encoder and decoder design. Finally, the Symbol Error
Rate (SER) performance of RExpGEC code is compared when integrated into the novel RExpGEC-URC-
QPSK scheme against other comparable JSCC and Separate Source Channel Coding (SSCC) benchmarkers.
Specifically the RExpGEC-URC-QPSK scheme is compared against the REGEC-URC-QPSK scheme,
and a serial concatenation of the Exponential Golomb and Convolution Code, which becomes the novel
Exp-CC-URC-QPSK scheme. Our simulation results demonstrate the performance gains and flexibility of
the proposed RExpGEC-URC-QPSK scheme against the benchmarkers in providing reliable and efficient
communications. Specifically, the RExpGEC-URC-QPSK scheme outperforms the SSCC in a uncorrelated
Rayleigh fading channel by 2 to 3.6 dB (dependent on source distribution). Furthermore, the RExpGEC-
URC-QPSK scheme consistently operates within 2.5 dB of channel capacity when measuring Eb/N0,
whilst providing flexibility in SNR performance when compared to the REGEC-URC-QPSK scheme. These
performance gains come at the cost of complexity, whereby the RExpGEC-URC-QPSK scheme is 3.6 times
more complex than Exp-CC-URC-QPSK scheme under certain conditions. This paper highlights the unique
capabilities of RExpGEC as a high performance, practical and flexible JSCC technique.

INDEX TERMS Channel coding, joint source-channel coding (JSCC), reordered exponential Golomb,
source coding.

I. INTRODUCTION
The modern world relies heavily on information content
and reliable access to information transfer of large data

The associate editor coordinating the review of this manuscript and

approving it for publication was Cesar Vargas-Rosales .

sources. In order to transmit this information over noisy
wireless communications links via reliable means, informa-
tion sources are typically encoded via a process known as
source coding in order to compress them. Then these sources
are separately encoded to enable redundancy and robustness
by channel coding. This process, originally postulated by

VOLUME 11, 2023 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 93619

https://orcid.org/0000-0003-0604-6563
https://orcid.org/0000-0002-7987-1401
https://orcid.org/0000-0002-7944-2615
https://orcid.org/0000-0003-1770-471X


A. Hamilton et al.: RExpGEC Code for Universal Near-Capacity JSCC

Shannon in [1] utilizes Separate Source and Channel Coding
(SSCC) which can theoretically achieve near capacity oper-
ations. In SSCC a separate near-entropy source code, such
as the Lempel-Ziv code [2], Elias Gamma [3], Huffman [4],
Golomb [5], Shannon-Fano [6] codes, or many other pos-
sible source codes [7], [8], [9], [10], can be utilised with
a separate channel code, such as a turbo code [11], [12],
Polar Code [13], LDPC code [14], or any number of channel
codes [6], [15], [16], [17], [18], [19] to theoretically achieve
near-capacity performance. However in order to achieve
near-capacity performance these near-entropy source codes
become infinitely complex, extraordinarily large in block
size [20] or require large processing times [21]. For example,
the Lempel-Ziv code [2] requires accurate knowledge of the
entire source and associated symbol probabilities before a
single bit can be transmitted to the receiver. Equally with
SSCC, a single bit in error, or a dropped packet can cause
the entirety of the information to be lost. Therefore, not only
must a robust channel code be utilised, but error checking and
higher layer signalling must be employed to ensure the entire
message is received.

For the transmission of information, whereby the source
distribution is not known apriori, there is strong motivation
for the use of universal codes for source coding [22], which
provide finite codeword lengths irrespective of source distri-
bution, provided the source is monotonically distributed. This
family of codes are known as universal codes, and include
Elias Gamma [3], Fibonacci Code [23] and the Exponential
Golomb (ExpG) code [24]. These universal codes operate
without any knowledge of the source symbol probabilities.
However, non-negligible redundancy remains in the encoded
bitstreams, which in turn leads to capacity loss when treated
as a separate source and channel problem. This capacity
loss motivates Joint Source Channel Coding (JSCC) [25]
whereby the residual redundancy from the source coding
can be utilised to enhance the attainable error correction
capability.

State of the art JSCC techniques, such as the Reordered
Elias Gamma Error Correction Code (REGEC) [34] have
been demonstrated to show near capacity performance both
large and infinite cardinality sources. However, they are
only designed for a limited range of probability distribu-
tions, approximating specific zeta distributed sources which
are psuedo-monotonic in nature (where successive symbols
have successively lower symbol probabilities). This limi-
tation meant that outside of these source distributions the
REGEC code offers poor coding efficiency outside of these
source distributions.

The Exponential GolombError CorrectionCode (ExpGEC)
code introduced in [35] is parameterizable, whereas the Elias
Gamma code used in the REGEC code of [34] is a special
case of this with fixed parameters. Therefore, the ExpGEC
is more generalized and has greater flexibility for different
source distributions. However, the proposed scheme requires
a series of buffers to realise, due to the structure of the ExpG
code and its variable length nature. Furthermore, the proposed

TABLE 1. Relevant and major contributions in source and channel coding.

scheme had high complexity and the ExpGEC could not be
represented using a single finite complexity decoder, as could
be done with the REGEC in [36]. A summary of relevant
and major contributions in the field of channel coding, source
coding, and JSCC is presented in Table 1.
In this paper, we propose the Reordered Exponential

Golomb Error Correction Code (RExpGEC), which attempts
to tackle these problems, and presents a novel highly flexible
JSCC that can be used for diverse probability distributions
with a large of infinite source cardinality. The proposed
RExpGEC is able to be realised in a finite complexity decoder
attaining near-capacity performance for a variety of source
symbol distributions. We further illustrate the performance
and flexibility of the novel RExpGEC by providing sim-
ulation results of the proposed scheme in a uncorrelated
Rayleigh fading channel in comparison to a SSCC bench-
marker.

Given the above background the novel contributions of this
paper can be summarized as follows:

1) We propose the novel RExpGEC coding scheme,
which is a flexible near-capacity JSCC suitable for
any pseudo-monotonic source distributions including
diverse zeta-distributed sources.

2) We propose a novel trellis decoder designed for the
proposed RExpGEC code which has a low and finite

93620 VOLUME 11, 2023



A. Hamilton et al.: RExpGEC Code for Universal Near-Capacity JSCC

FIGURE 1. Structure of the paper.

complexity even when symbols are drawn from a large
or infinite alphabet.

3) We propose a novel iterative decoding scheme which
exemplifies the concatenation of the RExpGEC with a
Unity Rate Convolutional (URC) inner code and QPSK
Modulation (RExpGEC-URC-QPSK)

4) We present novel performance analysis of RExpGEC,
measured by Extrinsic Information Transfer (EXIT)
chart analysis initially developed in [37], and by Sym-
bol Error Rate (SER) performance when concatenated
with a URC inner code and QPSK modulation,

5) We compare the Symbol Error Rate (SER) of the
RExpGEC-URC-QPSK scheme performance to that of
comparable JSCC and SSCC techniques.

Our findings illustrate the exceptional performance and
flexibility of RExpGEC in delivering reliable and efficient
communication over a wireless channel. Specifically, the
RExpGEC outperforms the SSCC in a uncorrelated Rayleigh
fading channel by 2 to 3.6 dB (dependent on source distri-
bution), whilst providing a finite and low complexity that is
flexible dependent on system design. Furthermore, we show
that by increasing the paramaterization of the REGEC with
the RExpGEC, the utility for different pseudo-monotonical
source distribution improves, due to the ability to closer
match the source distribution to the average codeword length
and target the source coding performance of the RExpGEC.

This paper emphasizes the unique features of the
RExpGEC and its ability to offer near-capacity flexible
source and channel coding. A visual structure of the paper can
be seen in Figure 1 demonstrating the flow of the discussion
within this paper. The rest of the paper is organized as follows.
We provide an introduction to the novel RExpGEC code
in Section II, where we highlight the novel contributions
both around the development of a universal JSCC that can
be flexibility adapted to different source distribution and
has a finite low complexity decoder even when the source
alphabet is large or infinite. In Section III we exemplify a
novel concatenation of the RExpGEC with a URC inner code
and QPSKmodulation, known as the RExpGEC-URC-QPSK
scheme, to achieve near-capacity performance. Furthermore,

Section III also provides novel contributions presented based
on the EXIT chart analysis of the RExpGEC outer and URC
inner code to enable the near-capacity design of the inner
code and predict SER performance. In Section IV we then
compare the SER results against a series of benchmarkers in
order to understand the relative and absolute performance of
the RExpGEC scheme. Finally, we conclude in Section V.

II. PROPOSED RExpGEC CODE
In this section, we introduce the novel RExpGEC code design
and its constituent components, which are the novel RExpG
encoder and the Trellis encoder which enables transition from
RExpG to RExpGEC, as well as the corresponding novel
trellis decoder which enables a finite, low complexity and
flexible decoder design for the RExpGEC.

