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ABSTRACT Advances in speech synthesis have exposed the vulnerability of spoofing countermeasure (CM)
systems. Adversarial attacks exacerbate this problem, mainly due to the reliance of most CMmodels on deep
neural networks. While research on adversarial attacks in anti-spoofing systems has received considerable
attention, there is a relative scarcity of studies focused on developing effective defense techniques. In this
study, we propose a defense strategy against such attacks by augmenting training data with frequency
band-pass filtering and denoising. Our approach aims to limit the impact of perturbation, thereby reducing
the susceptibility to adversarial samples. Furthermore, our findings reveal that the use of Max-Feature-Map
(MFM) and frequency band-pass filtering provides additional benefits in suppressing different noise types.
To empirically validate this hypothesis, we conduct tests on different CM models using adversarial samples
derived from the ASVspoof challenge and other well-known datasets. The evaluation results show that such
defense mechanisms can potentially enhance the performance of spoofing countermeasure systems.

INDEX TERMS Automatic speaker verification, adversarial attack, spoofing countermeasure,
psychoacoustics.

I. INTRODUCTION
The recent advancements in state-of-the-art generative mod-
els have revolutionized speech synthesis, enabling the cre-
ation of high-quality synthetic speech that closely emulates
genuine speakers. Despite the advantages synthetic speech
offers, the rise of audio deepfakes presents a severe threat to
our society and economy. Deepfake audio employs advanced
deep learning techniques like Text-to-Speech (TTS) or Voice
Conversion (VC) to generate sophisticated spoofed audio
samples, which can be considered presentation attacks [1].
Such maliciously crafted artificial speech can deceive both
Automatic speaker verification systems (ASV), posing a
severe threat to the integrity and reliability of speaker ver-
ification processes. Moreover, criminals can exploit speech
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samples generated by deep neural networks to conduct
social engineering attacks or disseminate misinformation
against human listeners. To evade detection, perpetrators
may employ sophisticated techniques, including background
noise, reverberation, or the creation of partially fake audio, all
of which enhance the deception rate of the spoofing attempts.

In light of this emerging threat, developing robust coun-
termeasure systems (CM) to defend against such spoofing
attacks is crucial. Recent innovations in deep learning and
end-to-end solutions offer promising avenues for combating
voice spoofing attacks. Recently, several studies have focused
on deep learning and end-to-end solutions, aiming to develop
unified approaches to tackle various attacks. However, the
exploration of such solutions is still in its early stages,
emphasizing the urgent need for a comprehensive and unified
approach in combating voice spoofing attacks in ASV
systems [2], [3].

VOLUME 11, 2023
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 94563

https://orcid.org/0000-0002-7764-6235
https://orcid.org/0000-0001-7988-5953
https://orcid.org/0000-0002-5538-3630
https://orcid.org/0000-0003-2676-3412
https://orcid.org/0000-0001-5985-3970


L. Nguyen-Vu et al.: On the Defense of Spoofing Countermeasures Against Adversarial Attacks

In recent years, adversarial attacks have become a con-
cerning problem in machine learning security. Several studies
have discussed this topic in Automatic Speech Recognition
(ASR) [4], [5], [6], [7], [8], [9] and in Automatic Speaker
Verification/SpoofingCountermeasure (ASV-CM) [10], [11],
[12], [13], [14], [15], [16], [17] tandem systems. While
advances in speech synthesis allow a fake audio sample to
sound indistinguishable from a genuine sample, adversarial
attacks make it even more stealthy. Due to the transferability
nature across deep learning-based models [18], [19], adver-
sarial samples are often retrieved from a surrogate (substitute)
model to attack the target (supposedly similar) model.
As announced by the ASVspoof organizers, ASVspoof5
competition1 will shift the focus to VC and TTS, including
adversarial attacks relying on ASV/CM feedback. The need
to build resilient defense mechanisms has never been more
urgent, and addressing these challenges requires our utmost
attention.

Among the defense mechanisms, adversarial training is
a popular choice against adversarial attacks. This approach
exposes the model to adversarial examples during training
and forces it to make more robust predictions. Despite
the advantage, adversarial training can be computationally
expensive while generating less representative samples. This
can lead to reduced performance on real-world data that does
not conform to those specific attack types. Another approach
was spatial smoothing derived from computer vision domain,
which is an alternative technique to soften the audio signal
features using the median and mean filters [11], [12] to
restrict the capability of generated adversarial samples.
However, its effectiveness depends on the size and shape of
the smoothing filter, i.e., a trade-off between robustness and
accuracy needs to be carefully balanced. In this study, we aim
to defend against adversarial attacks on spoofing countermea-
sure systems (CM). We propose two techniques to improve
the robustness of CM models by training them with aug-
mented data resulting from band-pass filters and denoising.

