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ABSTRACT The term Text Mining, which is given to the set of techniques used for the extraction, cleaning
and processing of the information in texts, has become useful to provide valuable information to other
algorithms and widely used with statistical and machine learning methods. By enabling the extraction of
useful insights from textual data, Text Mining has become a potent tool in decision-making and knowledge
discovery across many areas, including health care, government, education and industry. R is a mature
open-source programming environment that has overstepped its initial scope of application for statistical
computing and graphics to be used in pretty all the Data Science knowledge Area Groups. The objective of
this paper is to present review and benchmarking analysis of packages for text mining techniques with R in
computational systems. The paper reviews thirteen different packages comparing them on their execution
time andmemory used, for which new tests have been specifically designed. The results of this approach have
been intended to be used over the most common tasks carried out when analyzing texts, and comparisons
included allow R users to know which packages are best for each task and to improve their performance.
Text mining package (tm) stands out particularly in Tokenization and Stemming techniques, while fastTextR
is the best choice for Topic Modeling and Normalization. Also in the case of the Term Frequency-Inverse
Document Frequency (TF-IDF) technique, the textir package is a clear choice. The other packages will
depend on whether the technique is applied to a document-term matrix (DTM) or to plain text. In addition,
there are packages that perform better in runtime than in memory usage and vice versa, making the choice
more difficult. Packages such as udpipe can achieve better results working in parallel. Future works will
include the same analysis for parallel computing, hybrid approaches, and novel algorithms.

INDEX TERMS Text mining, natural language processing, information retrieval, benchmark, R.

I. INTRODUCTION
This paper focuses on the Text Mining process, which
involves techniques for extracting, cleaning, and process-
ing information for analysis. Following the Data Science
Body of Knowledge developed in the EDISON project [11],
Text Mining is in the Text Data Mining Knowledge Area,
KA01.04 (DSDA.04/TDM). This is the fourth knowledge
area of the six areas of the Data Analytics Knowledge
Area Group, KAG1-DSDA. Following the definition of
the body of knowledge, text analytics applies statistical,

The associate editor coordinating the review of this manuscript and

approving it for publication was Arianna Dulizia .

linguistic and structural techniques to extract and classify
information from textual sources, a species of unstruc-
tured data. It is composed of the following eight knowl-
edge units, KUs: 1. KU1.04.00. General overview and main
concepts in text data mining; 2.KU1.04.01. Text analyt-
ics including statistical, linguistic and structural techniques
to analyse structured and unstructured data; 3. KU1.04.02.
Data mining and text analytics; 4. KU1.04.03. Natural
language processing; 5. KU1.04.04. Predictive models for
text; 6. KU1.04.05. Retrieval and clustering of documents;
7. KU1.04.06. Information extraction; and 8. KU1.04.07.
Sentiments analysis. This research has been done over those
KUs.
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In several disciplines, including computer science, busi-
ness, finance, artificial intelligence, and others, Text Mining
has a substantial impact on decision-making, knowledge dis-
covery and information extraction. By providing significant
insights from enormous volumes of textual data that were
previously challenging to examine, Text Mining techniques
have changed the process of knowledge discovery. Informa-
tion retrieval, document classification, document clustering,
and automatic summarization are a few examples of practical
text mining applications. These applications aid in effective
data retrieval by classifying documents according to their
content, assembling related documents and producing suc-
cinct summaries.

This study’s comparative analysis of R Text Mining pack-
ages is what makes it novel. Although there have been other
publications and books that include discusses Text Min-
ing in R, this research offers a full evaluation of package
performance, including execution time and memory usage.
By directly contrasting various R packages and analyzing
their capabilities and performance, the comparative analysis
used in this study fills a research gap. Thus, the research offers
understanding into the benefits and drawbacks of each pack-
age, assisting users in selecting the best package. As a result,
academics and professionals can use the most potent tools at
their disposal while also adding to the body of knowledge in
the field of Text Mining.

The comparisons in this study are based on techniques
in Natural Language Processing, Knowledge Representa-
tion, Information Extraction, and Sentiment Analysis. Other
areas such as Information Retrieval, Document Classifica-
tion, Document Clustering, and Automatic Summarization
have not been considered in the comparisons.