The considered block diagram of the RExpGEC is shown
in Figure 2, where x represents the sequence of information
symbols, r the sequence of RExpG encoded bits, and z the
sequence of RExpGEC encoded bits. For the purpose of
Figure 2 the inner code functionality also constitutes modula-
tion mapping and demapping for transmission over a wireless
channel, as these can be seen as part of the generic inner code
functionality for the RExpGEC.

Section II-A introduces the RExpG code, its design, and
some of it’s attractive qualities which enable the novel tree
and trellis designs. Section II-B introduces our novel RExpG
decoder, which operates on a novel tree representation of the
RExpG code. This tree has a finite complexity which enables
the design of a finite yet flexible trellis, which is used as
the basis for RExpGEC decoder described in Section II-C.
Section II-D introduces the novel trellis structure design
for the RExpGEC and how it is used to encode RExpGEC
codewords. Section II-D introduces the novel trellis decoder
for the RExpGEC and how it is used to decode RExpGEC
codewords for near-capacity performance.

A. RExpG CODE
The proposed novel Reordered Exponential Golomb
(RExpG) code is a universal code which can work with large
or infinite source sets, where each symbol in the source
sequence d has a value (di) in the range 1 to L (which is
the cardinality of the source), where higher symbol values
correspond to reducing probabilities. Each symbol is mapped
to a RExpG codeword, where longer codewords are used
for higher symbol indices. These symbols can be seen in
Table 2 The code is parameterised by the k parameter,
where k ∈ (0, 1, 2, 3, . . .). This enables the code to have
high-efficiency source coding for a variety of different dis-
tributed sources [38], as discussed in [35] where the authors
discuss the information efficiency of the similar Exponen-
tial Golomb code for varying zeta-distributed sources. This
ability to closely match a zeta distributed source enables the
RExpG to be suited to a variety of different uses, such as
video [34], [39], text [40] or imagery [41] which provides the
RExpGEC with a wide flexibility.

VOLUME 11, 2023 93621



A. Hamilton et al.: RExpGEC Code for Universal Near-Capacity JSCC

FIGURE 2. Generic Block Diagram of RExpGEC.

TABLE 2. The decomposition of symbols di of the Reordered Exponential
Golomb Codewords for k ∈ 0, 1, 2, 3 demonstrating the concatenation of
the Mixed and Terminal codes. ‘Combi’ refers to the combination of
interlaced FLC and Unary bits, ‘T’ and ‘Term’ both refer to the
Terminal bits of the RExpG codeword.

As shown in Table 2 the bits in each RExpG codeword
may be considered to derive from two groups, a unary part
and a fixed length part, which are interlaced to create the
RExpG codeword, in a manner shown in Figure 3. For the
purpose of illustration in Figure 3 the bits which derive from
the unary group can be referred to as the unary sub-symbol,
and those from a fixed length the Fixed Length Code (FLC)
sub-symbol. The bits which derive from the an underpinning
Fixed Length Code (FLC), are shown in yellow in Table 2
and referred to as u, whereas the bits which derive from a
unary code are shown in blue in Table 2 and are referred
to as t . The initial bit of the RExpG codeword is always a
unary bit, following which the bits are subsequently inter-
laced between unary and FLC bits until the final unary bit is
reached, this initial section of the codeword can be referred to
as the ‘combination’ section of the codeword. The final k bits
corresponding to the k parameter of the RExpG code itself
will always be bits derived from the fixed length sub-symbol,
where this section of the RExpG codeword can be referred
to as the ‘terminal’ section of the codeword. This interlacing
and construction can be observed in Figure 3
The Unary Code, as used in the unary sub-symbol,

is defined by a series of all zero-valued bits immediately

TABLE 3. The decomposition of symbols di of the ExpG Codewords for
k = 0, k = 1, k = 2, and k = 3 showing the concatenation of the Fixed
Length Code and Unary codes.

FIGURE 3. Construction of RExpG symbol di = 12 when k = 1.

followed by a single logical one-valued bit, which is subse-
quently referred to as the terminal unary bit which indicates
the end of the Unary Code sub-symbol, the total length of the
Unary code sub-symbol u is defined as x(di).

x(di) = ⌊log2(di + 2k − 1)⌋ + 1 − k. (1)

The Fixed Length Code sub-symbol is a representation of
the bits which exist within a RExpG symbol which derive

93622 VOLUME 11, 2023



A. Hamilton et al.: RExpGEC Code for Universal Near-Capacity JSCC

from the fixed length part and can be directly be calculated
as the sub-symbol t(di). The value of the fixed length sub-
symbol is.

t(di) = di − 2⌊log2(di+2k−1)⌋
+ 2k − 1, (2)

which is represented in binary form with a length exactly
corresponding to s(di).

s(di) = ⌊log2(di + 2k − 1)⌋. (3)

The RExpG codeword has a length as follows in
Equation (4), of which x(di) of those are Unary bits, with the
remainder s(di) being FLC bits. This is the sum of the length
of the Unary x(di) and FLC s(di) sub-symbols.

l(di) = x(di) + s(di) = 2 × ⌊log2(di + 2k − 1)⌋ + 1 − k.
(4)

Based on Equation (4), for the RExpG the terminal unary
bit is set at a fixed k bit locations from the end of the codeword
and preceding this every alternative bit is a Unary codeword.
Therefore, there is always a known number of bits to the
end of the codeword, which is k bits, following a logical
one-value unary bit. This enables a finite complexity decoder
to be utilised as will be detailed in Section II-D.
To provide a specific example of a RExpG symbol,

we visually describe the process for developing the RExpG
symbol for di = 12 when k = 1 in Figure 3, and how a
transmitter can convert from symbol di to a RExpG codeword
r(di). This symbol d = 12, k = 1 will be utilised as an
example throughout Section II.
As can be observed in Figure 3, initially the sub-symbol

u(12) is generated with a length of 3, as defined by
Equation (1), which generates the sub-symbol 0, 0, 1 (as indi-
cated by the blue bits), and the corresponding sub-symbol
t(12) with the integer value 5 as defined by Equation (2),
which in binary form with a length defined by Equation (3)
is 1, 0, 1 (as indicated by the yellow bits). Following this via
the RExpG generation process these sub-symbols produce
the RExpG codeword 0, 1, 0, 0, 1, 0. Therefore the bits in
location 2,4 and 6 originate from the Unary sub-symbol,
whereas bits in location 1,3 and 5 originate from the FLC
sub-symbol.

Table 2 shows the first 15 codewords for the RExpG code
for k ∈ 0, 1, 2, 3. The colours represent the same colours as
those used in Figure 3, which will be the same colours used
throughout the remainder of this paper to represent bits which
are derived from FLC and unary components.

Let us now compare our novel RExpG code with the
ExpG code of [35], for which the first 15 codewords are
shown in Table 3 and elaborate on the similarities and dif-
ferences between the two codes. Whilst the structure of the
RExpG code is generated from interlaced unary and FLC
sub-symbols as described above, the structure of ExpG is
composed simply of two concatenated sub-symbols u(di)
and t(di), which represent a sub-symbol of Unary Code bits
and a sub-symbols of Fixed Length Code bits respectively.
As observed in Table 3 the location of the terminal Unary bit

of each ExpG symbol d(di) in a sequence of symbols D is
at an unknown location, as the terminal unary bit is located
at a variable location from the end of each codeword, and
preceded by an unknown number of logical zero-valued bits.
This property motivates the design of the RExpG code, where
in contrast, the terminal unary bit is at a known distance
from the end of the codeword. As we will show in the next
sections, this known property of the RExpG can be exploited
for designing a finite complexity decoder, rather than the
infinite complexity decoder that is required for the ExpG.

The total rate Ro of the RExpGECwhen compared with the
original information source is a function of both the coding
rate of the scheme, the modulation order, as well as the infor-
mation efficiency (η). The information efficiency of different
P1 and k distributions of the RExpG can be seen in Figure 4
where different P1 and k distributions are shown. These
difference η parameters, combined with the coding rate and
modulation order, produce a Continuous-Input Continuous-
OutputMemoryless Channel (CCMC) capacity for the energy
required per bit of information (based on the entropy of the
information source) which differs according to the source
distribution. For a monotonic source with P1 of 0.6 and the k
parameter of 0, this offers the highest information efficiency
or η, which matches with the P1 value chosen for the EXIT
analysis presented in Figures 11 to 13 in Section III-C and
simulations presented in Figure 15 in Section IV. However,
for a different P1 value, such as 0.3, other values of k offer
better performance, and this can be observed in the results
shown in Figures 16 and 17 of Section IV.

FIGURE 4. Information Efficiency (η0) of RExpG with different Zeta
distributions of infinite cardinality.

B. RExpG DECODER
In this section we introduce a method to decode a sequence
of RExpG codewords via the RExpG tree decoder, which is
illustrated in Figure 5.
As discussed in Section II-A, a key motivation for the

RExpG (and associated RExpGEC) is to enable the serial

VOLUME 11, 2023 93623



A. Hamilton et al.: RExpGEC Code for Universal Near-Capacity JSCC

FIGURE 5. RExpG Tree Decoder with a tree depth of 1, and an example of
decoding the RExpG symbol with values RExpG k = 1, di = 12.

decoding of a sequence of symbolsD and to enable a finite yet
flexible decoder design. In order to enable the RExpGEC to
have a finite complexity decoder, one must have a finite sized
binary tree, which can be achieved with the RExpG code and
is described below.