Our hypotheses are as follows: (1) An original speech
waveform would be too permissible for generating adver-
sarial examples by making small changes to different
waveform frequency ranges. Gradient-based attacks can
perturb higher or lower frequency ranges without causing
perceivable distortion to the auditory system. Therefore,
a model trained with all frequencies may be more vulnerable
to such attacks. (2) The countermeasure systems do not
need to use a full range of frequencies because their
goal is to identify spoofing samples. This distinction sets
them apart from speech recognition, which requires audio
samples to retain properties like intelligibility, consistency,
naturalness, and emotion. (3) Spoofed speech samples are
expected to exhibit similarities with bona fide samples in
the ‘‘normal conversation’’ frequency range (refer to Fig. 1).
It becomes essential for the CM to prioritize learning from
the discriminative features present in this range. (4) Both

1https://www.asvspoof.org

FIGURE 1. Perturbations in high and low frequencies beyond
psychoacoustics range will be less likely to be perceptible.

band-pass filter and denoising techniques have the effect of
reducing noise. We would like to see the potential of these
techniques under adversarial scenarios.

In fact, previous attempts such as Wave-Guard [20]
adopted transformation functions using low-shelf and high-
shelf filters to remove adversarial noise from a given signal.
Unlike our study, Wave-Guard did not completely remove
the frequencies beyond some thresholds but lowered their
amplitude, which is more suitable for Automatic Speaker
Recognition (ASR) systems than CM systems. Motivated
by such research, we explored practical neural network
architectures such as LCNN and augmentation techniques to
enhance the capability of countermeasure systems.

In this study, we made the following contributions:
• We propose two augmentation methods taking into
account adversarial noise and perceptible frequencies.

• On the augmented datasets, we trained two types of
neural networks commonly used in spoofing counter-
measures, SENet and LCNN. The evaluation results
show that models trained on the augmented datasets
are more robust to adversarial samples than those
trained with the original dataset. We also compared our
enhancedmodel with other state-of-the-art models under
various black-box datasets.

• We compared the band-pass filter technique with
the denoising approach. The first is proven to be a
stronger defense and can be a good candidate against
psychoacoustics-based adversarial attacks.

• We conducted a rigorous evaluation to assess the
efficacy of our proposed defense strategies, employing
diverse datasets and state-of-the-art models. The results
showcased the potential of our techniques in establishing
universally robust models capable of withstanding
various types of adversarial attacks.

Next, we discuss some background and related work in
Section II. Our proposed scheme is detailed in Sections III
and IV. We conclude our work in Section V. The source
code required for conducting the experiments can be found
at https://github.com/nguyenvulong/AdvDefenseCM.

II. BACKGROUND AND RELATED WORK
A. ADVERSARIAL ATTACKS
We briefly explain the two popular adversarial attacks
we used in this work from the perspective of an audio
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waveform. The FGSM attack [21] involves adding a small
perturbation to the input data that maximizes the loss function
(i.e., increasing the false acceptance rate of a CM). The
perturbation is computed by taking the sign of the gradient
of the loss function with respect to the input data.

Xadv = X + ϵsign(∇XJ (θ,X ,Y )) (1)

where X is the original input data; Xadv is the processed
audio input; Y is the ground-truth label; J (θ,X ,Y ) is the
loss function parameterized by θ ; ϵ is the magnitude of the
perturbation (i.e., the size of the attack); ∇XJ (θ,X ,Y ) is the
gradient of the loss function with respect to the input X .

The PGD attack [22] is a more advanced adversarial attack
that iteratively applies the FGSM with a smaller perturbation
size, and projects the result back onto a valid data range.

Xt+1 = ClipX {Xt + αsign(∇XJ (θ,Xt ,Y ))} (2)

where iteration step t and the step size α are introduced;
ClipX (·) is the clipping function to ensure that the Xadv is
valid, i.e., no perceivable distortion.

