IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 11 August 2023, accepted 28 August 2023, date of publication 31 August 2023, date of current version 7 September 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3310885

== RESEARCH ARTICLE

Tuna Swarm Algorithm With Deep Learning
Enabled Violence Detection in Smart Video
Surveillance Systems

GHADAH ALDEHIM', MASHAEL M ASIRI2, MOHAMMED ALJEBREEN3,
ABDULLAH MOHAMED#*, MOHAMMED ASSIRI“3, AND SARA SAADELDEEN IBRAHIM®

! Department of Information Systems, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428,
Riyadh 11671, Saudi Arabia

2Department of Computer Science, College of Science and Art at Mahayil, King Khalid University, Abha 61421, Saudi Arabia

3Department of Computer Science, Community College, King Saud University, P.O. Box 28095, Riyadh 11437, Saudi Arabia

4Research Centre, Future University in Egypt, New Cairo 11845, Egypt

SDepartment of Computer Science, College of Sciences and Humanities-Aflaj, Prince Sattam bin Abdulaziz University, Aflaj 16273, Saudi Arabia
SDepartment of Computer and Self Development, Preparatory Year Deanship, Prince Sattam bin Abdulaziz University, Al-Kharj 16278, Saudi Arabia

Corresponding author: Mohammed Assiri (m.assiri @psau.edu.sa)

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through Large
Groups Project under grant number (RGP2/65/44). Princess Nourah bint Abdulrahman University Researchers Supporting Project number
(PNURSP2023R387), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia. Research Supporting Project number

(RSP2023R459), King Saud University, Riyadh, Saudi Arabia. This study is supported via funding from Prince Sattam bin Abdulaziz
University project number (PSAU/2023/R/1444). This study is partially funded by the Future University in Egypt (FUE).

ABSTRACT In smart video surveillance systems, violence detection becomes challenging to ensure
public safety and security. With the proliferation of surveillance cameras in public areas, there is an
increasing need for automated algorithms that can accurately and efficiently detect violent behavior in real
time. This article presents a Tuna Swarm Optimization with Deep Learning Enabled Violence Detection
(TSODL-VD) technique to classify violent actions in surveillance videos. The TSODL-VD technique
enables the recognition of violence and can be a measure to avoid chaotic situations. In the presented
TSODL-VD technique, the residual-DenseNet model is applied for feature vector generation from the
input video frames and then passed into the stacked autoencoder (SAE) classifier. The SAE model is
enforced to recognize the events into violence and non-violence events. To improve the violence detection
effectiveness of the TSODL-VD procedure, the TSO protocol is utilized as a hyperparameter optimizer for
the residual-DenseNet model. The performance validation of the TSODL-VD procedure has experimented
on a benchmark violence dataset. The experimental results demonstrate that the TSODL-VD technique
accomplishes precise and rapid detection outcomes over the recent state-of-the-art approaches.

INDEX TERMS Violence detection, surveillance videos, public safety, deep learning, tuna swarm algorithm.

I. INTRODUCTION
The Smart City method is a hopeful resolution to the issues
relevant to advanced urbanization. Its execution relies upon

data gathered straightly from the streets [2]. Smart city
scrutiny includes a broad range of applications, including
violence detection, urban traffic monitoring systems, disaster

the ability to analyze and gather huge volumes of many live
urban data [1]. It is gathered from private and public sensor
networks run by several private bodies or agencies. Compared
to other data kinds, video streams particularly offer valuable
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management and building structural damage detection [3].
Human operators may be simply overwhelmed with many
video streams. So, a significant study was directed to develop
techniques for the automatic processing of such to observe
abnormal performance and to discard irrelevant data safely.
Violence identification indicates a significant problem in
smart city surveillance. Violence is a serious social problem.
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There exist various reasons for the increase in violent actions
in public places. Hatred is a Person’s greed, frustration,
and, along with that, economic and social insecurity [4].
Violence detection from surveillance videos was a type of
activity detection. Many approaches and methodologies were
advanced to find the other harmful patterns and brutally
events in videos. In these procedures, various methods are
modelled that operate with distinct input parameters [5]. The
parameters were fundamentally different attributes of video,
such as appearance, several accelerations, flow, and duration.