During the last years, research has explored the use of text
mining techniques with R. One of the first packages available
was kernlab, published in 2004, by [27]. This package allows
creating and computingwith string kernels used for clustering
or classifying data for text mining. Some time later, other
main packages were released such as lsa [62], in 2005, which
performs latent semantic analysis. The package tm [16],
in 2007, which provides a comprehensive text mining frame-
work for R. Some of the other packages that stand out and
that will also be analyzed in this article are the following:
openNLP [24], released in 2008, which serves as an interface
to Apache OpenNLP, tau [8], in 2009, which offers utilities
for text analysis and, textir [55], in 2011, which allows
using multinomial inverse regression also for text analysis.
Other packages have been published in recent years and will
also be tested in this paper: textstem [47], which provides
tools for stemming and lemmatizing text, fastTextR [48]
for text classification and udpipe [61], which is a natu-
ral language processing toolkit. All of these last packages
were released in 2007 and all packages described are avail-
able within the Comprehensive R Archive Network (CRAN)
repository.

Some of the early papers describing the use of R to perform
text analysis are [27], which introduces the kernlab package

that provides to the R user with basic kernel functional-
ity. In [17], which introduces the tm package and explains
how typical text mining tasks can be carried out with this
framework. Feinere [15] gives an introduction of text mining
with R, giving a brief overview of the package tm package.
While Theu et.al [56] conducted a runtime study of typical
text mining tasks with the use of a plug-in for tm. These
results are then compared to the parallel computing approach
implemented in the tm package. Particularly in the last few
years, more on text mining in R is found in the literature.
Written by [52], this book, Text Mining with R: A Tidy
Approach, serves as an introduction to text mining using the
tidytext package and other tidy tools. Recently, one of the
articles published by [19] presents a collection of character
string/text/natural language processing tools for, among other
techniques, pattern searching, string collation and sorting,
normalization, transliteration, and formatting that are found
in text mining.

This study contributes to the existing knowledge repository
by providing a comprehensive analysis and benchmarking of
Text Mining packages in R, focusing on their performance,
as execution time and memory usage. The paper’s contribu-
tions are:

• The techniques of Text Mining, which include informa-
tion extraction, cleaning and processing from texts, are
the main topic of this study.

• Techniques for Natural Language Processing, Knowl-
edge Representation, Information Extraction and Senti-
ment Analysis are specifically examined in the study.

• The comparisons and analyses are based on the pertinent
knowledge units found in the Text Data Mining Knowl-
edge Area.

• The study examines and evaluates thirteen distinct
Text Mining R packages, including tm, fastTextR and
udpipe, contributing to the existing knowledge in the
field.

This paper is organized as follows. Section II describes
the selected Text Mining techniques whose R packages will
be analyzed and compared. Section III presents the R pack-
ages with a description of each and the techniques they
use. Section IV evaluates the methodology used to obtain
the results. Section V presents all the results obtained and
highlights the best and worst packages. Finally, Section VI
presents the conclusions obtained from this comparative
study.

II. TEXT MINING
Taking into account the spread of their use, nine very
well-known and used Text Mining techniques have been
selected, for which the set of R packages has been ana-
lyzed and compared. Those ones are: Tokenization, Stop-
words, Lemmatization, Stemming, Part of Speech Tagging,
Term Frequency-Inverse Document Frequency, Normaliza-
tion, Topic Modelling, and Sentiment Analysis. In the
following all of them are introduced.
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A. TOKENIZATION
Tokenization, or the identification of fundamental units that
do not need to be decomposed in further processing, is the
initial step in text mining [60].

This technique incorporates a text into tokens, which are
words, sentences, or other elements. Tokenization produces a
list of tokens that may be scanned to find the words in a sen-
tence. This list of tokens is then utilized as input for additional
processing, such as parsing or text mining. Tokenization is
useful not only in linguistics, but also in computer science,
where it is used in lexical analysis.

The tokenization of documents is one of the needs of a
parser or text mining, because retrieving information requires
the words from the dataset. However, several issues remain,
such as eliminating punctuation marks and dealing with other
characters like parentheses and hyphens, as well as situations
like abbreviations and acronyms.

Depending on the language, there may be more issues.
The majority of words in English, French, and Spanish, for
example, are separated by spaces. Other languages, such
as Chinese, do not have clearly defined word boundaries.
This has an impact on the tokenization process because it
necessitates more information on the language vocabulary
and morphology. The spelling and typographical structure of
the words will also influence tokenization.

