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ABSTRACT Cryptocurrency has emerged as a decentralized transaction to overcome the problems of the
centralized transaction system. Although it has become a popular trend in online cryptocurrency transactions
and mobile wallets, this method has increased the number of fraudulent transactions instead of physically
transferring money. Because the shared data and the history of online transactions may lead to fraudulent
transactions. The preprocess identification of fraudulent cryptocurrency transactions is becoming an urgent
research question.With the exponential blossoming of Artificial Intelligence, the employing of deep learning
in predicting social issues has been achieved in many disciplines. From this perspective, this paper proposes
an ensemble learning approach for fraudulent cryptocurrency transactions by integrating two deep learning
methods: Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM). The off-the-
shelf CNN and LSTM, ensemble CNN, and ensemble LSTM with the bagged and boosted approach are
compared in terms of accuracy and losses from training and test datasets. Moreover, the 10-fold cross-
validation approach is employed for the evaluation of the proposed approach. The evaluation results indicate
that the bagged LSTM ensembled approach is significant with 96.4% accuracy and outperforms the other
approaches.

INDEX TERMS Cryptocurrency, convolutional neural networks, long short term memory, classification,
blockchain.

I. INTRODUCTION
Cryptocurrency has emerged as an exciting platform with the
potential to overcome problems associated with the existing
modes of payments and transactions [1]. The tremendous
increase in the use of cryptocurrency in the payment area
has not only unlocked more opportunities and challenges
but involved criminal activities [2], [3], [4]. According to
one estimate, a thousand cryptocurrencies enter the market
each month with different usability [5]. Moreover, more than
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12000 cryptocurrencies will be available by 2022, and 70 of
these cryptocurrencies have a market cap of more than one
billion dollars [5]. The top ten cryptocurrencies by market
cap are shown in Table 1.

Blockchains are used for the development of cryptocur-
rencies [6] that maintain public ledgers for managing cryp-
tocurrency transactions [7]. Cryptocurrency transactions are
decentralized and recorded in a peer-to-peer network called
a blockchain [8], [9], eliminating the need for a central
authority [10]. Bitcoin is a pioneering cryptocurrency, but
there are also many other coins with significant potential.
For example, Ethereum is the second-largest cryptocurrency
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TABLE 1. Market cap of top five cryptocurrencies [13].

FIGURE 1. An overview of Ethereum’s value [5].

by market capitalization [6] that allows smart contracts [11].
An overview of Ethereum’s value is presented in Fig. 1. The
Bitcoin network has a limited capacity to handle many trans-
actions quickly; therefore, it is not scalable [10]. Ethereum
reduces the problem of the scalability of Bitcoin [10]. Vita-
lik Buterin develops Ethereum to delegate power to the
user [10]. The main advantage of Ethereum is its low trans-
action fee (gas) [12] required to execute a transaction on
Ethereum, regardless of transaction success or failure. Each
gwei (Ethereum gas unit) is equal to 0.000000001 ETH
(10−9 ETH). Ethereum is more adaptable to smart contracts
and transactions [1]. Smart contracts are a type of Ethereum
account. This means they have a balance and can be the target
of transactions. Therefore, fraudulent transactions may occur
through smart contracts.

The decentralized blockchain approach allows operations
without central control and intermediaries with several ben-
efits related to privacy and security [14], e.g., transaction
anonymity [15]. Such benefits make fraudulent behavior very
common [16], i.e., the decentralized control of blockchain
and transactions’ anonymity leads to frequent fraudulent
transaction behavior in cryptocurrency [17], [18]. According
to CipherTrace, a cryptocurrency forensics company’s scam
led to a loss of 4.5 billion dollars in 2019. Moreover, the cryp-
tocurrency monitoring companies declared that Ethereum is
the foremost choice for fraudulent transactions [6]. Although
a user’s anonymity is very suitable for fraudulent transactions
with any Cryptocurrency network [19], [20], the lack of
control by an authority and anonymity is very attractive for
fraudulent activity [21].