Despite being an alarming social problem, there are only
a few various works indulged in the automation of violence
recognition, action recognition, and protest recognition [6];
this domain of study has enormous applicability until social
stability and security are concerned. Preventing violent
activities and crime is impossible until brain signals can be
detected and analyzed by the paradigm manifested in criminal
thoughts in real time [7]. However, one can recognize
aggressive actions in public places utilizing deep due because
of learning-based computer vision. Cameras for surveillance
were placed in private associations and public areas [8]. The
potential violent identification method can aid the authorities
or government in considering a fast and formalized method
for finding the fierceness approach to thwart the devastation
made to public property and human life, as everyone wants
secure streets, areas, and work surrounding us [9]. Deep
learning (DL) was superior to the machine learning (ML)
method since it not required any feature engineering. There
exist certain disadvantages, like large training datasets and
high computing costs [10]. The technical aspects inspire
us to advance a method that accomplishes and acquires
lesser training periods and a modest number of training
trials.

This article presents a Tuna Swarm Optimization with
Deep Learning Enabled Violence Detection (TSODL-VD)
procedure. The TSODL-VD technique enables to recog-
nition of violence and can be a measure to avoid any
chaotic situations. In the presented TSODL-VD technique,
the residual-DenseNet model is applied for feature vector
generation from the input video frames and then passes it into
the stacked autoencoder (SAE) classifier. The SAE model
is applied to recognize the events into violence and non-
violence events. In order to improve the violence detection
efficacious of the TSODL-VD procedure, the TSO algorithm
is utilized as a hyperparameter optimization algorithm for
the residual-DenseNet model. The performance validating
process of the TSODL-VD procedure is investigated on a
benchmark violence dataset. In short, the key contributions
of the study is listed as follows.

e An automated violent detection model, named
TSODL-VD technique comprising residual-DenseNet
feature extractor, SAE classification, and TSO based
hyperparameter tuning is presented for violence
detection in the smart surveillance system. To the best
of our knowledge, the TSODL-VD technique never
existed in the literature.
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e Residual-DenseNet leverages skip connections, allow-
ing the direct flow of gradients through the network.
This facilitates smoother and more efficient backprop-
agation, which helps address the vanishing gradient
problem. As a result, the model can learn more
effectively and converge faster during training.

e Hyperparameter tuning using TSO algorithm helps
to improve the performance of the residual-DenseNet
model. This fusion combines the advantages of swarm
intelligence and deep learning, leading to enhanced
accuracy and robustness in violence detection.

Il. RELATED WORKS

Mohtavipour et al. [11] modelled a deep violence detection
structure depending on the particular attributes extracted
from handcrafted techniques. Such features are relevant
to representative images, appearance, and speed of move-
ment and are provided to Convolutional Neural Networks
(CNNs) as spatiotemporal, spatial, and temporal streams.
The spatial stream trained network with all frames in the
videos for learning atmospheric paradigms. The temporal
stream includes three sequential frames for learning motion
paradigms of fierce performance with an altered differential
magnitude of optical flows. In [12], the authors presented a
method through the implementation of renowned ResNet50
for deriving indispensable attributes of all frames of input
stream accompanied by a specific schema of recurrent
neural networks (ConvLSTM) to find anomalous happen-
ings in time-sequential data. Ehsan et al. [13] presented a
new unsupervised network related to motion acceleration
paradigms for abstracting discriminatory attributes from
inputted trials. This network was built from an AE con-
struction, and it was needed only to utilize normal trials in
the training stage. The categorization was executed through
one-class techniques for specifying normal and violent
activities.

In [14], many key difficulties were incorporated with pre-
vailing work. Initially, violent substances cannot be described
manually, and the system should deal with ambiguity. The
next stage was the accessibility of the tagged dataset,
as physical annotation video was a labour-intensive task
and expensive. The CNN techniques were assessed with
the presented MobileNet method. The MobileNet technique
was contrasted with GoogleNet, AlexNet, and VGG-16
techniques. Mumtaz et al. [15] explored deep representative
techniques utilizing transfer learning (TL) for managing
the problem of unexpected movement of the camera.
Subsequently, a new Deep Multi-Net (DMN) structure related
to GoogleNet and AlexNet is modelled for detecting violence
in videos. GoogleNet and AlexNet were high-ranked priory
trained methods for image categorization having different
prior learnt efficient attributes. The combination of such
methods may have a better outcome.