The structure of languages can be grouped into three
categories [21]:

• Isolating: Words do not divide into smaller units.
Example: Mandarin Chinese

• Agglutinative: Words divide into smaller units.
Example: Japanese, Tamil

• Inflectional: Boundaries between morphemes are
unclear and ambiguous in terms of grammatical
meaning. Example: Latin.

B. STOPWORDS
Common terms like ‘and’, ‘are’, ‘this’, and so on are fre-
quently employed as stopwords. They are useless when it
comes to document classification. As a result, they must be
deleted. The refinement of this list of stopwords, on the other
hand, is difficult and inconsistent across literary sources. This
method also increases system performance by reducing text
data. These terms are dealt with in each text document and
are not required for text mining applications [36]. Stopwords
are removed from documents using a variety of methods:

1) THE CLASSIC METHOD
The classic method relies on the removal of stopwords from
pre-compiled lists. Several lists can be found in the literature
[18], [59].

2) METHODS BASED ON ZIPF’S LAW (Z-METHODS)
Apart from the classic method, there are methods based
on Zipf’s law, such as deleting the most frequent terms
(TF-High), removing single words (TF1), and removing

words with a low inverse document frequency (IDF). The
terms in each data set are sorted according to their frequencies
to determine the amount of words in the stop lists generated
by the previous approaches (or the inverse frequencies of
those in the IDF method) [36].

3) THE MUTUAL INFORMATION METHOD (MI)
The mutual information (MI) [10] is a supervised method
for calculating the information between a given term and
a document class in order to estimate how much informa-
tion the term may provide about a particular class. When
mutual information is low, the phrase is likely to have low
discriminating power and should be deleted.

A term t and a class c are represented by two random
variables, and mutual information is calculated between
them [66]:

I (T ;C) =

∑
t∈T

∑
c∈C

P(t, c) log2

(
p(t, c)
p(t)p(c)

)
(1)

where I (T ;C) is the mutual information between T and C ,
T = {0, 1} is the set of terms that appear (T = 1) or do
not appear (T = 0) in a given document, and C = {0, 1}
is the set of classes that the document belongs to (C = 1),
or does not belong to (C = 0) [36]. The equation uses
the probability of a term and a category occurring together
P(t, c), the probability of a term occurring alone p(t), and the
probability of a category occurring alone p(c).

4) TERM BASED RANDOM SAMPLING (TBRS)
Reference [34] were the first to suggest this method for
manually detecting stopwords in web texts. This method
iterates across distinct bits of data that are randomly picked.
The Kullback-Leibler divergence measure is then used to
rank phrases from each chunk depending on their formatting
values [10]:

dx(t) = Px(t)log2

(
Px(t)
P(t)

)
(2)

Px(t) is the normalized frequency of a term t within a
mass x, while P(t) denotes the normalized frequency of t
throughout the entire collection. The final list is made up
of the least informative terms from all the chunks, with any
possible duplications removed [36].

C. LEMMATIZATION
Many text mining applications require lemmatization as a
preprocessing step. It is also employed in natural language
processing and a variety of other linguistics-related appli-
cations. In addition, it is a good technique to come up
with generic search engine keywords or labels for concept
maps [41].

This approach is a morphological transformation that
removes the inflectional ending of a word in the text and
converts it to a base or dictionary form of the word, known
as a lemma. In the case of a noun, the lemma corresponds
to the singular form, in the case of a verb, the infinitive
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form, and in the case of an adjective or adverb, the positive
form. Lemmatization reduces the complexity of the studied
text by reducing the total number of different terms, pro-
viding significant benefits to downstream text processing
components [32].

For searching and indexing, lemmatization requires addi-
tional dictionary support, which improves its accuracy in
feature extraction applications. Bio Lemmatizer is used
to lemmatize biological material [32], whereas Word
Net Lemmatizer with Word Net Database is utilized to
lookup for lemmas [2]. In their research, [3] employed
World Net to collect product features, whereas Concept
Net [33] was used to extract detail on innovative technical
items.

D. STEMMING
This technique is used to determine a word’s root/stem. The
words connect, connected, connecting, and connections, for
example, can all be traced back to the word ‘‘connect’’ [44].
The goal of this strategy is to eliminatemultiple suffixes, min-
imize the number of words, ensure that stems are precisely
matched, and save time and memory space.

Stemming is the process of translating a word’s morpho-
logical forms to its stem, presuming that they are semantically
connected. When utilizing a stemmer, there are two things to
keep in mind:

• Words with different meanings should be kept distinct.
• Morphological forms of a word should be mapped to the
same stem because they are presumed to have the same
basic meaning.