The Ponzi scheme is one of the most vibrant scams
associated with cryptocurrency. The masquerading schemes
are common on the Ethereum network [22]. Because of
immutability and user anonymity, fraudulent transactions are

difficult to reverse, thus making them very attractive for
fraudulent transactions [23]. It is also very difficult and
time-consuming to manually sort for fraudulent transactions.
Such a huge set of transactions makes detecting fraudulent
transactions nearly impossible. The problem is also hard
regarding time and other resources required to detect abnor-
mal activities [23]. Machine learning is an ideal candidate for
this purpose. Many efforts were put into effect using machine
learning to detect anomalous activity from a different per-
spective [16], [22], [24], [25], [26].

The purpose of the proposed solutions is to detect fraudu-
lent transactions using a machine learning model. The study
aims to detect fraudulent transactions on the Ethereum plat-
form with limited features. Note that we select the Ethereum
platform because it is widely acceptable and more adaptable
to smart contracts. Machine learning approaches are widely
applied to improve the accuracy of identifying fraudulent
transactions. Out of these approaches, Artificial Neural Net-
work (ANN)-based approaches [27] are more accurate. The
study wants to improve the accuracy of detecting fraudu-
lent transactions in Ethereum using ensemble deep learning
approaches. The study also aims to explore the performance
of different ensemble models to detect the occurrence of
fraudulent transactions using ensemble deep learningmodels.

The paper highlights are as follows:

• Identification of the fraudulent transactions on the
Ethereum network with high accuracy.

• Introduction of an ensemble machine learning approach
to improve the accuracy of identification of fraudulent
transactions on the Ethereum network.

• In-depth comparison of different machine learning mod-
els against the proposed ensemble approach of identifi-
cation of fraudulent transactions.

The rest of the paper is organized as follows. A literature
review is given in Section II. The material and method are
given in Section III. Section IV is for results and discussion.
Finally, the concluding remarks and future work is discussed
at the end.

II. RELATED WORK
Sun Yin et al. [28] proposed supervised machine learning-
based anomaly and criminal activity detection in a Bitcoin-
based ecosystem. The proposed solution is based on a dataset
of 395 million transactions with 957 unique clusters. The
study also compares the performance of Random Forests
(RF), Decision Trees (DT), K-Nearest Neighbour (KNN),
Gradient Boosting, Ada Boosting and Bagging classifiers for
performance detection of anomalies in Bitcoin-based sys-
tems. The Gradient Boosting is the most accurate out of the
seven tested models, with 80.83% accuracy.

Many researchers [1], [2], [3], [4], [29] proposed machine
learning-based detection of abnormal activity detection in the
Ethereum network. The study also compares the performance
of Naïve Bayes (NB), Multilayer Perception (MLP), Support
Vector Machine (SVM), RF, and KNN. The SVM and RF
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are the most accurate out of the tested models, with 99.66%
accuracy in predicting the abnormal activity detection in
Ethereum.

Wu et al. [30] and Kumar et al. [31] proposed machine
learning-based abnormal activity detection from suspicious
users in Ethereum platforms. The study also compares the
performance of the different machine-learning algorithms.
Among them, DT and RF are the most significant with accu-
racies of 83.66% and 98.93%, respectively.

Hu et al. [32] proposed LSTM based machine-learning
approach for detecting anomalies in smart contracts in the
Ethereum network. The proposed solution shows high pre-
cision in identifying anomalies in smart contracts in the
Ethereum network. Tan et al. [25] proposed a graph Convo-
lution Neural Network (CNN) to identify ambiguous trans-
actions with 95% accuracy.

Yuan et al. [33] proposed machine learning-based phishing
detection on the Ethereum network. The proposed solu-
tion detects fraudulent transactions by transaction informa-
tion with 84.6% accuracy. Ibrahim et al. [34] proposed an
ensemble machine learning model with high accuracy using
the SVM and RF-based models. Tsaur et al. [35] proposed
account attributes and opcode functionality with XGBoost to
95% precision to detect illicit transactions.

Chen et al. [36] proposed a solution to identify the Ponzi
scheme on the Ethereum network using a supervised machine
learning approach. The RF-based approach can identify
305 out of 394 Ponzi schemes from the test dataset with more
than 90% probabilistic confidence. Singh et al. [4] proposed
the temporal debiasing method by using Graph Neural Net-
work (GNN) approach for fraud detection in cryptocurrency.
The study compared the performance of different machine
learning models and benchmarked the performance of the
proposed solution with existing models.