Ullah et al. [16] devised a triple-staged end-wise DL
violence detection structure. Firstly, people were identified in
the streaming of the scrutiny video through the light-weight
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CNN method for reducing and solving the voluminous
process of unusable frames. Secondly, a series of sixteen
frames with recognized persons are sent to 3D CNN, in which
spatio-temporal attributes of such series are derived and given
to the Softmax method. Additionally, the authors maximized
the 3D CNN method utilizing an open visual conclusion and
NN precipitation equipment kit formulated by Intel, which
converted the trained method into in-between representations
and adjusted it for enhanced implementation at the end
platform for the ultimate estimation of aggressive actions.
In [17], the authors explored spatio-temporal autocorrelations
of gradient-related attributes to proficiently detect violent
actions in crowded scenes. A discriminatory was utilized for
detecting violent activities in videos.

In [18], intelligent and automated schemes are executed,
which attempts to overcome this utilizing DL approaches.
The violence from the video was identified utilizing frames,
and accuracy was measured. A threat was identified by
the method in the video frame, dependent upon that the
scheme for condition creates an alert. Qu et al. [19] examine
the retrieval and place of violence from long-time series
videos. Aiming at the minimal accuracy of violence detection
in long-time series video, a 2-stages violence time series
place model dependent upon DC3D network method was
presented. Mahmoodi et al. [20] present a novel 3D ConvNet
together with a process to extract interest frames. During
this manner, the 16 video frames with lesser SSIM are
assumed that dominant motion frames that are then sent to
3D-CNN for classification. AlDahoul et al. [21] examine a
novel structure of end-to-end CNN-LSTM (Long Short-Term
Memory) approach, which is run on low-cost Internet of
Things (IoT) devices.

Sahay et al. [22] presented a new approach in identifying
crime scene video surveillance method in realtime violence
detection utilizing DL structures. Yildiz et al. [23] examined
a novel automatic audio violence detection (AVD) approach
for filling this gap. In [24], a solution has been presented
to employ a realtime violence detection approach by DL on
UAVs. Ye et al. [25] introduces a physical violence identi-
fying system depends on distributed surveillance cameras.
In [8], an AI allowed IloT-based structure with VD-Network
(VD-Net) has been presented. Initially, the input video frames
can passed to light-weight CNN approach for essential
data gathered comprising humans or suspicious objects like
knives/guns. Wang et al. [26] drive of this work is to analysis
models of brute force recognition and face detection depends
on DL. Febin et al. [27] examine a cascaded approach of
violence recognition dependent upon motion boundary SIFT
(MoBSIFT) and movement filter. In [28], a new deep
NeuralNet approach has been presented for the task of
Violence Detection by extraction of motion features in RGB
Dynamic Images (DI). Deepak et al. [29] introduce a novel
statistical feature descriptor for detecting violent human
actions in real-time surveillance videos. Ehsan et al. [30]
presented a novel Vi-Net structure dependent upon the deep
CNN for detecting activities with abnormal velocity. Optical
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FIGURE 1. The overall workflow of the TSODL-VD approach.

flow vectors to train the Vi-Net network estimation motion
designs of targets from the video.

Though several violence detection models are available in
the literature, it is still needed to improve the classification
performance. Most of the DL models does not concentrate
on hyperparameter tuning process, which greatly affects the
detection performance. Since manual hyperparameter selec-
tion follows a tedious trial and error procedure, metaheuristic
algorithms find useful. Therefore, the TSO algorithm is used
for the hyperparameter tuning process.

Ill. THE PROPOSED MODEL

In this research, we have introduced a novel TSODL-VD
technique for automated violence identification in surveil-
lance videos. It helps to automatically and accurately
recognize violence and can be a measure to avoid any chaotic
situations. Fig. 1 demonstrates the comprehensive workflow
of the TSODL-VD approach.

A. FEATURE EXTRACTION MODULE

In the presented TSODL-VD technique, the Residual-
DenseNet model is applied for feature vector generation.
An input of Residual-DenseNet has medicinal images,
and the outcome is the vigorous Feature Vector (FV) of
images [31]. The Residual-DenseNet is separated into two
parts the backbone Network utilized for extracting image
feature mapping previously Feature Output Element and the
feature output element that procedures the feature mapping
resultant by backbone networking.
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Backbone Network: According to the DenseNetl21
method pre-training on ImageNet, it is more an enduring
infrastructure at Dense Block4 for obtaining the Backbone
Network of Residual-DenseNet. Input is an image, and the
outcome is the feature mapping extraction in the medicinal
images.