In text mining or language processing applications, these
two principles are sufficient. Stemming is commonly thought
of as amethod for improving recall. The strength of stemming
is lower in languages with a simple morphology than in lan-
guages with a more complicated morphology. The majority
of stemming experiments to date have been conducted in
English and other west European languages.

Truncating methods, statistical methods, and mixed meth-
ods are the three main types of stemming algorithms [50].
Each of these groups has its own method for locating the
stems of word variations.

1) TRUNCATING METHODS
As the name implies, these approaches are concerned with
deleting a word’s suffixes or prefixes (often referred to as
affixes) [50]. The Truncate (n) stemmer is the simplest basic
stemmer. It truncates a word at the nth symbol, keeping
n letters and removing the rest. Words shorter than n are
preserved in this strategy. When the word length is short,
the likelihood of over stemming increases. The S-stemmer -
an algorithm that combines the singular and plural forms of
English nouns - was another basic technique. Donna Harman
came up with the idea for this algorithm [22]. The algorithm
provides rules for removing plural suffixes and converting
them to single versions.

2) STATISTICAL METHODS
These are the stemmers who use statistical tools and analysis.
The majority of approaches remove the affixes, but once a
statistical procedure is applied, the affixes are removed [50].

3) MIXED METHODS
a: INFLECTIONAL AND DERIVATIONAL METHODS
This is a different technique to stemming that takes into
account both inflectional and derivational morphology. These
sorts of stemmers require a huge corpus to evolve, hence they
are included in corpus base stemmers as well. Word vari-
ants in inflectional are related to language-specific syntactic
changes such as plural, gender, case, and so on, whereas word
variants in derivational are related to the part-of-speech (POS)
of a sentence where the word occurs [25].

b: CORPUS BASED STEMMER
Xu and Croft suggested this approach of stemming in their
paper ‘‘Corpus-based stemming utilizing co-occurrence of
word variants’’ [65]. They have an optional technique that
seeks to address some of Porter stemmer’s flaws.

Automatic alteration of conflation classes - words that have
resulted in a common stem - to suit the characteristics of a
specific text corpus using statistical approaches is referred to
as corpus based stemming. This method has the advantage
of potentially avoiding inappropriate conflations for a given
corpus, and the outcome is an actual word rather than an
unfinished stem. The downside is that statistical measures
have to be constructed for each corpus independently, and
processing time increases because two stemming techniques
are employed first before employing this method in the first
phase.

c: CONTEXT SENSITIVE STEMMER
This is an intriguing way of stemming because, unlike the tra-
ditional approach of stemming before indexing a document,
for a Web Search, context-sensitive analysis is performed
on the query side using statistical modeling. Reference [39]
proposed this approach.

Before the query is submitted to the search engine, the
morphological variations that might be relevant for the search
are predicted for the terms of the input query. This drastically
minimizes the frequency of incorrect expansions, lowering
the cost of further computation while also improving preci-
sion. Following the extraction of the query’s predicted word
variations, these variants are subjected to context-sensitive
document matching. This conservative approach protects
against erroneous stemming, and it turns out to be crucial for
enhancing precision.

E. PART OF SPEECH (POS) TAGGING
Parts of Speech Tagging is a technique of performing Seman-
tic Analysis that involves allocating a word to one of the
parts of speech. Nouns, verbs, adverbs, adjectives, pronouns,
conjunctions, and their subcategories are all parts of speech.
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Speech tagging is separated into two categories: super-
vised and unsupervised techniques, with each kind further
classified.

Tagging is a procedure in natural language processing
(NLP) that provides labels to linguistic components. It refers
to the process of assigning part-of-speech tags to texts. A tag-
ger is a computer application that is used for this purpose.
The technique of assigning one of the parts of speech to a
given word is known as part of speech tagging. The English
term rust, for example, can be used as a verb or a noun. The
following are some different types of speech tagging [38]:

1) SUPERVISED AND UNSUPERVISED TAGGINGS
A pre-tagged corpus (organized collection of text) is used
for training to learn information about the tagset, word-tag
frequencies, rule sets, and other things. Training and pre-
diction are the two basic phases of supervised classification.
Feature extractors generate different class labels during train-
ing by converting each input value to a feature set or class
label. In order to produce a model, a pair of feature sets
and class labels are input into a machine learning algorithm
during training. The same feature extractor is utilized for
producing predicted labels for unseen input or test set during
the prediction phase. Pre-tagged corpora are not required for
unsupervised Part of Speech (POS) tagging models. It works
by taking a POS lexicon as input, which is a collection of
possible POS tags for each word [23].