Lee and Wei [37] proposed an exploratory simulation
model to detect the anomaly in the Bitcoin system. The
proposed simulation model helps to reduce double-spending
risks with absolute accuracy. Monamo et al. [38]
recommended Unsupervised Anomaly Detection, which
finds outliers in trends using trimmed k-means. This portion
is compared with the dataset of known fraud. Experimental
results show that the proposed approach achieves precision
performance on benchmark datasets.

Sayadi et al. [39] proposed a solution to detect fraudulent
transactions in cryptocurrency and proposed a technique to
determine anomalies in electronic transactions of Bitcoin by
machine learning, with high accuracy with k-mean and SVM.
Chen et al. [40] proposed machine learning-assisted solu-
tions to detect Bitcoin theft transactions. The performance of
five machine learning models (KNN, SVM, RF, AdaBoost,
and MLP) is evaluated to identify the theft transactions in
Bitcoin. The study results reveal that the RF performs best,
with an F1-value of 95.9%. Kasera [41] proposed an artificial
intelligence-based approach for identifying fraud in cryp-
tocurrency. This study focuses on how artificial intelligence

provides us with an empirical framework to identify such
frauds to ensure more security in the crypto-sphere.

Digital currency has become more popular in this era.
According to this research, some critical issues of anoma-
lous behavior are also associated with it that cause serious
problems for cryptocurrencies. Arya et al. [42] proposed
ML techniques to detect the anomalous behavior of the
crypto-currency by using the Bitcoin dataset. The proposed
solution is based on the multivariate Gaussian distribution,
2-phase clustering, and one-class SVM algorithms to detect
the outliers in the Bitcoin dataset. It is identified from the
results that the multivariate Gaussian distribution algorithm
has more accuracy as compared to the other models.

Pham and Lee [43] focused on detecting the anomaly, espe-
cially in the Bitcoin transaction. The study’s main aim is to
identify suspicious transactions and user behavior. The study
used k-means, unsupervised SVM, and clustering machine
learning techniques. Zarpelão et al. [15] proposed a command
and control approach based approach on the network of Bit-
coin. In this case, the group of transactions is made based
on the users. In the next step, features of every transaction’s
group are identified to detect their behavior, such as whether
they act systematically or not. An algorithm named ‘‘OSVM’’
was proposed for this analysis to obtain samples from users
with legal behavior only. In this case, the ZombierCoin botnet
and Bitcoin blockchain are used to conduct the test in a closed
environment. According to the depicted results, the proposed
technique is more useful in detecting the bots having a low
rate of FP (false positive) in the different cases.

Farrugia et al. [44] mainly focused on identifying illicit IDs
on the blockchain of the Ethereum coin. The proposed three
machine learning models named DT, RF, and KNN are used
to detect fraud on the Ethereum blockchain. The study shows
significant improvement in time measurement with the help
of machine learning techniques.

Although the above-discussed studies propose machine/
deep learning-based approaches (i.e., DT [45], RF [46],
SVM [47], and ANN [27]) to identify the different types
of abnormalities and anomalies in different types of cryp-
tocurrency platforms, performance improvement is required
to avoid anomalies in cryptocurrency transactions. In this
perspective, this paper proposes an ensemble machine learn-
ing model with CNN and LSTM to improve accuracy in
identifying fraudulent transactions, which is different and
effective in contrast to off-the-shelf CNN and off-the-shelf
LSTMmodels. Notably, Off-the-shelf CNN and off-the-shelf
LSTM refer to pre-trained CNN that are readily available and
can be used for various tasks without the need for extensive
training from scratch. We combined LSTM and CNN for
the ensemble approach because of their specific strengths in
processing sequential and structural data, respectively. Fraud-
ulent cryptocurrency transactions often exhibit patterns that
can be captured through sequential analysis. However, cryp-
tocurrency transaction data can have a structural aspect, i.e.,
the relationships between entities. By combining LSTM and
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FIGURE 2. Off-the-shelf CNN and LSTM architectures.

CNN, LSTM can capture temporal patterns and dependencies
within individual transactions or sequences of transactions,
while CNN can extract structural features from the transac-
tion data.

III. METHODOLOGY
The objective of the study is to find a function that can
determine the occurrence of fraudulent transactions y from
a set X of features by Eq. 1.

F(X )→ y (1)

where, X is the set of features with inputs given in Eq. 2.