Feature Output Element: It comprises a 2D Conv layer
(kernel size: 1 x 1), a global average pooling layer, and
a 1-D Conv layer. Next, the feature mapping extraction
with Backbone Network is dealt with by the Feature Output
element, and an FV with 64 lengths can be gained. It can be
arobust FV PFV (i) of images.

In Residual-DenseNet, it employs the excellent extraction
feature capability of DenseNetl21 for extraction feature
mapping of distinct scales in the images. Related to
low-level aspects, utilizing skip connection for connecting
DenseBlock3 and DenseBlock4 completely mines the deep
semantic data betwixt image, and these higher-level features
demonstrated firm vigorousness. The basic concept of the
zero-watermarking technique is to connect the imagery
feature with the watermark, and the vigorousness of the
image extraction feature with the process directly defines
the robustness of the zero-watermark technique. Therefore,
during the Feature Output element, 1 x 1 Conv was utilized
for reducing the count of feature mapping, global average
pooling was executed for reducing dimensional, and lastly,
a vigorous length of 64 FV PFV (i) was reached using 1-D
Conv. Implement mean binarization operators on the robust
FV PFV (i) extracting by Residual-DenseNet for obtaining a
vigorous hash vector FV (i) as expressed in Eq. (1).

L, PFV ()= p

63
1
= — PFV (i
0, otherwise, H 64 ; ®

ey

FV (i) =[

B. HYPERPARAMETER TUNING MODULE
To improve the violence detection efficiency of the
TSODL-VD technique, the TSO model is utilized as a
hyperparameter enhancer for the residual-DenseNet model.
The TSO is a bio-inspired optimization algorithm that mimics
the collective behavior of tuna fish. It make use of social
interaction and self-organization principles for searching
optimum solution. With the utilization of the TSO algorithm
to detect violent actions, the TSO algorithm explores the vast
solution space to effectively identify violent events in video
streams. The advantages of the TSA include bio-inspired
optimization, efficient search and optimization, global and
local exploration, robustness to noise and uncertainty, fewer
control parameters, parallel and distributed implementation,
versatility and applicability, as well as interpretability and
visualization. These qualities make the TSO a promising
optimization algorithm on violence detection.

Tuna is identified to be the lead hunter in the ocean [32].
While the swimming of tuna is very rapid, any little victim
is further stretchy than tuna. Thus, during the predation
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progression, tuna frequently select group cooperation for
capturing prey. The tuna swarm (TS) takes two effectual
predatory approaches, spiral and parabolic foraging strate-
gies. If the TS utilizes the parabolic foraging approach, all
the tuna carry out the prior individual meticulously. The TS
procedures a parabola for surrounding the prey. Once the
TS implements the spiral foraging approach, the TS would
be combined as spiral shapes and effort prey for shallowing
water regions. The prey was highly possibly captured.
After observing these two foraging performances of TS, the
research workers presented a novel, SI optimized named
TSA. There are NP tunas from the TS. At the initialized
swarm stage, the TSA technique arbitrarily creates the
primary swarm from the searching space. The mathematical
models to initialize tuna individuals as:

X" = rand - (ub — Ib) + Ib

Lxi i [j:l,Z,...,Dim @

whereas Xii”t refers to the i tuna, ub and Ib refer to the upper
as well as lesser restrictions of the tuna range searches, and
rand denotes the arbitrary variable with uniform distribution
from zero to one. Particularly, all the individuals, X ii"’ , during
the TS signifies the candidate’s outcome for TSA. All the
individuals’ tuna comprises a group of Dim-dimensional
numbers.

Herring and eel are the essential food resources of tunas.
If it encounters a predator, it can utilize its speed benefit
to always modify its swimming direction. It is extremely
complex for predators to catch them. While the tuna has lesser
agile than its prey, the TS drive takes a cooperative scheme for
attacking the prey. The TS can utilize the victim as a source
point to maintain the chase of the victim. In this hunting,
all the tunas follow the prior individual, and the entire TS
procedures a parabola for surrounding the prey. Also, the TS
utilizes a spiral foraging scheme.