In Figure 5 the tree is represented visually, where each line
represents a transition of the RExpG codeword whereby a
dashed line represents a 0 bit valued transition and a solid
line represents a 1 bit valued transition, and each coloured
node represents either a FLC derived state (yellow square)
or a unary derived state (blue circle), which are uniquely
numbered. The white circles represent the leaf nodes, which
indicate that a symbol has been reached. In the case of the tree
in Figure 5 which represents a depth of 1, there are 8 unique
leaf nodes (also referred to as terminal nodes), with the final
2 leaf nodes representing all symbols above 7 depending on
the holding pattern. A RExpG tree with a larger depth will
have more unique leaf nodes and utilise the holding pattern
less, as more symbols are likely to have unique paths through
the tree.

Because of the design of the RExpG code, a tree can be
designed in such a way with a holding pattern, which con-
stitute a single FLC and Unary holding state with a circular
transition as well as an exit and entry transition, as exempli-
fied in Figure 5 between states ’7’ and ’9’. This is considered
until the conditions of the Unary sub-symbol becoming a
logical 1-valued bit can escape to a known FLC sub-tree,
which is constant, as there are always a constant k FLC
bits, following the terminal unary bit. This can be observed

FIGURE 6. Number of States of the RExpG Tree decoder as function of
both depth and k .

in Figure 5, which shows the ability to enable a holding
pattern at the terminal unary bit, which in turn enables a finite
complexity tree to be achieved for the RExpG code.

Furthermore, where the value of k used in the tree in
Figure 5 is 1, the k parameter dictates the number of states
in each FLC branch, which comes from unary states, when
a logical one-valued bit is identified, indicating a terminal
unary bit. This is exemplified in Figure 5, where for states
′2′,′ 6′,′ 8′ and ′10′ these are the initial stages of an FLC
branch. In this case, with the k paramater having a value of 1,
there are 2 terminal nodes. Correspondingly, if k was 0 these
nodes themselves would be only one terminal node, and if k
was 2 there would be 2 FLC ‘stages’ and 4 terminal nodes.

The number of Unary branches which are before the hold-
ing pattern and therefore total number of states of the RExpG
tree decoder can be defined by the depth parameter, which
enables the system designer to vary the complexity of the
system design. This scaling of complexity when increasing
the k and depth parameter, for the RExpGTree decoder can be
observed in Figure 6, where the number of states can be seen
increasing exponentially with depth. This increase in depth
enables more unique leaf nodes and unique paths through the
tree, which in turn could enable greater entropy to be achieved
and potentially achieve mild performance gains.

Furthermore, Figure 5 also offers an example of how the
tree decoder can be utilised to decode the symbol d = 12,
if we trace each received bit down the binary tree, which is
represented by the bold trace through the tree itself. Note,
this is the same received codeword as we have shown being
generated in Figure 3.
Explicitly, when the first bit received is a logical 0, it is

impossible for this to be a terminal unary bit and the trace
proceeds to the right and not into the terminal FLC branch.
At this point a logical one-valued bit is received for the 2nd
transition, and this must be stored in memory via a counter
(as it is retrieved once the decoder leaves the holding pat-
tern). Then, at the next Unary bit, another zero-valued bit is

93624 VOLUME 11, 2023



A. Hamilton et al.: RExpGEC Code for Universal Near-Capacity JSCC

received, and as the depth of this decoder is fixed at 1, the
decoder enters the holding pattern. Here the 4th transition is
stored in memory as a 0, and the 5th transition represents the
terminal unary bit as a logical one-valued bit, so the decoder
leaves the holding pattern and into a terminal FLC branch.
As the bits for the second and fourth transition were stored
in memory via the use of a counter, they enable the receiver
to identify that it was symbol 12 which was transmitted by
observation of a matrix which can be used to identify which
symbol was transmitted. This matrix will have a width of 2k

and a depth corresponding to length of each symbol. The
‘depth’ of the tree, in this case where k = 1, depth = 1
and the codeword is 6 bits in length, this matrix has 4 rows.
Specifically it is possible to identify the symbol transmitted
corresponds to d = 12 as the second and fourth transition
from the counter ′1, 0′, with the second transition being the
most significant bit. The second transition defines whether
the symbol at the terminal node exists in the lower half (if it
is a 1), or the upper half (if it is a 0) of all possible states. Then,
the fourth transition further down selects within this half and
if the codeword is longer, then the sixth, eighth and every even
transition until the terminal unary bit can downselect until a
single row is identified. The column can then be identified
by the transitions in the terminal FLC tree. In this case, a
1-valued bit was transmitted which corresponds to the right-
most column, and as such it is able to be identified that the
symbol in location (2,3) was transmitted, corresponding to
symbol d = 12. This is shown by the brackets in Figure 5
whereby symbol 12 was able to be identified.

In comparison, in a scheme such as the ExpGEC as
proposed in [35] a tree decoder would produce an infinite
complexity tree, as it would be unable to generate a holding
pattern as their is a variable number of bits seceding any
terminal unary bit, which itself cannot be easily identified.
This concern is visually demonstrated in Figure 7, where
a branch extending infinitely to the right can be observed
beyond the third Unary bit. To receive additional Unary bits
within the ExpG codeword, the receiver needs to expand the
FLC tree sub-structure, which increases the receiver com-
plexity exponentially. This expansion could continue up to
infinity, depending on the number of Unary bits the receiver
intends to receive.

In Section II-C and II-Dwe introduce the finite but variable
trellis used in the encoding and decoding of RExpGEC, based
upon the tree discussed in Section II-B.

C. RExpGEC TRELLIS ENCODER
In this section, we introduce the novel Trellis encoder as
shown in Figuer 2, which in addition to the RExpG encoder
creates the overall RExpGEC encoder. The RExpGEC is the
JSCC generated from the base RExpG code, discussed in
Section II-A, via the RExpGEC trellis encoder which applies
redundancy encoding according to the trellis design and code-
book.

The Trellis encoder can be observed within Figure 2 as a
component of the overall REXpGEC encoder functionality,

FIGURE 7. Tree Decoder for ExpG Decoder, k = 1.

with the input r and output z. The overall trellis structure
can be observed in Figure 9 and for each bit in vector r
we progress through one stage of the trellis depending on
the bit-value of the transition. The transitions that make up
each individual trellis stage can be observed in Figure 8
where the colour mappings of the nodes match those in
Figures 3, 5 and 7 to show FLC and Unary nodes with
transitions between them according to the bit values in r.
Specifically, a dashed transition represents a transition occur-
ing due to a 0 valued bit in the vector r, and a solid transition
represents a transition corresponding to a 1 valued bit in r.
Subsequently these transitions are referred to as ri = 0
or ri = 1.

The trellis is designed based upon the novel RExpG
tree, which is discussed in Section II-B, which enables a
finite complexity yet flexible design to be realised for any
pseudo-monotonically distributed source.

A single stage of the RExpGEC trellis, as shown in
Figure 8, is composed of a series of states represented as a
column (m’) along with a corresponding following series of
states (m) and the possible transitions (m|m’) between those
states are indicated by a dashed line where a 0 valued bit
transition occurs and a solid line when a 1 valued bit transition
occurs, as mentioned above. These transitions themselves
have direct mapping to the RExpG tree of Figure 5. For
example, node 1 of Figure 5 directly relates to state 1 of
Figure 8with transitionsmapped accordingly to state 14 and 3
of Figure 8 which are directly related to nodes 2 and 3 of
Figure 5. The transitions from (m|m’) from each node are
determined by the bit value of r, where each transition is
encoded onto a codeword, as will be described later in this
section, in order to form the RExpGEC codeword associated
with the vector z of Figure 2.
The transitions can be defined according to some simple

rules as follows:

• logical 1 valued RExpG transitions, where ri = 1, which
transit from a node n in the upper half of the trellis,

VOLUME 11, 2023 93625



A. Hamilton et al.: RExpGEC Code for Universal Near-Capacity JSCC

complement logical 1 valued RExpG transition from
node n+ 1, where both cross the trellis

• logical 0 valued RExpG transitions, where ri = 0, which
transit from a node n in the upper half of the trellis,
complement logical 0 valued RExpG transition from
node n+ 1, where both transitions stay in their original
half of the trellis.

• logical 1 valuedRExpG transitions of the vector r, which
transit from a node where the state is a Terminal FLC
State will immediately enter state 1 or 2, the start/finish
states

These transitions allow different states to be transitioned
into. In order to categorise the states there are four possible
types of states, which we explicitly refer to in the trellis as the
following:

1) Start/Finish States These are the states entered at the
start and end of each RExpGEC codeword, which can
be entered from aUnary or a FLC transition (dependent
on k), and always leave on a Unary transition. The state
is between the end of one codeword and the beginning
of the next

2) Transitory States These are the states through which
the codeword may pass for longer codewords, and they
can be entered from a Unary or a FLC transition and
exited on the opposite transition type to that which it
was entered upon. If the exit transition is a ri = 1
valued UEC transition then the remaining transitions
of the RExpGEC codeword will be FLC states, as it is
a terminal unary bit and the trellis immediately enters
either the Terminal FLC states or the start/finish states
depending upon the value of the k parameter.