X = x1, x2, . . . , xn (2)

The set of features X is used to predict the occurrence of
fraudulent transaction y. The study uses LSTM and CNN
with an ensemble approach for predicting the occurrence of
fraudulent transactions.

A. OFF-THE-SHELF LSTM
The Long Short TermMemory (LSTM) architecture is shown
in Figure 2a. Recurrent Neural Network (RNN) is a deep
learning technique that can retain information from previous
input that is impossible with shallow ANN. In RNN, the
states of the input layer change with each input; therefore, the
RNN suffers from long-term memory. LSTM is an extension
of the Recurrent Neural Network (RNN) that overcomes
the problem of long-term memory. LSTM is an RNN-type
model that can manage the long-term memory to manage the
long terms trends in data. For this purpose, the LSTM uses
the memory cells whose state management operations are
managed by the gates. The ability to retain long-term context
is useful for problems that require previous contextual data
in predictions. The new input data and previous hidden states
are fed into the model. The model generates the vectors of the
element with values in the range of 0 and 1 with the sigmoid
function. The model is trained so that the forget gate is close
to 1 when the output is relevant and 0 when the output is
irrelevant. Moreover, LSTM can maintain long-term memory
with memory cells and gates instead of a hidden layer. The
additional state Soti at time instant ti is maintained by the
output of the forget gate is mentioned by ft by Eq. 3, where t

is the timestamp, xt is the input, ht−1 is the previous hidden
state,Wi is the weighted matrix, and bt is the bias. Forget gate
fc decides which information must retain and which to ignore.

ft = σ (Wi.[ht−1, xt ]+ bt ) (3)

The information from current input xt and hidden state ht−1
are passed through the sigmoid function that produces values
between 0-1. The value of ft is used for point-to-point multi-
plication.

The input gate it is used to update the cell status. The previ-
ous hidden state ht−1 and current state xt are passed through
another sigmoid function to classify inputs into important (1)
and non-important (0). The it function is expressed by Eq. 4,
where t is the time stamp, it is the input gate,Wr is the weight
matrix, and bf is the bias vector. Moreover, C̃t is the value by
tanh function expressed by Eq. 5, where Wc is the weighted
matrix of tanh, bc is the bias vector concerningWc.

it = σ (Wr .[ht−1, xt ]+ bf ) (4)

C̃t = tanh(Wc.[ht−1, xt ]+ bc) (5)

The forget vector ft is multiplied by the previous cell state
Ct−1. The output of this operation is the point-to-point addi-
tion with the output of input vector it to produce a new cell
state Ct expressed by Eq. 6.

Ct = ft × Ct−1+it × C̃t (6)

The output gate Ot is used to determine the next hidden state
by the current state and previous hidden state ht−1 through
the sigmoid function expressed by Eq. 7. The hidden state ht
is used for making predictions expressed by Eq. 8.

Ot = σ (Wo.[ht−1, xt ]+ bo) (7)

ht = Ot × tanhC̃t (8)

B. OFF-THE-SHELF CNN
Although CNN is commonly used for computer vision-
based solutions, it is also achieved promising results in other
domains. CNN is based on various layers where the output
of each layer is connected to regions of input features. This
operation involves convolving the input features to model
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FIGURE 3. Bagged CNN and LSTM architectures.

FIGURE 4. Boosted CNN and LSTM architectures.

filters for pattern recognition in the input data. The convo-
lution layer is the first type of layer in the CNN architecture,
as shown in Figure 2b.

Each convolution layer is defined by Eq.9, Eq. 10, and
Eq. 11, where φ is the filter at layer 1 (Mn), 8 is the filter
at layer 2 (Ln), and ω is the filter at layer 3 (Gn).

Mn = f (In;φ1, φ2, . . . , φk ) (9)

Ln = f (Mn;81, 82, . . . , 8k ) (10)

Gn = f (Mn;ω1, ω2, . . . , ωk ) (11)

Note that we select CNN over ANN (the most significant
state-of-the-art approach) because CNN tends to be a more
powerful and accurate way of solving classification problems
and high accuracy in weight sharing [48].