B. ADVERSARIAL ATTACKS ON SPOOFING
COUNTERMEASURES
Adversarial attacks can be categorized into white-box and
black-box settings, depending on the knowledge of the attack
about the target model [23]. Adversarial samples can be
retrieved by launching adversarial attacks on a model while
having full knowledge about it (i.e., white-box setting). Such
samples can then be used to attack other models without
knowing much about their architectures (hence the term
black-box setting). In practical scenarios, a surrogate model
is often used to indirectly launch a black-box attack [10],
[24], [25]. The authors of [10] have shown that all models
are vulnerable to FGSM and PGD black-box attacks, and
smaller models are more vulnerable than larger ones to
adversarial samples regarding the transferability effect. The
attacks became even more severe when ensemble learning
was applied [25]. Reference [26] performed the first targeted,
over-telephony-network attack on the countermeasure (CM),
which posed a serious threat in the emerging use of call
centers.

Meanwhile, the defense can be grouped into two main
categories: passive and active. Authors from [11], [12],
and [14] proposed different passive defense methods to
enhance the adversarial robustness of the system: spatial
smoothing [11], layer-wise noise-to-signal ratio (LNSR) for
robustness quantization [12], or cascadedmodels to purify the
input samples [14]. The common characteristic among these
techniques is that the input features have been transformed,
thus alleviating the effect of the attack. Regarding active
defense, adversarial training [11] is the popular choice
besides adversarial sample detection approaches [13], [17],
where the neural networks were specifically trained to spot
these samples.

We summarized the studies of adversarial attacks on CM
systems in Table 1.

C. FREQUENCY MASKING
Frequency masking is a similar technique used for training
CMmodels [27], [28], [29], [30]. Specifically, [27] randomly
dropped out a frequency band range during training as a
means of data augmentation. RawGAT-ST [28] randomly
selected contiguous sinc channels. Raw PC-DARTS [29]
proposed filter masking as a regularizer. The authors of [30]
proposed using Frequency Feature Masking (FFM) on five
mel-spectrogram-based neural network architectures and
showed that FFM is useful when noisemay present in the high
or low-frequency band. Different from this study, frequency
masking has yet to be used for training a robust model against
adversarial samples.

III. PROPOSED SCHEME
A. THREAT MODEL
Depending on the capability of an attacker, perturbations
can prioritize high and low frequencies to avoid perceivable
distortion because the quality of an audio file may degrade
significantly to a human listener when perturbations are
added in psychoacoustics frequencies (see Fig. 1). In this
work, we assume that the adversarial attacks may happen
in any frequency range but hypothesize that such attacks
can be restricted in a narrower band after band-pass filtered,
as depicted in Figure 3. In fact, the authors of [6], [31],
and [32] discussed that psychoacoustics-based adversarial
attacks are likely to exploit the properties of deep neural
network-based CMs when trained with a wide band of
frequency. For instance, [6] manipulated the acoustic signal
below the human perception‘s threshold, whereas [32] found
that an audio sample can be altered at lower frequencies
without causing perceptible distortion. In fact, such assump-
tion can also be generalized to other contexts beyond the
audio domain. For instance, the authors of [33] sought
to enhance the transferability of an adversarial attack by
focusing on a low-frequency component of point clouds. The
authors combined losses from the original point cloud and
its low-frequency component to generate adversarial samples
and demonstrated that the attack is more effective against
state-of-the-art 3D defense methods.

B. SEARCH FOR OPTIMAL FREQUENCY RANGES
It is essential to determine suitable frequencies for training
CM models, therefore we started by investigating the range
that most impacts the auditory system. How humans perceive
sound has been well-studied in the past. The frequency range
between 20 Hz to 20,000 Hz is audible to the human auditory
system, and the highest sensitivity is between 500 Hz and
4,000 Hz [34]. For everyday conversation, the range typically
takes place between 500 Hz to 3,000 Hz [34].

While analyzing audio samples from the ASVspoof
2019 [35], we found that frequencies from 100Hz to 5kHz
are sufficient for representing normal speech. Furthermore,
we realized certain types of background noise can be removed
in such frequencies, i.e., making the audio samples sound
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FIGURE 2. Black-box adversarial attack scenario. We introduce two augmentation techniques: audio
denoising and band-pass filter. The CM model trained with augmented datasets is robust against
adversarial samples generated by the surrogate model.

TABLE 1. Recent studies on adversarial attack and defense techniques in ASV-CM systems.

FIGURE 3. Mel-spectrograms of an audio waveform: original (a) , after high- and low-pass filtered (b); and after denoised (c).

clearer than the original waveform. We expect a good
synthesizer to generate high-quality (speech) features in
such a range, whereas the adversarial attack would exploit
frequency ranges beyond human perception to maximize
effectiveness. Logically, the use of narrower frequency ranges
can defer the impact of the attack.

In order to find the suitable range of frequencies,
we relied on the characteristics of the human auditory system.