3) Holding StatesThese are the states which represent the
Unary and FLC states which a codeword can enter for
longer RExpGEC codewords. Depending on the depth
parameter, these holding states (which form a holding
pattern) can have a higher or lower chance of being
entered. If a ri = 1 valued transition occurs when in
the Unary holding state, it is a terminal unary bit and
the trellis immediately enters either the Terminal FLC
states or the start/finish states depending upon the value
of the k parameter.

4) Terminal FLC States These states only exist where
the k parameter of the RExpGEC is greater than 0, and
they directly correspond to the FLC ‘leaf nodes’ of the
RExpG tree. Once the trellis enters these states either
the codeword will immediately enter the start/finish
states, or further Terminal FLC States will be entered,
dependent on the value of k .

We consider the complexity of the trellis decoder to be
moderate in situations where the ‘depth’ parameter is low.
Specifically, in the case where k = 1 and depth= 1 the trellis
requires 140 add, compare, and select operations per iteration.

To provide an example of a specific path through the trellis,
we use the RExpG codeword (d = 12) = (0,1,0,0,1,1) to
represent the vector r, with state 1 being the initial state.

We take the bit in the first location denoted by r1 = 0,
then the dashed line representing a 0 logical bit leads to
state 3 (a transitory state), r2 = 1 causes the transition
to state 6 (a transitory state), the next location r3 = 0
would take the encoder to state 10 (a holding state), r4 = 0
to state 12 (a holding state), r5 = 1 to state 19 (a terminal
FLC state) and r6 = 1 to state 2 (a start/finish state). This
path is denoted as the bold path in Figure 9 where several
concatenated trellis stages are shown.
In order to enable a variable coding rate r for the

RExpGEC, each transition within the trellis is assigned an
output codeword of integer length 1/R. In the case of the
example shown in Figure 8, R = 0.5 and the output of each
transition is of size 2. Therefore, the symbol of d = 12,
k = 1 which is a 6 bit vector as the RExpG codeword
(as shown in Figures 3 and 5) becomes a 12 bit length vector z
as a RExpGEC codeword, of which the logical bit-values
are dependent on the codebook assigned to each RExpGEC
transition.
The codebook utilised for these transition must obey

some rules in order to maintain maximum hamming distance
between transitions when transmitted over the channel, and
reduce the probability of trellis following the orthogonal path
when received. These rules can be summarized as follows:

• logical ri = 1 valued RExpG transitions from a node n in
the upper half of the trellis, have a RExpGEC codeword
output that is complement to the logical 0 valued RExpG
transition from node n+ 1.

• logical ri = 0 valued RExpG transitions from a node n in
the upper half of the trellis, have a RExpGEC codeword
output that is complement to the logical 1 valued RExpG
transition from node n+ 1.

• logical 1 and logical 0 valued RExpG transitions from
the same state must have RExpGEC codeword outputs
that are orthogonal to each other.

Utilising these rules, a randomised codebook was gener-
ated to support Figure 8 that produced an output vector for
RExpGEC(d = 12) of (1,0,1,0,0,1,1,1,0,1,1,1), which is
based on the path through the trellis discussed earlier in this
section.
The trellis is mirrored and symmetrical with an upper and

lower half. A state of location n in the upper half has a
corresponding state n+1 in the lower half. For example, both
state 1 and 2 of Figure 8 relate to node 1 of Figure 5. The
reason for this mirroring is such that the trellis is designed
in a manner whereby every ri = 1 transition (of the RExpG
code) causes a transition from the lower half of the trellis to
the upper half, which allows the bit values of z to be equiprob-
able. If the RExpGwas not designed to produce equiprobable
bits then this would introduce capacity loss [32], [42].

D. RExpGEC TRELLIS DECODER
The RExpGEC decoder utilises the same trellis as that
defined at the encoder. The decoder utilises the trellis to
convert apriori LLRs related to encoded bits z̃a, which are

93626 VOLUME 11, 2023



A. Hamilton et al.: RExpGEC Code for Universal Near-Capacity JSCC

FIGURE 8. Trellis Stage for RExpGEC, depth = 1, k =1.

FIGURE 9. Trellis for RExpGEC, depth = 1, k = 1.

received from the inner decoder, into extrinsic LLRs relating
to the encoded bits z̃e. The decoder also outputs aposte-
rior LLRs related to the uncoded bits r̃ in accordance with
the BCJR algorithm [43]. The BCJR algorithm [43] is a
forward-backward algorithm used in digital communication
for maximum a posteriori (MAP) decoding of any code that
can be expressed in a trellis format. The extrinsic LLRs
relating to the encoded bits z̃e can be exchanged with an
inner decoder to form an iterative receiver. Within this itera-
tive decoder the extrinsic LLRs produced by one component
become the apriori LLRs to the other, with the quality of
the LLRs typically improving with successive iterations. This
enables iterative decoding of a series of received channel
LLRs b̃ to provide strong error correction performance.
Initially the trellis is populated with the received sequence

of apriori encoded RExpGEC LLRs z̃a, as well as the known
probabilities of transitions P(m|m′) within the trellis.
The known probabilities of each trellis are calculated

offline as a conditional probability from each state to the next.
All initial states of the RExpGEC have 2 possible transitions
from every state, corresponding to ri = 0 or ri = 1. In order
to calculate the probabilities in an empirical manner, prior to
transmission and reception, a large discrete series of symbols
may be generated apriori (according to the k-parameter),
which become a sequence of RExpG codewords, which are
then passed into the trellis encoder, whereby each individual
transition occurrence is measured and the conditional prob-
ability from each node can be calculated. Specifically, this
is calculated by measuring how many times the transition
corresponding to ri = 0 is used in comparison to ri = 1, such

VOLUME 11, 2023 93627



A. Hamilton et al.: RExpGEC Code for Universal Near-Capacity JSCC

that from each node the P(ri = 1) transition is calculated as
No(ri = 1)/[No(ri = 1) + No(ri = 0)] with the P(ri = 0)
being 1 − P(ri = 1). Following this process, and due to the
RExpGEC trellis being used for both encoding and decoding,
the transitions of the known conditional probabilities P(m|m′)
of the RExpGEC trellis transitions can be calculated.

The BCJR [12], [43], [44], [45] initially calculates the
γ values, which are introduced in [43] which represent the
probabilities of being in each state, given all the received
RExpGEC apriori LLRsz̃a and the apriori known probabil-
ities of each transition P(m|m′).

The algorithm then calculates the α values, which are
the probabilities of reaching each state of the trellis from
the previous set of states. The α values are calculated by
the receiver as a function of k , depth of the RExpGEC and
P1 of the source and represent the likelihood of each forward
transition. This forward recursion starts at the leftmost states
and successively calculates α values for each set of states
going from left to right [12].
Then, the algorithm calculates the backward β values,

which are the probabilities of reaching each state of the trellis,
given the previous state. This backward recursion starts from
the rightmost states and successively calculates β values for
each set of states going to the left [45].
The BCJR algorithm combines the α, β and γ values to

obtain the LLRs of each of the RExpG code bits in r̃ [43].
Following the completion of the BCJR algorithm, a hard
decision can be made on all aposterior LLRs of the encoded
bits to realise the vector x̂ as per Figure 2. This is done by
analysing the sign of LLRs in r̃, where postive LLRs represent
a binary 1 and negative a binary 0. If the codewords are
correctly received and the iterative code is able to correctly
converge then these bits should directly match the RExpG
codewords for the transmitted symbols x, as discussed in
Section II-A and in Section II-B.

III. SYSTEM DESIGN
In this section, we present a novel system design which
exemplifies the proposed JSCC RExpGEC code. This sys-
tem concatenates the RExpGEC as introduced in Section II
with a Unity Rate Code (URC) [46] and QPSK modula-
tion [47], [48], [49]. The system is henceforth referred to as
the RExpGEC-URC-QPSK scheme. The system design intro-
duces the key aspects of the RExpGEC scheme to achieve a
balance between flexibility and performance. The key com-
ponents of the system are thoroughly discussed in this section
to provide a clear understanding of the system, including
the constituent code components. This section serves as a
cornerstone for the evaluation of the system’s performance,
which is presented in subsequent sections of the paper.

In Section III-A we introduce the block diagram of the
system. Section III-B introduces the system parameters and
how they will be used in subsequent analysis.

EXIT chart analysis of the RExpGEC-URC-QPSK scheme
is provided in Section III-C, and for comparison with a com-
parable SSCC in Section IV. Furthermore, comparison with

a JSCC benchmarker, the REGEC code of [34] can be made
utilising the specific example of k = 0, as the underlying
REGEC can be seen as a special case of the RExpGEC
where k = 0.