Considering that the possibility of TSs selecting both
approaches is 50%, the scientific process of parabolic
scavenging of TS is:

Xliest + rand'(xliest - th) + TF'pz'(Xl;est - Xt)’

1

XiH'1 = if rand< 0.5
TP -p*- X!, if rand> 0.5
3
i\ ()
p=\1- 4)
tmax

whereas ¢ demonstrates that ¢ iteration has presently run,
and fmax signifies the maximal count of iterations preset. TP
signifies the random value of 1 or —1.

In addition, to the parabolic scavenging scheme, there
exists another effectual cooperative scavenging scheme
named the spiral scavenging scheme. But chasing the victim,
most tuna could not select the right direction; however,
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a smaller count of tunas guided the swarm to swim in
the correct way. If the smaller groups of tuna begin to
chase the victim, the neighbouring tuna carry out this
smaller ensemble of entities. Finally, the whole TSs are
procedure a spiral development for catching the prey. Once
the TS implements a spiral foraging scheme, individuals
interchange data with optimum in carrying out the individuals
or neighbouring individuals from the swarm. The tuna then
chooses an arbitrary individual from the swarm to follow. The
scientific equation of the spiral scavenging approach is as
follows (5), shown at the bottom of the next page, whereas
X!*! implies the i tuna from the 7 + 1 iteration. The present
optimum individual is X, ,.X! ., refers to the reference
point arbitrarily chosen from the TS. «; denotes the trend
weighted co-efficient for controlling the tuna swim individual
for optimum individual or arbitrarily chosen neighbouring
individuals. «» stands for the trend weighted co-efficient
for controlling the tuna swim individual to the individual
facing each other. T demonstrates the distance parameter,
which controls the distance betwixt the tuna individual as
well as the optimum individual or an arbitrarily chosen
reference individual. The mathematical computation process
is as follows:
t

ai=a+(1—a)- (6)
max
t
wx=_01-a—-~0-a)- (N
max
=" . cos 2mb) (8)
| = 3¢0s((Umax+1/0=Dm) 9)

In which a signifies the constant for measuring the degree
of tunas following, and b represents the arbitrary number
uniformly distributing from the range of zero and one.
During the iterative procedure of the TSA technique, all the
tunas are arbitrarily selected for performing both the spiral
and parabolic foraging approaches. Tuna also creates novel
individuals from the searching range based on probability Z.
Thus, the TSA select various approaches based on Z if creat-
ing a novel individual position. In the implementation of the
TSA technique, every tuna individual from the population is
constantly upgraded; still, the count of iterations gains a pre-
defined value. Eventually, the TSA technique returns a better
individual from the population and their better value. The
following benefits of TSA are realized in Algorithm 1: (i) The
TSA technique has some modifiable parameters that are
helpful to the execution of the algorithm. (ii) This algorithm
keeps the location of the optimum tuna individual from all
the iterations. At the same time, the quality of candidate
solutions reduces, and it cannot affect the place of optimum
value. (iii) The TSA technique saves the balance betwixt
exploitation as well as exploration by choosing two foraging
approaches.

The TSO method derived a fitness function from having
enhanced categorizing results. It defined positive values for
designating higher derivatives of the candidate resolutions.
In this article, the mitigated categorizer fault rate was studied
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as the fitness function, as presented in Eq. (10).

fitness (x;) = ClassifierErrorRate (x;)
__ numberofmisclassifiedsamples

100 (10
Totalnumberofsamples ¥ (10)

C. VIOLENCE CLASSIFICATION MODULE

In this study, the SAE model is enforced for the classification
of events into violence and non-violence events. AE is
a typical Feed-Forward Neural Network (FFNN). The
networking input to Hidden Layer (HL) is assumed to be the
encoder approach. Additionally, the HL to the resultant layer
was regarded as the decoder method [33]. The encoder data
can be rebuilt to novel data with the decoding approach. The
AE minimization the MSE of inputting and outputting with
trained networking for achieving data extraction features.
The extraction aspect of AE generally offers three distinct
manifestations: Primarily, the node in HL are lesser than in
input as well as output layers, and the extraction aspects are
compressed dimension mitigation representations of trained
data. Secondarily, the HL node is greater than the input
as well as output layers, and the extraction factors are the
higher-dimension depiction of the trained record. At last, the
HL node has equivalent to the input node, and the feature
was the equivalent-dimension representation of trained data.
Encode and decode approaches of AE are:

h=ocWix + by)

A (11
x =oc(Wrh+ by)

Inwhichx= [x1, x, - - xu]T €R™ and £= [%, &, - - -%]7 €R™
implies the inputting and outputting layers of AE networks
correspondingly. h= [hy, ha, - -+ ,h,] €RV refers the HL of
networks. W1 eRV*™ and b; R’ denote the weighted matrix
and offset vector of HLs. Also, W, eR"*™ and b, R indicate
the weighted matrix and bias vector of the resultant layer,
correspondingly. o stands for the neuron activation function,
mostly utilizing tanh and sigmoid roles. Pic. 2 demonstrates
the framework of SAE.