The human auditory system is most sensitive to the range
between 100 Hz and 5 kHz. Whereas the frequency band
around 2 kHz is the most crucial frequency range regarding
perceived intelligibility. Therefore, we decided to mainly use
the frequency range of 100-5k Hz for our experiments.2

2We also discuss other frequency ranges in the Evaluation section.
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1) BAND-PASS FILTER PARAMETERS
In order to extract the preferred frequency ranges, low-pass
and high-pass using sinc filters are used in conjunction with
each other:

sinc(x) =


sin(πx)

πx
, x ̸= 0

1, x = 0
(3)

HLPF (s) =
sinc(Wcts)

πs
, |s| ≤ πWc (4)

HHPF (s) = 1 −
sinc(Wcts)

πs
, |s| ≤ πWc (5)

whereW c is the cutoff frequency, s is the complex frequency
variable, and t is the sampling interval. Frequencies below
the cutoff value of 5kHz are passed through the low-pass
filter, whereas frequencies above 100Hz are passed through
the high-pass filter.

C. MODEL ROBUSTNESS AGAINST ADVERSARIAL ATTACKS
Previous studies have used Lp clipping to control the quality
of the attack audio sample [31]. For ASR systems, this
approach may result in noisy audio [32]. CM systems,
however, do not have such constraints. Since our assumption
was that the attackers are able to manipulate the signal
regarding psychoacoustics, we have made two important
observations:

• CM models are responsible for spoofing detection, not
for faithfully retaining the speech signal. Applying the
band-pass filter just to capture the most significant
signal features will not necessarily affect the CM‘s
performance.

• Adversarial attacks can perturb high or low-frequency
bands without making the audio perceived differently
by humans. Approaches that utilize an entire frequency
band may be vulnerable to such attacks.

Our study focuses on constructing robust CM models
against adversarial samples by constraining the attack
surface, specifically the perturbation capability of gradient-
based attacks. Based on the investigation in Section III-B,
we have identified 100-5k Hz frequency range is significant
for general conversation. We anticipated that models trained
with such a range will exhibit reduced vulnerability to
adversarial samples.

It is important to note that, unlike previous studies, our
approach addresses the perturbation space of the sample,
rather than the degree of perturbation (ϵ) in each iteration.
In other words, instead of controlling the audio quality,
we solely govern what a CM model can learn by exclusively
exposing it to a narrower band of frequencies, while
disregarding frequencies beyond that range. We trained two
types of neural networks on the augmented datasets: Squeeze-
and-Excitation Networks (SENet) and Light Convolutional
Neural Networks (LCNN) to see if adversarial robustness
effect can be achieved. These models were later trained with
denoised dataset for further evaluation. The feature used in

this study is Log-Power spectrogram (LPS), extracted by
Librosa [36]. The details are described in the next section.

D. AUDIO DENOISING
Perturbations made to the samples are assumed to be visually
or audibly imperceptible to humans, and we consider them
adversarial noise [37], [38]. There have been several studies
in the computer vision domain where denoising is used
to preprocess the image prior to feeding it into neural
networks [37], [38]. In addition to the band-pass filter
approach, we introduce denoising audio samples as an alter-
native augmentation method. The denoising is accomplished
using VisuShrink, a soft thresholding technique that applies
the universal threshold [39] to the wavelet coefficients,
effectively separating the signal from the noise.

1) DENOISING PARAMETERS
For denoising, we used the following parameters.

• block_size: The size of each block in samples, set as 10%
of the signal duration

• coefficients: Thewavelet coefficients obtained by apply-
ing the discrete wavelet transform (DWT) on each block.

• sigma: The median absolute deviation of the wavelet
coefficients

• theshold : The threshold used for the VisuShrink thresh-
olding method.

The detailed configuration can be found at the source code
which is available at our repository.3

E. EFFECTS OF MAX-FEATURE-MAPPING ON
ADVERSARIAL ROBUSTNESS
Max-Feature-Map (MFM) operation [40] is introduced as a
novel activation function for Convolutional Neural Networks
(CNNs) to enhance feature extraction and robustness in the
presence of noisy labels. By drawing inspiration from neural
inhibition and maxout activation, MFM aims to achieve
certain characteristics that can improve adversarial robustness
and feature extraction in audio samples, evenwhen the dataset
contains noisy signals.

• Separation of Noisy and Informative Signals: In the
context of audio samples, MFM can help separate
noisy signals from informative signals. This means that
during the training process, the neurons that receive
noisy inputs are suppressed, while neurons that receive
informative signals are activated, effectively enhancing
the extraction of meaningful features from the audio
data.