A. SYSTEM MODEL
The RExpGEC-URC-QPSK system is presented in the
block diagram in Figure 10, where a vector of symbols x
is generated, which are turned into a vector of RExpG
uncoded bits r and subsequently RExpGEC encoded bits z.
These RExpGEC encoded bits are interleaved with 51 to
form a, then encoded with a URC code to produce encoded
RExpGEC-URC bits y. The RExpGEC-URC bits are then
interleaved with 52 into the vector b and mapped to QPSK
modulation for transmission over a wireless channel. For
the receiver the signal is received, demapped according to
the QPSK demapper, interleaved encoded LLRs correspond-
ing to the URC encoded signal b̃ and the interleaver π−1

2
are deinterleaved to form ỹ. These LLRs then undergo the
first operation of the URC decoding to form the extrinsic
LLRs from the URC decoder z̃a, along with a zero-valued ãa
(apriori information from the RExpGEC decoder). Following
this the RExpGEC Trellis is populated with z̃a and iterative
decoding between the RExpGEC Trellis decoder and URC
decoder commences, where the output z̃e becomes the input
to the URC of ãa when interleaved with 51 and the output
of the URC ãe becomes the input to the RExpGEC z̃e when
deinterleaved with π−1

1 . When the iteration limit is reached or
the system has converged a decision is made on the uncoded
RExpG LLRs r̃ and the received symbols x̂ is provided to the
Sink.

For the inner code, the URC is chosen in order to har-
ness the iterative performance of turbo-style receivers whilst
incurring moderate coding complexity [50]. The URC coding
rate has a rate exactly equal to 1, such that the number of
bits at the output y is exactly equal to the bits at the input a,
yet it introduces recursion into the bitstream, such that the
bits depend upon each other. This then enables iteration and
iterative information gain. URC codes have been proposed
for a wide variety of diverse applications for such iterative
purposes [51], [52], [53], [54] and are well suited as an inner
code for the RExpGEC-URC-QPSK scheme. Therefore, the
incorporation of a carefully designed URC enables flexible
iterative coding design when used as an inner code for mod-
erate complexity gain and no change to the overall RExpGEC
coding rate. The complexity of the RExpGEC-URC-QPSK
when the REXpGEC trellis decoder is concatenated with the
URC code produces 154 add, compare, and select operations
per iteration in the specific case of k = 1 and depth = 1,
however it is acknowledged that this complexity will increase
for differing k and depth parameters.

B. SIMULATION PARAMETERS
In order to analyse the performance of the RExpGEC and
further enhance the scheme design, a number of simulation
parameters require to be chosen for undertaking inital EXIT

93628 VOLUME 11, 2023



A. Hamilton et al.: RExpGEC Code for Universal Near-Capacity JSCC

FIGURE 10. Block Diagram for RExpGEC with URC2 and QPSK Mapping.

chart analysis [55], [56] and then in turn Symbol Error
Rate (SER) performance, in comparison to the JSCC and
SSCC benchmarker.

The variables which are chosen by the system designer are
as follows:

• k Parameter The k parameter of the RExpGEC code
will be set at different values for analysis of various
options, specifically 0,1, and 2, in order to remain
consistent with examples shown in Section II. The k
parameter controls the length of the FLC bits at the
end of the codeword, as shown in Table 2. A higher k
value better matches a flatter source distribution with
a lower P1.

• Coding Rate The coding rate Ro of the RExpGEC
can be altered by varying the bits allocated to
each RExpGEC trellis transition as discussed in
Section II-C. In order to remain consistent with prior
work [34] for comparison the coding rate Ro for the
benchmarker will be set at 1/2.

• Trellis ’Depth’The trellis depth will affect the complex-
ity of both the encoder and decoder, which is discussed
in Section II-B. In order to remain consistent with exam-
ples shown in Section II the trellis depth will be set at a
value of 1.

• URC States The URC operates on the basis of a trellis
that uses the BCJR algorithm and we can control the
number of states in it. However for consistence with
prior work [34] two-state URC shall be used.

• Modulation Mapping The modulation mapping
scheme chosen is required to be consitent across all
benchmarkers. In order to remain consistent with prior
work [34], QPSK shall be used.

The variables which are dependent on the zeta distributed
source are:

• P1 of Source P1 is the probability of the first symbol
of any source distribution. Any zeta like (or geometric)
distributed source can be accurately characterised by
it’s size and P1 value. Various information sources have
variable P1 values, where typically these are in the range
of 0.5 - 0.75, as discussed in [35]. In this paper results

are presented for a wide range of P1 values from 0.1
to 0.9.

• Finite Source Size A finite source size will require to
be chosen for simulation, where in our case a symbol
dictionary size of L = 1000 is chosen for the simulations
presented in this work, in order to remain consistent with
prior work [34].

Parametric analysis on the depth parameter has shown
that the truncation gained from having a shorter depth has
minimal impact on performance for source dictionaries when
L = 1000. Through inspection of the transitions of lower
stages in the tree it can be observed that even for large and
infinite cardinality sources a transition is rarely observed.
As these lower stages are where the gain would be expected, a
larger depth has little overall performance gain. However, if a
receiver has a large computational power, a system designer
may still choose to implement a higher ‘depth’ parameter to
observe good performance from the RExpGEC component
code. Furthermore, EXIT chart analysis shows that the EXIT
charts presented in Section III-C for a depth of 1 are indistin-
guishable from those with higher depths.

For simulations we use a fading channel with Rayleigh dis-
tribution in our simulations, and present performance results
as a function of Eb/No (which enables a direct comparison
between different source distributions and their respective
information entropies).

C. EXIT CHART ANALYSIS
Within this section, we conduct detailed analysis on
the iterative nature of the RExpGEC-URC-QPSK scheme
and estimate its performance using EXIT chart analy-
sis [47], [57], [58] to gain an enhanced understanding of
the transfer of information between the component codes
of the RExpGEC-URC-QPSK scheme. The EXIT charts are
presented in Figures 11 to 13. The quality of the information
being transferred between the RExpGEC and URC compo-
nent codes is quantified via the measurement of the mutual
information [59] of the LLR values being passed between the
component codes and their corresponding bit values from the
transmitter. We analyse the mutual information at z̃a referred
to as Ia and that of z̃e referred to as Ie, which represents the

VOLUME 11, 2023 93629



A. Hamilton et al.: RExpGEC Code for Universal Near-Capacity JSCC

apriori and extrinsic information to and from the RExpGEC
component code. This enables an enhanced understanding
of how the mutual information of the LLRs increases in an
iterative manner.

In this section, EXIT functions of both the RExpGEC and
URC will be presented on the same axes in order to repre-
sent how information will iterate between the RExpGEC and
URC codes. It is important to note that RExpGEC functions
are inverted EXIT functions, as the extrinsic information Ie
becomes the apriori information Ia of the URC code.
The transformation of Ia into Ie by the trellis decoder of

Figure 10 is characterised by plotting the inverted RExpGEC
EXIT function in an EXIT chart [57], as shown in Figures 11
to 13. In this case the inverted RExpGEC EXIT curve reaches
the (1, 1) point in the top right corner of the EXIT chart [60].
Since the URC decoder also has an EXIT curve that reaches
the (1, 1) point in the top right corner of the EXIT chart [61]
as shown in Figures 11 to 13, iterative decoding convergence
towards the Maximum Likelihood (ML) performance of the
RExpGEC-URC-QPSK scheme is facilitated [62], [63].
The RExpGEC-URC-QPSK scheme may be said to oper-

ate near-capacity operation if reliable communication can
be maintained at transmission throughputs that approach
the Continous-input Continuous-outputMemoryless Channel
(CCMC) capacity C [49] that is associated withM = 4 QPSK
modulation in an uncorrelated Rayleigh fading channel. Pre-
vious work on EXIT charts [42] have shown that the proposed
scheme will offer near capacity performance if the URC
decoder of Figures 11 to 13 has an EXIT curve with an area
beneath it of Ai = C/[Rolog2(M )] and the area Ao beneath
the inverted EXIT curve of the RExpGEC trellis decoder in
Figures 11 to 13 approaches the RExpGEC coding rate Ro.
If these two conditions are satisfied, then near-capacity

operation will be achieved, when the shape of URC decoder’s
EXIT curve is closely matched to that of the inverted
RExpGEC EXIT curve. This creates a narrow, but marginally
open EXIT chart tunnel, which facilitates iterative decoding
convergence. This narrow EXIT tunnel can be observed in
Figures 11 to 13, where the EXIT tunnels are characterised
for various values of k .

The EXIT chart area Ao that is situated below the inverted
RExpGEC EXIT curve is given by [33], [34], and [42]

Ao =
1
n

r∑
m′=1

r∑
m=1

P(m|m′)log2(
1

P(m|m′)
), (5)

where P(m|m′) represents the probability of a transition
within the decoder, and r is the maximum number of states
within the decoder.