SAE is a DL technique stacked by AEs. It removes
the decoder part, afterwards trains the AE and feeds the
HL parameter achieved by primary AE as secondary AE
to train for achieving a novel feature representation. Then
repeat the above steps many times, and the preferred SAE
technique is gained. Then the network pre-trained approach,
the equivalent HLs of all the AEs, can be stacked for the
procedure of a deep AE network with several HLs. Compared
with typical AE, the parameter of networks can be fine-tuned
utilizing the back-propagation (BP) technique by computing
the error betwixt the network output and input layers. While
an archetypal DL network, SAE is superior extraction feature
capability than AE, and its pre-trained stages avoid problems
like over-fitting of a network trained.

The hyperparameter tuning procedure of the SAE method
can be made by Adam enhancer. It can be a type of common
Stochastic Gradient Descent (SGD) technique to upgrade
networking weights in trained records [34]. It is used to
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FIGURE 2. The architecture of SAE.

perform optimization and was the best optimizer. Adam
proceeds in adagrad, and it is an additional flexible manner.
Adagrad and momentum together are known as Adam.

Parameters w®) and L), where index ¢ designates the
currently trained repetition, Parameter enhancement in Adam
is provided below:

mi*tY — pimd) + (1 - p1) v, L (12)

VD  Bov, D (1 = B)(V, LD)? (13)

. myh "

T T (B (19
V(t+1)

V= — (15)

1 —(B)+D
i+1 &

‘ m
W W —p———

VWVt €

Here B, and B; designate the second moment of gradients

and gradient forgetting features. In Eq. (16) , € denotes the
smaller scalar used to prevent division by 0.

(16)

IV. PERFORMANCE VALIDATION
The violence recognition achievement of the TSODL-VD
technique is inspected on two datasets [35]: the hockey fights

TABLE 1. Details of dataset.

No. of Instances

Class Hockey Fights Movies
Dataset Dataset
Violence 500 100
Non-Violence 500 100
Total No. of Instances 1000 200

dataset and the movies dataset. The particulars associated
with the datasets are represented in Table 1. The Hockey
Fights dataset comprises clips from ice-hockey matches. The
dataset has 500 violent clips and 500 non-violent clips of
average duration of 1 s. The clips had a similar background
and subjects. Every clip has of 50 frames of 720 x 576 pixels
and is manually labeled as “fight” or “non-fight”. Next, the
Movies dataset contains clips from different movies for action
sequence whereas the non-fight sequences consist of clips
from action recognition datasets. The dataset has 100 violent
clips and 100 non-violent clips of average duration of 1 s.
Unlike the Hockey Fights dataset, the clips of movies have
different backgrounds and subjects.

The confusion matrix of the TSODL-VD technique on the
violence detection process is demonstrated in Fig. 3. The
results signify that the TSODL-VD technique can accurately
recognize the violence and non-violence events in both
movies and hockey fights datasets.

In Table 2 and Pic. 4, the violence detection outcomes of
the TSODL-VD procedure on 70:30 of TRS/TSS under the
hockey fights dataset are stated. The attained values indicate
the effectual recognition accomplishment of the TSODL-VD
procedure. For instance, on 70% of TRS, the TSODL-VD
technique reaches an average accupg of 98.72%, precy, of
98.71%, reca; of 98.72%, Fscore of 98.71%, and Gpean
of 98.72%. Meanwhile, on 30% of TSS, the TSODL-VD
method reaches an average accup, of 98.65%, prec, of
98.69%, reca; of 98.65%, Fycore of 98.67%, and Geqn of
98.65%.