• Feature Extraction: Similar to lateral inhibition in neural
science [41], MFM also achieves a form of inhibition
to separate different types of information. For example,
in the case of audio data, MFM emphasizes specific
frequency components by suppressing the activity of
neighboring frequency components, making it stand out
more prominently in the audio signal.

3https://github.com/nguyenvulong/AdvDefenseCM
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• Parameter-Free Inhibition: MFM does not depend on
any learnable parameters during the training process.
The inhibition process is fixed and does not involve
any weights or biases that need to be updated through
gradient-based optimization during training. This means
that it does not rely heavily on training data, making
it more resilient to variations and noise in the dataset.
This lack of parameters in the inhibition process
can contribute to adversarial robustness by avoiding
overfitting to the training data and generalizing better
to unseen samples.

• Compact and Light Models: MFM-based CNN models
are designed to be light and efficient. By using the
max function to suppress activations, MFM reduces
the number of activated neurons and thus the overall
complexity of the model.

In summary, these characteristics make MFM a promising
activation function for improving the robustness and perfor-
mance of CNNs on noisy audio data, which we empirically
validated in the Evaluation section.

IV. EVALUATION
A. EXPERIMENT SETTINGS
1) MODELS
We used Light Convolutional Neural network (LCNN) [40]
and Squeeze-and-Excitation Networks (SENet) [42] mod-
els,4 as described in [10], to demonstrate their robustness
against black-box adversarial attacks when trained with aug-
mented techniques proposed in Section III. While squeeze-
and-excitation block from SENet is known to improve
the representational power of a network, LCNN is highly
regarded in spoofing detection due to its compactness
and efficacy. Later in this section, we also compared the
robustness of these models with other recent studies like
RawNet2 [28], AASIST-SSL [43] (a variant of ASSIST [44]),
and BTS-E [45]. For better understanding of the impact of
adversarial attacks and how well adversarial samples transfer
between deep architectures, two variants of each networks
were used.

• For LCNN, we used LCNN-large and LCNN-small,
which have 10,198,816 and 509,072 hyperparameters,
respectively.

• For SENet, we used SENet34 and SENet12, which
contain 1,343,762 and 478,546 hyperparameters.

Similar to [10], this study also evaluated the robustness
of these models in a black-box manner, where adversarial
samples retrieved by attacking LCNN models are used to
benchmark SENet models, and vice versa. We used notations
O, C, and D to denote models trained with the Original,
100-5k Hz (band-pass filter with two Cut-off values), and
Denoising datasets, respectively. For example, SENet34 (C)
means that the SENet34 model has been trained with the
frequency band of 100-5k Hz. Likewise,LCNN (D) indicates

4Each model has two variants: large and small.

amodel that was trainedwith denoised dataset. The success of
a black-box attack depends on how such adversarial samples
‘‘transfer’’ from one neural network to another, which has
been studied in the past [18], [19]. As the target models are
spoofing detection systems, Equal Error Rate (EER%) was
chosen over accuracy.

2) DATASETS
We used 5 well-known datasets to evaluate the proposed
defense mechanisms. ASVSpoof 2019 and 2021 datasets that
are mainly used to compare the robustness of band-pass filter
against denoising approach in Tables 2, 3, 4 and 5. In-the-
Wild (ItW) [46], Fake-or-Real [47], and ADD2023 [48] were
used to further compare the performance of the augmented
LCNN model with other state-of-the-art studies in Table 8.
For the training phase, as described in Fig. 2, we applied

two augmentation techniques:
• Band-pass filter:We used sox5 for waveform processing.
Given two frequency cutoff values, sinc filter performs
a low-pass filtering with higher value, followed by a
high-pass filtering using lower value.

• Denoising: Thresholding technique6 was employed to
remove unwanted noisy signal.

For the evaluation phase, adversarial datasets were retrieved
from FGSM and PGD attacks on different surrogate models.
We categorize the datasets into several groups: Table 2
includes datasets that are generated by attacking several
model instances of an LCNN, as described in IV-A1. For
example, FGSM LCNN small (O) is an adversarial dataset
generated by using FGSM to attack ‘‘LCNN small’’ model
that was trained with the original dataset. Table 3 contains
datasets generated by attacking SENet models. For instance,
FGSM SENet12 (C) is an adversarial dataset generated by
using FGSM to attack ‘‘SENet12’’ model that was trained
with the band-pass frequencies with the two cutoff values at
100 and 5k Hz. Similarly, Table 4 and 5 refer to PGD attack
and denoised datasets. We set perturbation degree ϵ to 5.0 in
such attack scenarios.