2) RULE BASED AND STOCHASTIC TECHNIQUES
Stochastic tagging is a phenomenon that involves frequency
or probability. To assign tags to unknown or ambigu-
ous words, rule-based approaches leverage contextual and
morphological information. For example, if the ambigu-
ous/unknown word X is preceded by a determiner and fol-
lowed by a noun, identify it as an adjective [7]. The tagger
can either infer these rules automatically or the designer can
encode them. Eric Brill created the most well-known rule-
based component of a voice tagger, which was the first to
achieve an accuracy level comparable to stochastic taggers,
i.e. 95%-97% [63].

F. TERM FREQUENCY-INVERSE DOCUMENT FREQUENCY
(TF-IDF)
The Term Frequency-Inverse Document Frequency (TF-IDF)
statistic illustrates how essentially a word is to a document
in a collection. In information retrieval and text mining, the
TF-IDF is frequently employed as a weighting factor. The
value of TF-IDF rises in proportion to the number of times
a word appears in a document, but is offset by the word’s fre-
quency in the corpus. This can aid in controlling the fact that
some terms are more commonly used than others. Stop-words
filtering with TF-IDF can be done successfully in a variety of
disciplines, including text summarization and categorization.
The frequency and inverse document frequency statistics are
combined to form TF-IDF. The number of times each term

appears in each text is recorded and added together to further
identify them. The number of times a phrase appears in a
document is known as Term Frequency (TF) [35].

tf (t, d) = 0.5 +
0.5 ∗ f (t, d)

maximum occurences of words
(3)

Inverse Document Frequency (IDF) is a statistical weight
for determining the significance of a term in a text document
collection. The IDF function is used to reduce the weight
of terms that appear frequently in the document set, while
increasing the weight of terms that appear infrequently.

idf (t, d) = log
|D|

(no.of documents term t appears)
(4)

This formula is then used to calculate Term Frequency -
Inverse Document Frequency (TF-IDF) for each word.

tfidf (t, d,D) = tf (t, d) ∗ idf (t, d) (5)

The frequency of occurrence of phrase t in document d
is denoted by d in equations 3 and 4. Equation 5 uses Term
Frequency (Tft, d) and Inverse Document Frequency (idft, d)
to calculate TF-IDF for each term in the document.

G. NORMALIZATION
The process of cleaning or removing extraneous data from
a large collection of collected data is referred to as normal-
ization in sentiment analysis. Data preprocessing is used to
eliminate noise from retrieved text, making it more consistent
and understandable. Data must be preprocessed before going
to the analysis step in any text mining method, therefore the
extracted data is preprocessed for subsequent processing.

H. TOPIC MODELING (TM)
Topic Models are generative models in Natural Language
Processing that give a probabilistic framework. Topic mod-
eling approaches are commonly used to organize, interpret,
search, and summarize huge electronic archives automat-
ically. The term ‘‘topics’’ refers to the unknown variable
relationships that exist between words in a lexicon and their
appearance in texts. A document is viewed as a collection of
several themes. Topic models look for hidden themes across
the collection and annotate texts with those topics. Each term
is thought to be derived from one of those themes. Finally,
a document coverage distribution of topics is constructed,
which gives a new approach to look at data from a subject
viewpoint [57].

1) LATENT SEMANTIC ANALYSIS (LSA)
The theory of knowledge acquisition, induction, and repre-
sentation is known as latent semantic analysis (LSA) [30].
Reference [12] were the first to introduce it as an information
retrieval (IR) technique. It is amachine-learning technique for
assessing the relationships and similarity structures between
texts and phrases that do not rely on human experience,
prior theoretic models, semantic dictionaries, or knowledge
bases [29].
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The primary goal of LSA is to reduce the size of a dataset,
which is accomplished through a matrix operation called
singular value decomposition (SVD). SVD is a technique for
dividing a matrix into three smaller matrices. The resulting
reduced-order SVD gives the best k-dimensional approxima-
tion to the original matrix in the least square error sense [13]
by keeping the k of the biggest singular values. Two sets
of factor loadings are generated as a result of SVD, one for
words and one for documents. In the same latent semantic
space created by the SVD, each term and document is rep-
resented as a k-dimensional vector. As a result, each latent
semantic factor is now linked to a set of high-loading terms
and documents [51]. To understand and label the correspond-
ing factor, high-loading phrases and documents are used.
Before SVD computation, the number of factors is an input
parameter that must be specified. LSA organizes key terms or
documents into several levels of aggregation as the number
of components changes. When employing a collection of
representative articles to identify major subjects in a disci-
pline, a higher level of aggregation indicates key study areas,
while a lower level of aggregation represents generic research
themes [51].
The LSA analysis can be broken down into three phases.