The training accuracy (TACC) and validation accuracy
(VACC) of the TSODL-VD technique under hockey fights
dataset accomplishment in Pic. 5. The results designated that
the TSODL-VD algorithm has enhanced accomplishment

ay - (X;‘and tT- |X}€and _Xit| ta Xlt) ’
i=1
if rand <
ar - (Xﬁand tT- ‘X;and - Xlt} ton- Xit—l) ’ Tmax
it — i=2,3,...,NP )
' oy - (Xll;est + T'|Xil;est - Xit| ta Xtt)
=1
t lz t t if rand >
ay - (Xbesi + T'|Xbest - Xi | + a2 'Xi—l) Tmax
i=2,3,...,NP
VOLUME 11, 2023 95109
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FIGURE 3. Confusion matrices of TSODL-VD structure (a-b) 70:30 of
TRS/TSS under hockey fights dataset and (c-d) 70:30 of TRS/TSS under
movies dataset.

TABLE 2. Violence detection outcome of TSODL-VD approach on 70:30 of
TRS/TSS under hockey fights dataset.

Hockey Fights Dataset
Class Accuracybal  Precision  Recall - G-

Y Score Mean
Training Phase (70%)
Violence 99.13 98.28 99.13  98.71 98.72
Non-Violence 98.31 99.15 9831  98.72 98.72
Average 98.72 98.71 98.72  98.71 98.72
Evaluation Stage (30%)
Violence 99.35 98.08 99.35  98.71 98.65
Non-Violence 97.95 99.31 97.95  98.62 98.65
Average 98.65 98.69 98.65  98.67 98.65

with improved values of TACC and VACC. Especially the
TSODL-VD procedure has reached the utmost TACC results.

The training loss (TLS) and validation loss (VLS) of
the TSODL-VD procedure under hockey fight dataset
accomplishment in Pic. 6. The results shows the TSODL-VD
technique has exhibited better accomplishment with lesser
values of TLS and VLS.

In Table 3 and Pic. 7, the violence recognition results of the
TSODL-VD method on 70:30 of TRS/TSS under the movies
dataset are reported. The acquired values specify the effectual
recognition performance of the TSODL-VD process. For
example, on 70% of TRS, the TSODL-VD method reaches
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FIGURE 4. The average outcome of the TSODL-VD approach under the
hockey fights dataset.
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FIGURE 5. TACC and VACC result of TSODL-VD approach under hockey
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FIGURE 6. TLS and VLS outcome of TSODL-VD approach under hockey
fights dataset.

an average accupg of 96.36%, prec, of 96.56%, reca; of
96.36%, Fycore of 96.42%, and Genn of 96.34%. In the
meantime, on 30% of TSS, the TSODL-VD approach reaches
an average accupg of 98.44%, prec, of 98.28%, reca; of
98.44%, Fscore of 98.33%, and Geqn of 98.43%.
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TABLE 3. Violence recognition result of TSODL-VD procedure on 70:30 of
TRS/TSS under movies dataset.

Movies Dataset

Class Bal. Accuracy  Precision  Recall F-Score G-Mean
Training Phase (70%)
Violence  94.12 98.46 94.12 96.24 96.34
Non- 98.61 94.67 98.61  96.60 96.34
Violence
Average 96.36 96.56 96.36 96.42 96.34
Testing Phase (30%)
Violence  96.88 100.00 96.88 98.41 98.43
Non- 100.00 96.55 10000  98.25 98.43
Violence
Average 98.44 98.28 98.44 98.33 98.43
Movies Dataset
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FIGURE 7. The average outcome of the TSODL-VD approach under the
movies dataset.

The TACC and VACC of the TSODL-VD algorithm under
movies dataset accomplishment in Pic. 8. The picture demon-
strates the TSODL-VD procedure has depicted enhanced
accomplishment with enhanced values of TACC and VACC.
Remarkably, the TSODL-VD technique has reached supreme
TACC results.

The TLS and VLS of the TSODL-VD procedure under
movies dataset accomplishment in Fig. 9. The picture
exhibited that the TSODL-VD procedure has exposed better
accomplishment with the least values of TLS and VLS.
Apparently, the TSODL-VD approach has given an outcome
in mitigated VLS results.