B. MODEL ROBUSTNESS AGAINST BLACK-BOX
ADVERSARIAL ATTACKS
In Tables 2, 3, 4 and 5, LCNN and SENet model instances
were evaluated against different adversarial datasets. In the
black-box setting, the surrogate models are expected to have
different architectures from the target CM models. Adver-
sarial examples generated by attacking the surrogate LCNN
models are used to evaluate the SENet models and vice versa.
In most cases, models trained with the original dataset have
worse EERs than ones trained with the augmented datasets.
The EER can be significantly reduced when the augmentation
techniques are applied, e.g., in Table 4, the average EER (%)
of the original model SENet34 (O) reduced from 39.68 to
17.39 and 14.02 when denoising and band-pass filter were

5https://sox.sourceforge.net
6https://github.com/AP-Atul/Audio-Denoising
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TABLE 2. Compare between the original models and the models trained with 100-5k Hz frequency band using adversarial datasets generated from
surrogate LCNN models. Target Models: SENet. Attack type: FGSM. Metric: EER(%).

TABLE 3. Compare between the original models and the models trained with 100-5k Hz frequency band using adversarial datasets generated from
surrogate SENet models. Target Models: LCNN. Attack type: FGSM. Metric: EER(%).

FIGURE 4. Black-box Attacks on SENet and LCNN models: (O), (C), and (D) denote models trained with the original frequency band, 100Hz - 5kHz band,
and denoised datasets, respectively. The lower the EER(%), the better.

applied. Similarly, in Table 5, the EER (%) of the LCNN (O)
dropped from 17.15 to 13.66 and 7.33 when trained with the
augmented datasets.

In Fig. 4, the LCNN models trained with frequency band
100-5kHz performed consistently better than those trained
with the denoised dataset. In particular, the LCNNmodel (C)

had an average EER (%) of 7.33, compared to 13.66 in
the case of the denoising approach (LCNN (D)). The Max-
Feature-Map (MFM) in LCNN models [40] contributes to
robustness against noisy samples without the requirement
of denoising, resulting in LCNN large (C) achieving the
highest overall performance with band-pass augmentation.
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TABLE 4. Comparison between original, denoising and band-pass filter approaches. Surrogate models: LCNN. Target models: SENet. Attack type: PGD.
Metric: EER(%).

TABLE 5. Comparison between original, denoising and band-pass filter approaches. Surrogate models: SENet. Target models: LCNN. Attack type: PGD.
Metric: EER(%).

During our analysis of the Signal-to-Noise Ratio (SNR), the
adversarial signal’s power seemed to change significantly
compared to the original signal’s. This result is understand-
able because this attack aims to deceive the classifier (i.e.,
countermeasure system). In the case of band-passed and
denoised signals, their signal powers seemed similar but
actually differed when considering the noise removed. Band-
passed signal has a negative value of SNR, which can be
explained by the thin band of frequencies (100Hz-5kHz)
representing the signal, whereas the noise was taken from
all frequencies. Also, the SNR between the denoised and
adversarial signals is different. In the denoising technique,
only noisy signals are reduced or removed. While this
technique can somewhat alleviate the adversarial noise added
by the attacker, it cannot completely remove the adversarial
noise since the whole waveform can still be perturbed.
On the other hand, the proposed band-pass filter proactively
prohibits all perturbations on high frequencies, effectively
forcing the neural networks to learn discriminative features
in the proposed range of 100Hz-5kHz. This approach has a
much stronger effect on noise reduction.

For a relative comparison, adversarial robustness can be
evaluated by different metrics. The authors of [11] and [12]
used accuracy. After adversarial training against the PGD
attack, the accuracy of SENet improved from 78.93% to
83.72% (Gaussian filter) [11]. Also, [13] measured detection
accuracy in case of active defense against BIM attack. For
instance, the detection accuracy was 48.61% for ϵ = 0.3. The
authors of [14] and [17] managed to reduce the EER by 43%,
approximately.

Under the same settings7 (ϵ = 5.0, PGD SENet12 (O)
dataset), we compared our defense against the PGD attack
from [10]; the LCNN models in Table 5 reduced the EER

7See Table 4 (b) in [10].

from 18.72% to 5.71% and 13.07%, respectively. The similar
impact of the augmentation techniques on other model
instances can also be inferred from the two Tables 4 and 5.