In Figures 11 to 13 the EXIT function of the URC and
the inverted EXIT function of the RExpGEC are shown for
a given SNR when the EXIT tunnel is first presented as open.
At this point, the RExpGEC-URC-QPSK scheme should be
expected to start to converge [63]. It is important to note
that the RExpGEC code with a k paramater of 0, as shown
in Figure 11 is a special case of the RExpGEC that enables

FIGURE 11. EXIT chart demonstrating the EXIT tunnel opening paramaters
for k = 0 (equivalent to the REGEC of [34] for the inverted RExpGEC EXIT
function against the corresponding URC EXIT function at variable Eb/No,
P1 = 0.6 L = 1000, SNR = 0.9 dB, CCMC capacity = -0.4 dB.

FIGURE 12. EXIT charts demonstrating the EXIT tunnel opening
paramaters for k = 1 for the inverted RExpGEC EXIT function against the
corresponding URC EXIT function at variable Eb/No, P1 = 0.6 L = 1000,
SNR = 0.4 dB, CCMC capacity = -0.1 dB.

the RExpGEC to be functionally equivalent to the REGEC
code presented in [34]. Therefore, this can be viewed as a
benchmarker for a JSCC in comparison to the RExpGEC
component code of the RExpGEC-URC-QPSK scheme.

As shown in Figures 11 to 13, the Ao approaches the
effective coding rate Ro of the RExpGEC at the value of
P1 = 0.6. This shows that the 2-state URC code choice
of [34] also offers near optimal performance in the
RExpGEC-URC-QPSK scheme.

The EXIT analysis shows that the URC choice of the
two state URC for the RExpGEC-URC-QPSK scheme is a
good match for near-capacity performance and demonstrates
efficiency in its design. The EXIT charts also provide a strong
indication of the potential performance of a ML decoder for
the proposed RExpGEC-URC-QPSK scheme which will be
further explored via simulation in the following section.

IV. RESULTS AND ANALYSIS
In this section, we characterize the Symbol Error Rate (SER)
performance of the RExpGEC-URC-QPSK scheme and com-
pare it with two benchmarker schemes. The first bench-

93630 VOLUME 11, 2023



A. Hamilton et al.: RExpGEC Code for Universal Near-Capacity JSCC

FIGURE 13. EXIT charts demonstrating the EXIT tunnel opening
paramaters for k = 2 for the inverted RExpGEC EXIT function against the
corresponding URC EXIT function at variable Eb/No, P1 = 0.6 L = 1000,
SNR = 0.6 dB, CCMC capacity = 0.1 dB.

marker scheme is a SSCC scheme which uses the ExpG code
concatenated with a convolutional and URC channel codes
and then QPSK modulated. The second benchmarker is the
REGEC-URC-QPSK scheme from [34], which represents a
special case of the RExpGEC-URC-QPSK scheme where
k = 0 is the only supported parameter value. We will show
that our proposed RExpGEC-URC-QPSK scheme offers
superior performance in comparison to both the SSCC and
JSCC benchmarker both in terms of absolute near-capacity
performance, but also in flexibility of design, specifically the
ability to match different source distributions more efficiently
in comparison to the REGEC-URC-QPSK benchmarker.

In the ExpG-CC-URC-QPSK scheme shown in Fig. 14, the
source symbol vector x is encoded into a ExpG bit vector,
which is encoded with a convolutional code [18] interleaved
via π1 and encoded with an URC encoder (of the same code
rates as that used in the RExpGEC-URC-QPSK scheme) to
produce a vector of ExpG-CC-URC bits, y, and then mapped
to QPSK modulation for transmission. This enables a direct
comparison with the RExpGEC-URC-QPSK scheme as the
ExpG-CC-URC-QPSK scheme is the SSCC equivalent.

The ExpG-CC-URC-QPSK benchmarker scheme will
observe the same coding rate Ro as the RExpGEC-URC-
QPSK scheme as introduced in Figure 10. Furthermore, as the
ExpG-CC-URC-QPSK scheme is based upon the Exponen-
tial Golomb codeword, it can be scaled to different values
of k for direct comparison with the RExpGEC-URC-QPSK
scheme for the values of k which are simulated. The com-
plexity of the ExpG-CC-URC-QPSK benchmarker scheme is
relatively modest in comparison with the 154 add, compare,
and select operations per iteration of the RExpGEC-URC-
QPSK (where k = 1 and depth=1), with a fixed complexity
of 42 add, compare, and select operations per iteration. This
is due to the fixed decoder structure of the SSCC scheme,
where the decoder does not vary with k . Specifically in the
case where k = 1 and depth=, the RExpGEC-URC-QPSK

scheme is 3.6 times more complex than the ExpG-CC-URC-
QPSK benchmarker scheme.

In order to evaluate the performance of the RExpGEC-
URC-QPSK scheme in comparison with the ExpG-CC-URC-
QPSK scheme, simulations were conducted using well moti-
vated values of P1, k , and L, which are the same as those
discussed in Section III-B whereby the performance of both
systems can be directly compared. Specifically 100 iterations
were applied to all schemes, with early termination crite-
ria applied if the vector x̂ matched the transmitted symbol
vector x.

Figure 15 characterizes the performance of the RExpGEC-
URC-QPSK scheme introduced in Section III in Figure 10,
and provides direct comparison with the benchmarker
ExpG-CC-URC-QPSK scheme introduced in Section IV in
Figure 14. The scenario shown in Figure 15 is one snapshot of
a series of simulation parameters, with other results presented
in Figures 16 and 17.

As shown in Figure 15, reliable transmission can be
achieved for zeta distributed sources with aP1 of 0.6 at 1.7 dB
for k = 0, 1.9 dB for k = 1, and 2.2 dB for k = 2. This
performance constantly outperforms the benchmarker SSCC
scheme and is constantly within 2.1 dB of the CCMC capacity
for this specific case. Note, CCMC capacity of differing
k parameters varies due to the different operating spectral
efficiencies with regards to Eb/No.

As can be seen in Figure 15 the RExpGEC-URC-
QPSK scheme is close to capacity for these specific cases.
In figs. 16 and 17, the results from several different parameter
values are presented, specifically including results on the
variation of P1 and k , with performance shown in both Eb/No
as well as channel SNR.

The parametric performance of the RExpGEC-URC-
QPSK and ExpG-CC-URC-QPSK schemes with respect to
P1 with performance measured in Eb/No and SNR are pre-
sented in Figures 16 and 17, respectively. As can be observed
in Figure 16 the performance of the RExpGEC-URC-QPSK
outperforms the ExpG-CC-URC-QPSK SSCC benchmarker
for all cases with regards to Eb/No across various P1,
and offers similar performance for all k parameters, which
includes the JSCC benchmarker of the REGEC-URC-QPSK.
The gap to CCMC capacity does not exceed 2.73 dB for any
scenario and in the vast majority of cases is below 2 dB.

In comparison for link-budget constrained deployments
where SNR is the important performance metric the results
shown in Figure 17 are relevant. In this case not only does
the RExpGEC-URC-QPSK still outperform the SSCC bench-
marker but dependant on P1 it can also offer better per-
formance than the REGEC-URC-QPSK JSCC benchmarker.
This demonstrates the flexibility of the RExpGEC-URC-
QPSK. In all cases, all RExpGEC-URC-QPSK schemes
with varying k outperforms all ExpG-CC-URC-QPSK by at
least 1 dB.

In these cases, the flexibility of the RExpGEC-URC-QPSK
scheme offers significant benefit over the REGEC-URC-
QPSK scheme of [34], which can be functionally seen as

VOLUME 11, 2023 93631



A. Hamilton et al.: RExpGEC Code for Universal Near-Capacity JSCC

FIGURE 14. ExpG-CC-URC-QPSK Block Diagram.

FIGURE 15. Symbol Error rate of the RExpGEC-URC-QPSK and
ExpG-CC-URC-QPSK, for variable k parameters with the
block length of x = 10000, P1 of 0.6, and L = 1000.

FIGURE 16. Eb/No of the RExpGEC-URC-QPSK and ExpG-CC-URC-QPSK,
for variable P1 parameters with the block length of x = 10000, L = 1000,
and k = 0,1,2.

a special case of the RExpGEC-URC-QPSK scheme where
k = 0, due to the fact that the system can be designed to
utilise a different k parameter, and have better SNR perfor-
mance. This is particularly useful if the system designed is
constrained by the link budget, whilst maintaining a tight

FIGURE 17. SNR of the RExpGEC-URC-QPSK and ExpG-CC-URC-QPSK, for
variable P1 parameters with the block length of x = 10000, L = 1000, and
k = 0,1,2.

energy efficiency criteria as the system maintains a similar
energy efficiency in terms of energy per bit for all values of k
and P1, whereas the SNR performance varies and the system
can be optimised accordingly.

V. CONCLUSION
In this paper, we have introduced a novel JSCC code,
known as the RExpGEC, which when integrated into the
novel RExpGEC-URC-QPSK scheme provides near-capacity
transmission of symbol values that are selected from large or
infinite monotonic source distributions.