Fig. 10 demonstrates the classifier results of the
TSODL-VD technique under the hockey flights and movies
dataset. Figs. 10a-10b demonstrates the PR analysis of the
TSODL-VD technique under the hockey flights and movies
dataset. The pictures specified that the TSODL-VD approach
had gained greater PR accomplishment under all categories.
Finally, Figs. 10c-10d exemplifies the ROC research of the
TSODL-VD technique under the hockey flights and movies
dataset. The picture shows that the TSODL-VD approach
has given an outcome in expert outcomes with greater ROC
values under different class tags.
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FIGURE 8. TACC and VACC outcome of TSODL-VD approach under movies
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FIGURE 9. TLS and VLS outcome of TSODL-VD approach under movies
dataset.

To demonstrate the better violence classification results
of the TSODL-VD technique, a widespread comparison
research is given in Table 4 [2], [36]. The table values
inferred that the TSODL-VD technique reaches increasing
values of accuy on both datasets. For instance, on the hockey
flights dataset, the TSODL-VD technique attains a higher
accuy of 98.72%. In contrast, the CNN-BiLSTM, Motion-
IWLD, MobileNet, Inception-ResNet, SVM, and HOG3D-
KELM techniques obtain decreasing accu, of 95.32%,
97.42%, 93.83%, 91.32%, 92.71%, and 93.54% respectively.
Furthermore, on the movies dataset, the TSODL-VD method
achieves a higher accu, of 98.44% while the CNN-BiLSTM,
Motion-IWLD, MobileNet, Inception-ResNet, SVM, and
HOG3D-KELM methods obtain decreasing accuy of 92.19%,
96.63%, 91.36%, 94.98%, 95%, and 97.52% correspond-
ingly. These results ensured that the TSODL-VD technique
has proficiently recognized the violence in the surveillance
videos.

In summary, the TSODL-VD technique exhibits better
performance with maximum accuy of 98.72% and 98.44%
on Hockey fights and movie datasets respectively. The
enhanced performance of the proposed model is due to
the incorporation of the residual-DenseNet and TSO based
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FIGURE 10. (a-c) PR and ROC curves under the hockey flights dataset and
(b-d) PR and ROC curves under the movies dataset.

TABLE 4. Relative examination of the TSODL-VD system with other recent
procedures [2], [36].

Accuracy (%)

Methods Hockey Fights Dataset Movies Dataset
TSODL-VD 98.72 98.44
CNN-BILSTM 95.32 92.19
Motion-IWLD 97.42 96.63
MobileNet 93.83 91.36
Inception-ResNet 91.32 94.98

SVM 92.71 95.00
HOG3D-KELM 93.54 97.52

hyperparameter tuning. The dense connectivity pattern in
Residual-DenseNet encourages feature reuse throughout
the network. In addition, tit ensures that information can
propagate more directly and rapidly throughout the network.
This allows the model to preserve and propagate valuable
information across layers, enabling effective feature learning
even in deeper networks. As a result, Residual-DenseNet
can capture both low-level and high-level features more
efficiently, leading to improved representation learning. The
advantages of the residual-DenseNet model include improved
gradient flow, feature reuse, reduced parameters and memory
usage, enhanced information flow, mitigation of overfitting,
and compatibility make it a powerful and efficient deep
learning architecture for various computer vision tasks.
On the other hand, the TSO chooses the optimal values for
the hyperparameters of a given residual-DenseNet model.
Hyperparameters are settings that are not learned during
training, but must be set prior to training. They can have
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a significant impact on the performance of the model, and
selecting the optimal values can lead to better accuracy. The
TSA facilitates efficient search and optimization, guiding the
deep learning models to identify relevant features associated
with violence. This fusion of swarm intelligence and DL
offers a synergistic effect, resulting in improved accuracy
and robustness in violence detection. These results ensured
the improved performance of the TSODL-VD technique over
other existing techniques.

V. CONCLUSION

In this research, we have introduced a novel TSODL-VD
method for automated violence recognition in surveillance
videos. It helps to automatically and accurately recognize
violence and can be a measure to avoid any chaotic
situations. In the presented TSODL-VD technique, the
Residual-DenseNet model is applied for feature vector gener-
ation, and the SAE model is applied for the categorization of
events into fierceness and non-fierceness events. To improve
the violence detection effectiveness of the TSODL-VD
procedure, the TSO protocol is utilized as a hyperparameter
enhancer for the residual-DenseNet model. The performance
validation of the TSODL-VD procedure is examined on
the benchmark violence dataset. The experimental results
demonstrate that the TSODL-VD technique accomplishes
precise and rapid detection outcomes over the recent state of
the art approaches.
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