C. COMPARISON WITH OTHER MODELS
This section evaluates the deception rates of adversarial
samples against recent models proposed in the literature.
We chose a LCNNmodel trainedwith the proposed frequency
band-pass as a candidate. There were 40,959 audio samples
from ASVSpoof 2021 [49] that have been used for launching
PGD attack on different models in Table 6. We first started
with white-box attack, similar to what have been done
in previous experiments, to retrieve adversarial candidates.
We selected samples that were previously and correctly
classified as spoof by a model, and got misclassified
by the same model after the white-box attack. These
samples were then used to attack other models in black-box
manner.

As described in Table 6, AASIST-SSL showed a very
strong resistance to adversarial samples except for the
white-box case where the deception rate increased to 26.71%,
which is understandable in deep learning context. The
proposed PGD LCNN large (C) model was robust against all
adversarial datasets, including the white-box scenario, where
the deception rate was only 0.08%. For other cases, RawNet2
seemed to be vulnerable to the attacks from other models
except the LCNN; BTS-E was also built on top of RawNet2
but adopted several biological components such as breathing
and silence and it does not suffer from the same limitation.
We also observed that BTS-E and LCNN were incapable of
generating high quality adversarial examples (i.e., having low
deception rates with all models). Such phenomenon might
have been related to their robustness. LCNN leveraged Max-
Feature-Map to remove noisy data, whereas BTS-E fused
several feature types for detection.
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TABLE 6. Comparison between the robustness of recent models. Metric: Deception Rate (%). Attack type: PGD. Adversarial samples were generated by
attacking the models and then reused in black-box manner.

To provide a better view of the quality of the adversarial
samples, we presented the predicted MOS (Mean Opinion
Score) of the generated samples in Table 7.While high speech
quality does not mean better deception rate, perceptibly
distorted audio samples would decrease MOS scores. The
LCNN model did not generate a lot of deceptive samples,
which is why the distribution of MOS scores was very close
to the original samples. It is important to note that the
MOS of original samples from the ASVSpoof dataset (about
60% in our experiment) is below 3. Therefore we could not
expect the adversarial samples to have higher speech quality
(i.e., high MOS scores).

In the final analysis, Table 8 presents the results of
generating adversarial samples from fake speech datasets,
specifically In-the-Wild [46], Fake-or-Real [47], and
ADD2023 [48], through white-box attacks on the LCNN
model. We utilized these adversarial samples to evaluate
the efficacy of our band-pass filter defense, alongside
other state-of-the-art studies. Notably, the LCNN model
exhibits significant resilience against direct attacks. Two
datasets FoR and ADD2023 achieved 0% deception rate, i.e.,
no successful adversarial samples were found. For the in-the-
wild adversarial dataset, all four models still showed their
resistance against the attack besides some successful cases of
deception. Even though the selected datasets were small in
size, it is crucial to note that in this context, we employed a
black-box benchmarking approach for other models such as
RawNet2, BTS-E, and AASIST-SSL, while the evaluation of
the LCNN model was carried out using a white-box manner.

D. DISCUSSION
1) DIFFERENT FREQUENCY BANDS
It is logical to argue that using smaller frequency bands would
yield similar effects since the adversarial noise introduced
by perturbation can be further restricted. In this experiment,
we retrained the models from scratch on a dataset with
narrower frequency bands (i.e., 2-4kHz). The performance of
models trained on these smaller ranges was better than when
using the full range, but it did not surpass the performance
achieved with the proposed range (i.e., 100Hz - 5kHz). For
instance, the best performance (EER%) of a model using
the proposed range is 7.00, whereas the model operating
within the 2-4kHz frequency range is 13.81 under the same
dataset. Our understanding suggests that frequency ranges
smaller than the proposed range possess fewer discriminative
features, aligning with Section I where it is indicated that
the auditory system exhibits heightened sensitivity starting
at 500Hz. Smaller frequency ranges such as 2-4kHz failed

to capture such details. We also verified that a model learns
less information beyond the range 100-5k Hz. For instance,
the best model trained with frequencies beyond 100-5k Hz
scored 39.55% on ASVspoof 2021 dataset [49], whereas the
one trained with the proposed frequency band scored 21.68%.