The RExpGEC-URC-QPSK scheme has enhanced flexi-
bility over its JSCC counterpart such as the REGEC-URC-
QPSK scheme, whilst maintaining the same performance
level for k = 0. The RExpGEC-URC-QPSK scheme enables
enhanced performance for other values of the k parameter
and maintains a gap to the CCMC capacity of 2 dB for all
values of P1 for zeta-like source probability distributions,
when QPSK modulation is employed for transmission over
an uncorrelated narrowband Rayleigh fading channel.

In some practical scenarios where the source symbols obey
particular finite Zeta-like source probability distributions, our
RExpGEC-URC-QSPK scheme is shown to offer gains of up

93632 VOLUME 11, 2023



A. Hamilton et al.: RExpGEC Code for Universal Near-Capacity JSCC

to 3.6 dB over SSCC benchmarkers in all cases, when QPSK
modulation is employed for transmission over an uncorre-
lated narrowband Rayleigh fading channel.

These gains are achieved for no-cost with regards to spec-
tral usage nd power, without increasing the required transmit-
duration, transmit-bandwidth or transmit-energy. However,
this is achieved at the cost of complexity of around 3.6 times
compared to the SSCC benchmarker when k = 1 and
depth=1. We consider these performance gains to be sig-
nificant, since they are achieved within the vicinity of the
CCMC capacity, namely within 2 dB. This is achieved by
mitigating the capacity loss inherent in SSCC, which is due
to the residual redundancy after source coding which is not
exploited for error correction. Furthermore the gains are
achieved by being able to adjust the k parameter to target
different monotonic sources in link-budget constrained scen-
rios. Since these gains are associated with the improvements
offered by the RExpGEC code over the benchmarker SSCC
and JSCC codes, similar gains may be expected when com-
bining with any other channel codes.

REFERENCES
[1] C. E. Shannon, ‘‘A mathematical theory of communication,’’ Bell Syst.

Tech. J., vol. 27, no. 3, pp. 379–423, Jul. 1948.
[2] J. Ziv and A. Lempel, ‘‘Compression of individual sequences via variable-

rate coding,’’ IEEE Trans. Inf. Theory, vol. IT-24, no. 5, pp. 530–536,
Sep. 1978.

[3] P. Elias, ‘‘Universal codeword sets and representations of the integers,’’
IEEE Trans. Inf. Theory, vol. IT-21, no. 2, pp. 194–203, Mar. 1975.

[4] D. Huffman, ‘‘A method for the construction of minimum-redundancy
codes,’’ Proc. IRE, vol. 40, no. 9, pp. 1098–1101, Sep. 1952.

[5] S. Golomb, ‘‘Run-length encodings (Corresp.),’’ IEEE Trans. Inf. Theory,
vol. IT-12, no. 3, pp. 399–401, Jul. 1966.

[6] R. M. Fano, The Transmission of Information, vol. 65. Cambridge, MA,
USA:Massachusetts Institute of Technology, Research Laboratory of Elec-
tronics, 1949.

[7] J. B. Connell, ‘‘A Huffman-Shannon-Fano code,’’ Proc. IEEE, vol. 61,
no. 7, pp. 1046–1047, Jul. 1973.

[8] M. Wien, ‘‘High efficiency video coding,’’ in Coding Tools Specification,
vol. 24. Berlin, Germany: Springer, 2015.

[9] J. Teuhola, ‘‘A compressionmethod for clustered bit-vectors,’’ Inf. Process.
Lett., vol. 7, no. 6, pp. 308–311, Oct. 1978.

[10] S. Even and M. Rodeh, ‘‘Economical encoding of commas between
strings,’’ Commun. ACM, vol. 21, no. 4, pp. 315–317, Apr. 1978.

[11] C. Berrou, A. Glavieux, and P. Thitimajshima, ‘‘Near Shannon limit error-
correcting coding and decoding: Turbo-codes. 1,’’ in Proc. IEEE Int. Conf.
Commun., May 1993, pp. 1064–1070.

[12] M. F. Brejza, L. Li, R. G. Maunder, B. M. Al-Hashimi, C. Berrou, and
L. Hanzo, ‘‘20 years of turbo coding and energy-aware design guidelines
for energy-constrained wireless applications,’’ IEEE Commun. Surveys
Tuts., vol. 18, no. 1, pp. 8–28, 1st Quart., 2016.

[13] E. Arikan, ‘‘Channel polarization: A method for constructing capacity-
achieving codes for symmetric binary-input memoryless channels,’’ IEEE
Trans. Inf. Theory, vol. 55, no. 7, pp. 3051–3073, Jul. 2009.

[14] R. G. Gallager, ‘‘Low-density parity-check codes,’’ IRE Trans. Inf. Theory,
vol. 8, no. 1, pp. 21–28, Jan. 1962.

[15] L. Hanzo, R. G. Maunder, J. Wang, and L.-L. Yang, Near-Capacity
Variable-Length Coding: Regular and EXIT-Chart-Aided Irregular
Designs, vol. 20. Hoboken, NJ, USA: Wiley, 2010.

[16] S. B. Wicker and V. K. Bhargava, Reed–Solomon Codes and Their Appli-
cations. Hoboken, NJ, USA: Wiley, 1999.

[17] S. Kallel and D. Haccoun, ‘‘Generalized type II hybrid ARQ scheme using
punctured convolutional coding,’’ IEEE Trans. Commun., vol. 38, no. 11,
pp. 1938–1946, Nov. 1990.

[18] J. Heller and I. Jacobs, ‘‘Viterbi decoding for satellite and space communi-
cation,’’ IEEETrans. Commun. Technol., vol. COM-19, no. 5, pp. 835–848,
Oct. 1971.

[19] I. S. Reed and G. Solomon, ‘‘Polynomial codes over certain finite fields,’’
J. Soc. Ind. Appl. Math., vol. 8, no. 2, pp. 300–304, Jun. 1960.

[20] B. Krause, L. Lu, I. Murray, and S. Renals, ‘‘Multiplicative LSTM for
sequence modelling,’’ 2016, arXiv:1609.07959.

[21] S. R. Kodituwakku and U. S. Amarasinghe, ‘‘Comparison of lossless data
compression algorithms for text data,’’ Indian J. Comput. Sci. Eng., vol. 1,
no. 4, pp. 416–425, 2010.

[22] J. Rissanen and G. Langdon, ‘‘Universal modeling and coding,’’ IEEE
Trans. Inf. Theory, vol. IT-27, no. 1, pp. 12–23, Jan. 1981.

[23] A. S. Fraenkel and S. T. Kleinb, ‘‘Robust universal complete codes for
transmission and compression,’’ Discrete Appl. Math., vol. 64, no. 1,
pp. 31–55, Jan. 1996.

[24] D. Salomon,Data Compression: The Complete Reference. Cham, Switzer-
land: Springer, 2004.

[25] J. L Massey, ‘‘Joint source and channel coding,’’ Massachusetts Inst. Tech.
Cambridge Electron. Syst. Lab, Cambridge, MA, USA, Tech. Rep., 1977.

[26] J. Rissanen and G. G. Langdon, ‘‘Arithmetic coding,’’ IBM J. Res.
Develop., vol. 23, no. 2, pp. 149–162, Mar. 1979.

[27] Q. Stout, ‘‘Improved prefix encodings of the natural numbers (Cor-
resp.),’’ IEEE Trans. Inf. Theory, vol. IT-26, no. 5, pp. 607–609,
Sep. 1980.

[28] M. Bernard and B. D. Sharma, ‘‘Some combinatorial results on variable
length error correcting codes,’’ Ars Combinatoria, vol. 25, pp. 181–194,
Jan. 1988.

[29] R. Bauer and J. Hagenauer, ‘‘Symbol by symbolMAP decoding of variable
length codes,’’ in Proc. 3rd ITG Conf. Source Channel Coding, Jan. 2000.

[30] N. Gortz, ‘‘Iterative source-channel decoding using soft-in/soft-out
decoders,’’ in Proc. IEEE Int. Symp. Inf. Theory, Jun. 2000, p. 173.

[31] N. Gortz, ‘‘On the iterative approximation of optimal joint source-channel
decoding,’’ IEEE J. Sel. Areas Commun., vol. 19, no. 9, pp. 1662–1670,
Sep. 2001.

[32] R. G. Maunder, W. Zhang, T. Wang, and L. Hanzo, ‘‘A unary error
correction code for the near-capacity joint source and channel coding of
symbol values from an infinite set,’’ IEEE Trans. Commun., vol. 61, no. 5,
pp. 1977–1987, May 2013.

[33] T. Wang, W. Zhang, R. G. Maunder, and L. Hanzo, ‘‘Near-capacity joint
source and channel coding of symbol values from an infinite source set
using Elias gamma error correction codes,’’ IEEE Trans. Commun., vol. 62,
no. 1, pp. 280–292, Jan. 2014.

[34] T. Wang, M. F. Brejza, W. Zhang, R. G. Maunder, and L. Hanzo,
‘‘Reordered Elias gamma error correction codes for the near-capacity
transmission of multimedia information,’’ IEEE Access, vol. 4,
pp. 5948–5970, 2016.