The first step is to create a term-document matrix, with each
row representing a key word or term and each column repre-
senting a document or context where the key word appears.
The frequency of a key word in the corresponding document
is represented by an entry in the matrix. The second step is to
use various weighting strategies to turn the term frequencies
in a term-document matrix. The third step is to use SVD to
lower the dimensionality of the matrix, which is a critical
element of the LSA approach. Only the k of the greatest
solitary values are kept in this step. The best k-dimensional
approximation to the original matrix is the reduced-order
SVD [13].

Extensive testing has shown that LSA’s classification per-
formance is reliable [5] and that it can infer relationships
from text [29]. Information retrieval (IR), search optimiza-
tion, classification, clustering, filtering, and other IR-related
applications can all benefit from it [13].

I. SENTIMENT ANALYSIS (SA)
People’s thoughts, sentiments, estimations, and attitudes
regarding entities and their properties in textual data are
analyzed using sentiment analysis [31]. Unstructured text is
handled in sentiment analysis, which causes several com-
puter processing issues. Various strategies and procedures
are employed in order to solve difficulties. Image record-
ings [64] or a mix of image and text [58] can be used for
sentiment analysis. Sentiment analysis may be thought of
as a process that begins with the establishment of a goal
and progresses through the following steps: data retrieval,
preprocessing, feature extraction, text categorization accord-
ing to sentiment, interpretation of the results, and, finally,
presentation. The most common method of classification is

based on polarity or orientation. It is a two-step method
(two binary classifications) in which text is first classi-
fied according to objectivity (objective text does not con-
tain sentiment and is thus excluded from further analysis),
then it is classified into a positive or negative category.
Another option is to split text into one of three cate-
gories (positive, neutral, or negative) all at once. Sentiment
analysis, rather than identifying a subjective text just as
positive or negative, may also be done according to partic-
ular emotions such as surprise, fear, disgust, delight, and
trust.

The text unit across which the analysis is carried out
might be:

• Document: analysis determines if a positive or negative
attitude about the subject of the document predominates
(e.g. film review).

• Sentence: because a sentence may be considered a tiny
document, there is no significant difference between
sentiment analysis at the document and sentence levels.

• Aspect: the analysis is focused on some of the entity’s
most essential qualities or portions. It is common in
restaurant or product reviews.

Words are the most common means of conveying emotion,
however phrases can also be used. It is possible to assign
numeric values to each of these classifications in addition
to the fundamental categorization of the word in positive,
negative, or neutral, as in the SentiWordNet dictionary, where
each word is given three decimal values, the entire sum of
which is one [14].

III. PACKAGES FOR TEXT MINING WITH R
This section discusses the R packages which are available
at CRAN and related to text processing for further analy-
sis. For this purpose, a description of each of the frame-
works or plugins will be made. The thirteen Text Mining
R packages for which their performance over the selected
techniques has been analyzed and compared are: udpipe,
textstem, openNLP, text2vec, Isa, tm, textmineR, textir, tau,
fastTextR, sentimentr, cleanNLP, and RSentiment. In the
following, all of them are introduced. They have not been
classified taking into account the techniques described in
the previous section because pretty all of them allow apply-
ing most of the techniques. The packages were selected
based on their popularity and functionality in the R com-
munity. They have established themselves as trustworthy
and efficient tools for a variety of text processing tasks.
For researchers, data scientists, and practitioners working
with textual data in R, the combination of these package
offers a wide range of functions and methodologies for
text analysis. There are numerous other helpful NLP-related
software in addition to the ones already selected. Some of
them are mentioned below. The topicmodels [20] package
offers an interface to Correlated Topics Models (CTM) and
Latent Dirichlet Allocation (LDA) models for determining
topics in texts. Another noteworthy package is tidytext [53],
which offers word processing, sentiment analysis, and tools
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for text mining. Also, the package svs [40], which pro-
vides straightforward implementations of several methods for
semantic vector spaces, including correspondence analysis,
latent class analysis, probabilistic latent semantic analysis,
non-negative matrix factorization, and latent semantic
analysis.