Besides, the prominence of specific frequency bands
can vary based on factors such as gender and speech
contents. It is important to note that our objective was
not to precisely capture all speech contents from different
genders, a critical aspect in tasks like speaker verification,
but of lesser importance in the context of spoofing detection.
We acknowledge the potential benefits of utilizing dynamic
frequency bands tailored to specific characteristics like
gender or age groups. However, we chose to utilize a
unified frequency range for several reasons: (1) By using a
unified range of frequency, we reduce the complexity and
computational overhead associated with training multiple
frequency bands and classifying samples into different groups
based on gender or age; (2) Our current research serves as
a foundation for future work, where we aim to explore and
extend the proposed approach to address diverse languages
and dialects. Having a simple yet unified frequency range
allows us to focus on the broader problem of spoofing
detection and ensures our method’s applicability to various
scenarios.

2) OTHER ADVERSARIAL ATTACKS
During experiments, we were aware of Carlini and Wagner
attack [5], also known as C&W, which is a very strong type of
adversarial attacks. The authors have successfully launched
the targeted attack on Speech-to-Text systems. However,
we realized that using C&W for generating adversarial
samples was time-consuming (100-120 minutes per sample
on a Quadro RTX 5000). Therefore, we did not investigate
further the effect of this attack.

We also evaluated the models against Momentum Iterative
Fast Gradient Sign Method (MI-FGSM) [50] and found that
AASIST performance can be worsen. The experiment was
implemented using torchattacks [51]. As reported in Table 9,
the augmented LCNN model was also robust against MI-
FGSM attack, whereas RawNet2 and AASIST-SSL suffered
from a significant degradation with 22.99% and 19.67%
deception rates. Interestingly, BTS-E was not affected much
by this kind of attack.

3) MODEL GENERALIZATION
In the ASVSpoof 2021 challenge,8 the EER(%) scores of
the DF track (eval subset) ranged from 15.64 to 29.75,

8Deepfake Track.
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TABLE 7. MOS score distribution (Unit %) of generated adversarial examples. MOS score ≥ 4 indicates a very good quality of speech.

TABLE 8. Comparison between the robustness of recent models. Metric:
Deception Rate (%). Attack type: PGD. Adversarial samples from different
datasets were re-generated by attacking the LCNN model itself.

TABLE 9. MI-FGSM attack on SENet34 model. The retrieved adversarial
samples were used for this evaluation.

TABLE 10. Comparison with state-of-the-art studies. The models were
evaluated against original synthetic speech (without adversarial attacks).

where as the one trained with the proposed frequency band
scored 21.68.

Another test that we conducted was evaluating the models
against original synthetic speech of ASVSpoof 2021, that is,
we did not introduce adversarial samples to this experience.
The result reported in Table 10 showed that the augmented
LCNN can still perform well on normal dataset, right behind
the AASIST-SSL.

4) COMPUTATIONAL COMPLEXITY ANALYSIS

O(E ×
N
B

× (Pf + Pb + L)) (6)

where E is the number of epochs; N is the total number of
samples, up to 70,000 samples per adversarial dataset; B is
the batch size (from 64 to 512 in our experiment); Pf and
Pb is the complexity of the model’s forward and backward
passes (proportionate to the number of hyper-parameters),
respectively; L is the complexity of the loss function (per
batch), for example, A-softmax [52].

5) LIMITATIONS
Our primary focus was on developing countermeasures
(CM) that can adeptly tackle the spoofing detection task,
without delving into the intricate details required for tasks
such as precise speaker verification across different genders.
To achieve this, we opted for a frequency range that
encapsulates significant speaker information while avoiding

unnecessary computational complexities. However, the
potential advantages of employing dynamic frequency bands
tailored to specific characteristics, such as gender or age
groups, were not extensively explored, which represents a
limitation in our study.

Also, as discussed in the previous section, there is a need
to enhance the model’s performance beyond the adversarial
scenario to ensure effective generalization to in-the-wild
datasets, which was not fully explored in this study.

Furthermore, it is important to acknowledge that our
investigation primarily concentrated on black-box adversarial
transferred attacks, and we could further enhance our work by
giving due attention to the white-box scenario. In conclusion,
while our proposed approach effectively addresses the
spoofing detection task, we recognize the need for further
exploration and expansion of our methods to encompass a
wider range of scenarios.

V. CONCLUSION
In this study, we explored frequency band-pass filter and
denoising techniques, the two potential defenses against
black-box adversarial attacks on spoofing countermeasure
models. The first scheme offered promising results on several
adversarial datasets, whereas the latter still has room for
improvement. We empirically showed that band-pass filter
is a simple yet effective augmentation technique to enhance
the security of CM systems. We also note that the white-box
setting and model generalization were not fully explored in
this work, which represents a limitation of our research that
we aim to address in future studies.
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