C. ENSEMBLE MODELS
Ensemble machine learning models [49] are the techniques
to combine multiple models for predicting optimal results

by combining their output. An ensemble machine learning
multiple models are used rather than a single model to
improve accuracy and consistency. Using multiple machine
learning rather than a single model can produce optimal
models. Bagging and boosting [50] are the most common
techniques of ensemble machine learning models. Both tech-
niques are applied using CNN and LSTM models. Using
the bagging and bootstrap aggregating, four architectures
(bagged CNN, Bagged LSTM, Boosted CNN, and Boosted
LSTM) of ensemble machine learning models are made to
predict fraudulent transactions on the Ethereum platform.
In the case of the bagging technique, multiple models are

trained in parallel on a subset of the dataset. The output
of each model is combined to produce a single output. The
architecture of bagging CNN and bagged LSTM is shown in
Figure 3 where Figure 3a presents the bagged CNN architec-
ture and Figure 3b presents the bagged LSTM architecture.
The dataset is partitioned into a subset for multiple models
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Algorithm 1 Bagged CNN and Bagged LSTM
1: procedure Bagged CNN and Bagged LSTM
2: Input: X, y, N g

3: Initialize: h← 1
4: while h ≤ N g do
5: (Xh, yh)←

∫
rep(X , y) // generate subset (Xh, yh)

of (X, y) for random sampling with a replacement func-
tion

∫
rep

6: Xh

∫ g
h (σ,W g

h ,bgh)
−−−−−−−→ yh // Training of the hth model in

an ensemble using the (Xh, yh)
7: h← h+ 1
8: end while
9: Output:

∫ g
1 (σ,W g

1 , bg1), . . . ,
∫ g
N (σ,WN g

g
, bN g

g
)

10: end procedure
where, X is the set of features extracted from correlation
analysis mentioned in Section III-E, y is the instance of the
occurrence of a fraudulent transaction, N g is the total number
of the model in bagging, h is the current model, Xh is the sub-
set of feature setX for hmodel, yh is the instance of fraudulent
transaction for h model,

∫
rep is the replacement function, σ

is the non-linear activation function, W is the weights, b is
the bias, and

∫ g
1 (σ,W g

1 , bg1), . . . ,
∫ g
N (σ,WN g

g
, bN g

g
) are the set

of models (CNN and LSTM) in bagging.

Algorithm 2 Boosted CNN and Boosted LSTM
1: procedure Boosted CNN and Boosted LSTM
2: Input: X, y, N b, αt

3: Initialize: h← 2

4: X
∫ b
1 (σ,W b

1 ,bb1)
−−−−−−−→ y // Train Initial model (X,y)

5: while h ≤ N b do
6: ttemp← y− αb

∑h=1
m=1

∫ b
m(.)

7: X
∫ b
h (σ,W b

h ,bbh)
−−−−−−−→ ytemp // Train Initial model (X,y)

8: h = h+ 1
9: end while

10: Output:
∫ b
1 (σ,W b

1 , bb1), . . . ,
∫ b
N (σ,WN b

bg
, bN b

bg
)

11: end procedure
where, X is the set of features extracted from correlation
analysis mentioned in Section III-E, y is the instance of the
occurrence of a fraudulent transaction, N b is the total number
of the models in boosting, αt are weights in boosting models,
h is the current model, α is nonlinear activation, W is the
weights, b is the bias,

∫ b
1 (σ,W b

1 , bb1) is the hth model, and∫ b
1 (σ,W b

1 , bb1), . . . ,
∫ b
N (σ,WN b

bg
, bN b

bg
) are the set of models

(CNN and LSTM) in boosting.

in both architectures, and the output is combined to produce
optimal results. The results of each model are combined as
expressed in Eq. 12.∫ g

1
(σ,W g

1 , bg1),
∫ g

2
(σ,W g

2 , bg2), . . . ,
∫ g

N
(σ,WN g

g
, bN g

g
)

(12)

Algorithm 3 Integrated Ensemble Model
1: procedure Integrated Ensembled Model
2: Input: XtT+1 , α g

b
,∫ g

b
h (σ,W

g
b
h , b

g
b
h )· · ·

∫ g
b
N g
b

(σ,W
N
g
b
g
b

, b
N
g
b
g
b

)

3: Initialize: ŷt+1, h← 2

4: X
∫ t
1 (σ,W t

1,b
t
1)