A. UDPIPE
The udpipe package [61] is a trainable pipeline performing
sentence segmentation, tokenization, POS tagging, lemma-
tization and dependency parsing [54]. It uses the Universal
Dependencies project (UD) as its main information source,
whose goal is a multi-language relation in morphology and
semantics. Currently, this project has 70 dependency trees on
50 different languages.

B. TEXTSTEM
The package textstem [47] provides a tool set that stems
and lemmatizes text. For lemmatization, a dictionary is
created from a text using the function +make_lemma_
dictionary()+, which by default uses the hunspell [37]
package as the engine. Other packages such as lexicon [45]
and the TreeTagger tool can be used. Both R packages are
faster than TreeTagger and do not require installation of exter-
nal tools, but are less accurate. In contrast, using TreeTagger
requires installing the program which is available for Linux,
Windows, Mac-OS and ARM.

C. OPENNLP
The openNLP [24] package provides to R with an inter-
face to the Apache OpenNLP tools. The Apache library
is a Machine Learning-based toolkit for Natural Language
Processing written in Java. This package supports tokeniza-
tion, segmentation, segmentation, part-of-speech tagging,
named entity extraction, chunking, parsing and coreference
resolution.

D. TEXT2VEC
R has a feature that is copy-on-modify and, because of this
feature, forming a large-scale DTM or TCM can be a serious
bottleneck for analysts and researchers. By causing the entire
collection of documents to be read into Random Access
Memory (RAM), and processed as a single vector, it increases
memory usage by a factor of 2 to 4.

The text2vec [49] package solves this issue by providing
a better way to construct a DTM or TCM, using a list of
iterators that traverse the text in multiple theards to form
them. The user must provide the iterators list and division to
be performed on the text.

E. LSA
The lsa [62] package provides the tools to perform Latent
Semantic Analysis on texts with R. It allows the use of
conceptual indexes that are a way of statistical derivation for
value decomposition (texts of high conceptual order possess

polysemy, among other factors, thus allowing for the reduc-
tion of synonyms, etc., in a matrix of terms associated with a
document).

F. TM
The tm [16] package provides a framework for TextMining in
R, which allows applying a multitude of existing methods on
text. It is flexible and allows integration with other packages
and extensions, making it possible to use advanced meth-
ods in Text Mining such as whitespace removal, stemming,
or stopword deletion.

G. TEXTMINER
The textmineR [26] package was designed to assist in the
Text Mining process, with a syntax familiar to R users.
It tries to maximize interoperability in the R ecosystem, to be
scalable in space and computation time, and to have an R
idiomatic language. It has extra topic model analysis and
diagnostics features.

textmineR offers scalability thanks to the use of matrices
such as dgcMatrix, which allow significant savings in terms
of memory, the use of the Rcpp package to speed up R
and the use of parallel processing when possible (through
the TmParallelApply() function, which is syntactically
common with respect to Windows and Linux).

This package offers simplicity in exchange for perfor-
mance. It is designed to be run on a single node in a cluster,
although, if available, it will use all the cores on that node
by default. To improve performance, the underlying text2vec
package is used.

H. TEXTIR
The textir [55] package allows the use of multinomial inverse
regression by inference on texts and associated attributes.
A minimalistic approach to the partial least squares routine
is also included. This package allows the creation of a matrix
based on term occurrence frequency (TF-IDF).

I. TAU
The tau [8] package has utilities for text analysis, such as
document loading and preprocessing (tokenization and stop-
words), as well as allowing the counting of terms or patterns
in documents.

J. FASTTEXTR
The package fastTextR [48] provides an interface to
the fastText library, available in Python. It allows word
representation learning and supervised text classification.

K. SENTIMENTR
The sentimentr [46] package is designed to quickly calculate
the polarity of sentiment that exists in a text at the sentence
level, as well as allowing aggregation by rows or by grouping
variables. The goal of sentimentr is to try to strike a balance
between efficiency and effectiveness.
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TABLE 1. Runtime (milliseconds) for tokenization.

TABLE 2. Memory usage (MB) for tokenization.