[35] M. F. Brejza, T. Wang, W. Zhang, D. Al-Khalili, R. G. Maunder,
B. M. Al-Hashimi, and L. Hanzo, ‘‘Exponential Golomb and Rice error
correction codes for generalized near-capacity joint source and channel
coding,’’ IEEE Access, vol. 4, pp. 7154–7175, 2016.

[36] T. Wang, ‘‘Elias gamma error correction code,’’ Ph.D. thesis, Dept. Elec-
tron. Comput. Sci., Univ. Southampton, Southampton, U.K., 2016.

[37] S. ten Brink, ‘‘Convergence of iterative decoding,’’ Electron. Lett., vol. 35,
no. 10, pp. 806–808, May 1999.

[38] N. L. Johnson, A. W. Kemp, and S. Kotz, Univariate Discrete Distribu-
tions, vol. 444. Hoboken, NJ, USA: Wiley, 2005.

[39] G. J. Sullivan, J.-R. Ohm, W.-J. Han, and T. Wiegand, ‘‘Overview of the
high efficiency video coding (HEVC) standard,’’ IEEE Trans. Circuits Syst.
Video Technol., vol. 22, no. 12, pp. 1649–1668, Dec. 2012.

[40] A. Haghighi and L. Vanderwende, ‘‘Exploring content models for multi-
document summarization,’’ in Proc. Human Lang. Technologies, Annu.
Conf. North Amer. Chapter Assoc. Comput. Linguistics (NAACL), 2009,
pp. 362–370.

[41] J. R. Price and M. Rabbani, ‘‘Biased reconstruction for JPEG
decoding,’’ IEEE Signal Process. Lett., vol. 6, no. 12, pp. 297–299,
Dec. 1999.

[42] A. Ashikhmin, G. Kramer, and S. ten Brink, ‘‘Extrinsic information trans-
fer functions: Model and erasure channel properties,’’ IEEE Trans. Inf.
Theory, vol. 50, no. 11, pp. 2657–2673, Nov. 2004.

[43] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, ‘‘Optimal decoding of linear
codes for minimizing symbol error rate (Corresp.),’’ IEEE Trans. Inf.
Theory, vol. IT-20, no. 2, pp. 284–287, Mar. 1974.

VOLUME 11, 2023 93633



A. Hamilton et al.: RExpGEC Code for Universal Near-Capacity JSCC

[44] S. Shao, P. Hailes, T.-Y. Wang, J.-Y. Wu, R. G. Maunder,
B. M. Al-Hashimi, and L. Hanzo, ‘‘Survey of turbo, LDPC, and polar
decoder ASIC implementations,’’ IEEE Commun. Surveys Tuts., vol. 21,
no. 3, pp. 2309–2333, 3rd Quart., 2019.

[45] J. P. Woodard and L. Hanzo, ‘‘Comparative study of turbo decoding
techniques: An overview,’’ IEEE Trans. Veh. Technol., vol. 49, no. 6,
pp. 2208–2233, Nov. 2000.

[46] D. Divsalar, S. Dolinar, and F. Pollara, ‘‘Serial concatenated trellis coded
modulation with rate-1 inner code,’’ in Proc. Globecom IEEE Global
Telecommun. Conf. Conf. Rec., Nov. 2000, pp. 777–782.

[47] S. T. Brink, J. Speidel, and R.-H. Yan, ‘‘Iterative demapping for QPSK
modulation,’’ Electron. Lett., vol. 34, no. 15, pp. 1459–1460, Jul. 1998.

[48] B. Sklar, Digital Communications, vol. 2. Upper Saddle River, NJ, USA:
Prentice-Hall, 2021.

[49] J. G. Proakis and M. Salehi, Digital Communications, vol. 4. New York,
NY, USA: McGraw-Hill, 2001.

[50] W. Zhang, M. F. Brejza, T. Wang, R. G. Maunder, and L. Hanzo, ‘‘Irreg-
ular trellis for the near-capacity unary error correction coding of symbol
values from an infinite set,’’ IEEE Trans. Commun., vol. 63, no. 12,
pp. 5073–5088, Dec. 2015.

[51] Z. Babar, H. V. Nguyen, P. Botsinis, D. Alanis, D. Chandra, S. X. Ng,
and L. Hanzo, ‘‘Serially concatenated unity-rate codes improve quantum
codeswithout coding-rate reduction,’’ IEEECommun. Lett., vol. 20, no. 10,
pp. 1916–1919, Oct. 2016.

[52] Z. Babar, H. V. Nguyen, P. Botsinis, D. Alanis, D. Chandra, S. X. Ng, and
L. Hanzo, ‘‘Unity-rate codes maximize the normalized throughput of ON–
OFF keying visible light communication,’’ IEEE Photon. Technol. Lett.,
vol. 29, no. 3, pp. 291–294, Feb. 1, 2017.

[53] Z. Babar, M. A.M. Izhar, H. V. Nguyen, P. Botsinis, D. Alanis, D. Chandra,
S. X. Ng, R. G. Maunder, and L. Hanzo, ‘‘Unary-coded dimming control
improves ON-OFF keying visible light communication,’’ IEEE Trans.
Commun., vol. 66, no. 1, pp. 255–264, Jan. 2018.

[54] J. Hu, M. Li, K. Yang, S. X. Ng, and K.-K. Wong, ‘‘Unary coding
controlled simultaneous wireless information and power transfer,’’ IEEE
Trans. Wireless Commun., vol. 19, no. 1, pp. 637–649, Jan. 2020.

[55] M. El-Hajjar and L. Hanzo, ‘‘EXIT charts for system design and analysis,’’
IEEECommun. Surveys Tuts., vol. 16, no. 1, pp. 127–153, 1st Quart., 2014.

[56] L. Hanzo, O. Alamri, M. El-Hajjar, and N. Wu, Near-Capacity Multi-
Functional MIMO Systems: Sphere-Packing, Iterative Detection and
Cooperation. Hoboken, NJ, USA: Wiley, 2009.

[57] S. ten Brink, ‘‘Convergence behavior of iteratively decoded parallel con-
catenated codes,’’ IEEE Trans. Commun., vol. 49, no. 10, pp. 1727–1737,
Oct. 2001.

[58] J. Hagenauer, ‘‘The exit chart–introduction to extrinsic information trans-
fer in iterative processing,’’ in Proc. 12th Eur. Signal Process. Conf.,
Sep. 2004, pp. 1541–1548.

[59] D. J. C. MacKay, Information Theory, Inference and Learning Algorithms.
Cambridge, U.K.: Cambridge Univ. Press, 2003.

[60] J. Kliewer, N. Goertz, and A. Mertins, ‘‘Iterative source-channel decoding
with Markov random field source models,’’ IEEE Trans. Signal Process.,
vol. 54, no. 10, pp. 3688–3701, Oct. 2006.

[61] R. G. Maunder and L. Hanzo, ‘‘Iterative decoding convergence and termi-
nation of serially concatenated codes,’’ IEEE Trans. Veh. Technol., vol. 59,
no. 1, pp. 216–224, Jan. 2010.

[62] D. Divsalar, H. Jin, and R. J. McEliece, ‘‘Coding theorems for ‘turbo-like’
codes,’’ in Proc. Annu. Allerton Conf. Commun. control Comput., vol. 36,
1998, pp. 201–210.

[63] G. David Forney, ‘‘Convolutional codes II. Maximum-likelihood decod-
ing,’’ Inf. Control, vol. 25, no. 3, pp. 222–266, Jul. 1974.

ALEXANDER HAMILTON (Member, IEEE) is
currently a Senior Standardization Specialist with
Nokia, where he is also a 3GPP RAN4 Delegate as
well as being a Visiting Postgraduate Researcher
with the School of Electronics and Computer Sci-
ence, University of Southampton, England, U.K.
His research interests include information theory,
joint source/channel coding, iterative decoding,
non-linear channels, and modulation techniques.
He is a Chartered Engineer with the IET.

MOHAMMED EL-HAJJAR (Senior Member,
IEEE) is currently a Professor of signal process-
ing for wireless communications with the School
of Electronics and Computer Science, University
of Southampton, England, U.K. He has published
a Wiley-IEEE book, more than 100 articles, and
numerous patents. His research interests include
communications systems and networking design.
He was a recipient of several academic awards.

ROBERT G. MAUNDER (Senior Member, IEEE)
received the B.Eng. degree (Hons.) in electronic
engineering and the Ph.D. degree in telecom-
munications, in July 2003 and December 2007,
respectively. He began a lectureship, in November
2007, and was promoted to Associate Professor,
in March 2013, and to Professor, in August 2017.
He has been with the School of Electronics and
Computer Science, University of Southampton,
U.K., since October 2000. He is currently the

Founder and the CTO of AccelerComm Ltd., which is commercializing
his research as soft-IP. His research interests include joint source/channel
coding and the holistic design of algorithms and hardware implementations
for wireless communications. He has published a number of IEEE articles in
these areas. He was a fellow of the IET, in January 2017. He was a Chartered
Engineer of the IET, in November 2013.

93634 VOLUME 11, 2023