−−−−−−−→ y
5: while h ≤ N

g
b do

6: ŷtT+1 ← ŷtT+1 + α
g
b
∫ g

b
h (σ,W

g
b
b , b

g
b
h ,XtT+1)

7: h = h+ 1
8: end while
9: Output: ŷtT+1
10: end procedure
where, XtT+1 is the feature set at time instances,
α g
b

are Weights of bagging or boosting,∫ g
b
h (σ,W

g
b
h , b

g
b
h )· · ·

∫
N
g
b
g
b

(σ,W
N
g
b
g
b

, b
N
g
b
g
b

) are set of ensembled

bagged or boosted models, ŷtT+1 is the output of the
ensembled model, X is the feature set, Y is the instance of
the output, α is the activation function, and W

g
b
b are Weights

of bagging or boosting models.

The algorithms for bagged CNN and bagged LSTM are given
by algorithm 1.

In the case of boosting CNN and boosting LSTM, the
multiple models are trained in sequence, and the base model
depends upon the previous model’s output. The architecture
of boosted CNN and boosted LSTM is shown in Figure 4
where Figure 4a presents the boosted CNN architecture and
Figure 4b presents the boosted LSTM architecture.
The algorithms for boosted CNN and boosted LSTM are

given by algorithm 2.
The predictions by bagged CNN, bagged LSTM, boosted

CNN, and boosted LSTM is made by algorithm 3.

D. CONFIGURATION OF MODELS
The configuration details of the model are given in Table 2.
A similar configuration is used for individual and ensemble
approaches for each layer. These parameters are optimum
with the best accuracy. The maximum accuracy is achieved
with 300 epochs, and accuracy above 300 is unaffected. Note
that we have tried the off-the-shelf algorithms with multi-
ple parameter tuning. However, none of them contributed to
performance improvement. Therefore, we selected ensemble
approaches.

E. DATASET
We collected the public dataset from Kaggle [51] and reused
it for detecting fraudulent transactions in Ethereum. Note that
we select the Ethereum platform because it is widely accept-
able and more adaptable to smart contracts. Second, datasets
about the fraudulent transaction of other cryptocurrencies
are not publicly available. We performed the correlation
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TABLE 2. Configurations.

analysis for the identification of important features by drop-
ping the highly correlated feature ( > 0.8) to escape the curse
of dimensionality. The Pearson correlation method is used
for the correlation analysis where the minimum number of
observations is 1. The correlations between features and the
occurrence of fraudulent and non-fraudulent transactions are
shown in Figure 5a and Figure 5b, respectively. The dark and
light colors of the chart depict the strong and weak relation-
ship between features and the occurrence of fraudulent and
non-fraudulent transactions. Notably, the exploited dataset
is imbalanced [51]. Therefore, we perform re-sampling to
correct the bias in the original dataset. We only consider the
under-sampling for our experiments by randomly selecting
the n samples from the majority class, where n is the number
of samples from the minority class. We avoid over-sampling
because it involves replicating minority class samples to
increase their representation in the dataset and can lead to
overfitting [52], where the model becomes overly special-
ized to the minority class and performs poorly on unseen
data. Moreover, it may artificially improve performance met-
rics [53], i.e., accuracy.

IV. EVALUATIONS
The performance of selected models is compared using the
accuracy and loss from the training and test dataset. The
dataset is partitioned into a 80:20 ratio for the training and
testing against each fold. The training and test accuracy of
each model is analyzed and compared.

Accuracy is the measure of correct predictions out of total
predictions l expressed by Eq. 13. The accuracy of each
model is observed over three hundred epochs.

Accuracy =
Correctpredictions
Totalpredictions

(13)

The 10-fold cross-validation results of six approaches are
presented in Figure 6, and the following observations are
made:

• The training and testing accuracy for detecting fraudu-
lent transactions by bagged LSTM model is 96% and
96.4% with training and test datasets. Figure 6 presents
the accuracy of LSTM and CNN with bagged, boosted,
and simple LSTM/CNN. The accuracy of the model
from training and testing datasets over 300 epochs is
displayed in Figure 6a. Figure 6a shows that the bagged
LSTM model is in a balanced shape. Consequently, the
bagged LSTM ensemble model is more accurate than
other tested models.

• The training and testing accuracy (shown in Figure 6b)
for detecting fraudulent transactions by boosted LSTM
model is 95% and 94.5%, respectively. The boosted
LSTM model is also in a balanced shape. The accu-
racy of the boosted LSTM over 300 epochs is shown
in Figure 6c for both the training and testing datasets,
respectively. The accuracy of the boosted LSTM is less
than the bagged LSTM for both the training and test
datasets.

• The accuracy of off-the-shelf LSTM for both the training
and testing dataset is shown in Figure 6c. The individual
LSTM is also in optimum shape. The training and testing
accuracy of individual LSTM reaches a maximum of
94.7% and 90.5% over 300 epochs, respectively. The
training and test accuracy of individual LSTM is less
than the bagged LSTM and boosted LSTM.

• The training and testing accuracy for detecting fraudu-
lent transactions by the bagged CNN model is 95% and
94%, respectively. The accuracy of bagged CNN over
300 epochs is shown in Figure 6d. The bagged CNN
model is also balanced to make predictions for detecting
fraudulent transactions over time. The accuracy of the
bagged CNN is less than the bagged LSTM, boosted
LSTM, and off-the-shelf LSTMmodels from both train-
ing and test datasets.

• The accuracy of boosted CNN for training and testing
datasets over 300 epochs is shown in Figure 6e. The
boosted CNN model is also optimum fitted to predict
the occurrence of fraudulent transactions over time. The
maximum accuracy of boosted CNN from training and
testing datasets is 89% and 86%, respectively. The accu-
racy of boosted CNN is less than the bagged CNN,
bagged LSTM, boosted LSTM, and off-the-shelf LSTM.

• The accuracy of individual CNN over 300 epochs for
training and testing datasets is shown in Figure 6f.
The maximum accuracy of the CNN model is 85.7%
and 85.6%, respectively. The accuracy of the off-the-
shelf CNN is less than all selected models for detecting
fraudulent transactions in Ethereum-based cryptocur-
rency transactions.

Moreover, Figure 7 presents the comparison of training
and testing accuracy of all the selected models and The
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FIGURE 5. Correlation between features and the occurrence of fraudulent and non-fraudulent transactions.

FIGURE 6. Accuracy with bagged, boosted, and off-the-shelf LSTM/CNN.

maximum accuracy achieved by each model, respectively.
From Figure 7, the following observations are made:
• The accuracy of the training dataset of each selected
model is shown in Figure 7a for comparison purposes.
From Figure 7a, it is clear that the bagged LSTM offers
high accuracy as compared to other selectedmodels. The

accuracy of CNN is less than all of the selected mod-
els. It is also important to observe that the accuracy of
LSTM is more than the bagged CNN and boosted CNN.
The accuracy of each model from the testing dataset
is shown in Figure 7b for comparison purposes. The
bagged LSTM is more accurate than other models with

95220 VOLUME 11, 2023



Q. Umer et al.: Ensemble Deep Learning-Based Prediction of Fraudulent Cryptocurrency Transactions

FIGURE 7. Comparison of training/testing accuracy of selected models.

the testing dataset. The performance of the LSTM in
terms of accuracy is better than the ensemble CNN and
individual CNN for detecting fraudulent transactions in
Ethereum-based transactions.

• The maximum accuracy for detecting fraudulent trans-
actions is achieved through the bagged LSTM model.
The accuracy of the bagged LSTM model is 96%
through the training dataset and 96.4% through the
testing dataset. The CNN model is the least accurate
compared to other models, with the training and testing
dataset, with 85.7% and 85.7% accuracy, respectively.
Note that bagging decreases variance, not bias, and
solves over-fitting issues in a model. Therefore, the pro-
posed model significantly improves the performance of
the classifier.

Finally, the loss measures the difference between the pre-
dicted and actual values expressed by Eq. 14. Loss is the
measure of the difference between predicted and actual val-
ues. Although the loss is the inverse function of accuracy,
it helps the researchers/readers better understand the evalua-
tion results. Therefore, we compute the losses of the selected
models in this paper.

Loss = abs(PredictedValue−ActualValue) (14)

It is a binary classification problem to detect the occurrence
of a fraudulent transaction or not. The loss for the problem is
measured in the form of binary cross-entropy, also named log
loss. The binary cross-entropy is the negative average of the

log of corrected predicted probabilities expressed by Eq. 15.

LogLoss =
1
N

N∑
i=0

−(yi × log(pi)+ (1− yi)× log(1− pi))

(15)

where, pi is the probability of the occurrence of a fraudulent
transaction and (1)-pi) is the probability of the occurrence of
non-fraudulent transactions. The log loss of selected models
is analyzed against the training and test datasets.

Figure 8 presents the losses of LSTM and CNN with
bagged, boosted, and simple LSTM/CNN. The log losses of
bagged LSTM for training and testing datasets over three
hundred epochs are shown in Figure 8a. The minimum log
losses with the training and testing dataset are 0.0273 and
0.0274, respectively. The loss with the bagged LSTM ensem-
ble model is less than the other tested models. The log
losses of boosted LSTM for training and testing datasets
over three hundred epoch is shown in Figure 8b. The min-
imum log losses with the training and testing dataset are
0.017 and 0.017, respectively. The log losses of individual
LSTM for training and testing datasets over three hundred
epochs are shown in Figure 8c. The minimum log losses
with the training and testing dataset are 0.0273 and 0.0274,
respectively.

The log losses of bagged CNN for training and testing
datasets over three hundred epoch is shown in Figure 8d. The
minimum log losses with the training and testing dataset are
0.031 and 0.00325, respectively. The log losses of boosted
CNN for training and testing datasets over three hundred
epochs are shown in Figure 8e. The minimum log losses
with the training and testing dataset are 0.032 and 0.033,
respectively. The log losses of individual CNN for training
and testing datasets over three hundred epoch is shown in
Figure 8f. The minimum log losses with the training and
testing dataset are 0.0421 and 0.043, respectively. The indi-
vidual CNN is least efficient in reducing the losses with
training and test datasets compared to others selected models
for comparison purposes.

Figure 9 compares all the selected models’ training and
testing losses. The losses of each model with the training
and testing dataset are shown in Figure 9a and Figure 9b,
respectively. It can be observed that the bagged LSTMensem-
ble model is more efficient in reducing losses than the other
models. The off-the-shelf CNN model is less efficient in
reducing losses than the other models. The bagged LSTM
ensemble model is more efficient in reducing losses than the
other model.

The bagged LSTMmodel is more accurate compared to the
selected models. The state-of-the-art approach for detecting
fraudulent transactions achieved an accuracy of 94% [6].
The proposed ensemble learning model achieved an accu-
racy of 96.4%. The proposed ensemble LSTM model is
also more efficient in reducing error than the state-of-the-art
approach.
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FIGURE 8. Losses with bagged, boosted, and simple LSTM/CNN.

FIGURE 9. Comparison of training/testing log losses of selected models.

A. THREATS TO VALIDITY
The implementation of the proposed approach gives rise
to concerns about internal validity. To ensure its accuracy,
we perform cross-checks; however, it is possible that some
errors may have been unintentionally overlooked.

The generalization of the proposed approach is a matter
of concern in terms of external validity. Our analysis focuses
exclusively on fraudulent transactions involving Ethereum,

and the performance of the approach may differ when
applied to the prediction of fraudulent transactions in other
cryptocurrencies.

Additionally, the limited number of fraudulent transactions
poses a threat to external validity. Deep learning algorithms
typically require fine-tuning parameters and a substantial
amount of training data to achieve optimal performance. The
scarcity of fraudulent transactions may restrict the applicabil-
ity of our results and hinder a comprehensive exploration of
the parameter space.

V. CONCLUSION
The study proposed ensemble deep machine learning models
to predict the occurrence of fraudulent transactions in the
Ethereum network to improve the predicting accuracy of
fraudulent transactions. For this purpose, off-the-shelf CNN,
off-the-shelf LSTM, and ensemble approaches are tested
and compared for performance. For ensemble deep learn-
ing, the bagged and boosted approach is used. Out of the
six models (off-the-shelf CNN, off-the-shelf LSTM, bagged
CNN, bagged LSTM, boosted CNN, and boosted LSTM),
the bagged LSTM is more accurate compared to other mod-
els evaluated for the comparison approach. Moreover, the
bagged LSTM approach is 2.4%more accurate than the state-
of-the-art approach for detecting fraudulent transactions in
Ethereum. In future, we would like to investigate the practical
applications of the proposed approach by implementing it in
blockchain technology using smart contracts.
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