L. CLEANNLP
cleanNLP [1] is an R package that provides a set of tools to
convert a corpus into a set of normalized tables for further
analysis. To do so, cleanNLPmakes use of the udpipe pack-
age, the Python spaCy library or the Java CoreNLP library as
a backend.

M. RSENTIMENT
The RSentiment [6] package allows extracting sentiment
information from English texts. It uses underlying NLP, text
analysis and stemming. When computing the value of each
sentence, it takes into account sarcasm, negations, various
degrees of adjectives and emotions.

IV. EVALUATION METHODOLOGY
Execution time and memory use were the two primary per-
formance indicators that were the subject of the relevant
studies’ evaluation metrics [9], [28]. These measurements are
essential for determining how effectively the packages under
comparison use their resources.

1) Execution Time: The amount of time it takes each
package to complete particular tasks is measured by
execution time. It offers information about the effec-
tiveness and speed of the packages in handling different
procedures. The examination looked at how quickly
several functionalities executed. Researchers were able
to determine which packages completed these tasks
more quickly by contrasting the execution times.

2) Memory Usage: The amount of memory used up by
each package while it is being executed is referred
to as memory usage. It helps evaluate the packages’
effectiveness at managing system resources by giving
information on the memory footprint of the pack-
ages. Researchers could evaluate memory usage to find
potential memory leaks or excessivememory consump-
tion, as well as to quantify the effect of each package
on system memory.

TABLE 3. Runtime (milliseconds) for stopwords.

TABLE 4. Comparative memory usage (MB) for stopwords.

The evaluation methods used to contrast the packages were
centred on performance indicators like execution time and
memory usage. To measure these metrics accurately, specific
strategies including benchmarking and profiling were used.
The evaluation methods are described below:

• Benchmarking: To compare the effectiveness of various
packages, benchmarking was employed as a method.
The identical task or set of tasks must be executed
using each package, and the appropriate metrics must be
measured. Their relative performance can be evaluated
by contrasting the execution times and memory usage of
the packages.

• Profiling: Another method used during the study was
profiling. It entails examining how R expressions are
executed or keeping track of memory utilization as oper-
ations are carried out. Data on the execution time and
memory usage of each package were gathered using pro-
filing tools like the Rprof() function. The effective-
ness of the packages was then analysed and compared
using this data.

• Iterations: For each package, several iterations were car-
ried out to assure accurate findings. In order to account
for any performance changes that could arise owing to
factors like system load or caching effects, the evalua-
tion required repeating the same task repeatedly, often
100 times. The representative value for comparison was
the median execution time or memory use over these
iterations.

• Results Analysis: To compare the packages, the data
gathered through benchmarking and profiling was
examined. Because they offer a more consistent descrip-
tion of the performance, the median execution time and
memory use values were frequently employed for com-
parison. By looking at these measures, it is feasible to
spot performance variations between the package and
determine which one is best for a given task.

Evaluation analysis was made on those packages grouped
in the techniques that are used for the same aim. The
methodology used consisted in the 6 following activities.
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FIGURE 1. Runtime in milliseconds for tokenization on the movie_review
dataset utilizing 10 documents (×), 100 documents (∗) and
1000 documents (▲).

FIGURE 2. Memory usage in megabytes for tokenization on the
movie_review dataset utilizing 10 documents (×), 100 documents (∗) and
1000 documents (▲).

FIGURE 3. Runtime in milliseconds for stopwords on the movie_review
dataset utilizing 10 documents (×), 100 documents (∗) and
1000 documents (▲).

1) In the first step a series of random samples of doc-
uments were extracted from a public dataset, ten,
one hundred and one thousand documents, with the
idea of testing these samples. It was selected the
‘‘movie_review’’ dataset included in the R package
text2vec. This sample is composed of three variables,
‘‘id’’, which is the id of the document, ‘‘sentiment’’,
which is the sentiment of the document (one means
positive and zero means negative) and finally ‘‘review’’
which is the raw plain text containing the movie review.
The code is:
R> library(text2vec)
R> library(data.table)
R> data("movie_review")

FIGURE 4. Memory usage in megabytes for stopwords on the
movie_review dataset utilizing 10 documents (×), 100 documents (∗) and
1000 documents (▲).

R> txt <- setDT(movie_review)
R> setkey(txt, id)
R> set.seed(1234)
R> txt10 <- txt[J(sample(movie_review$id, 10))]
R> txt100 <- txt[J(sample(movie_review$id, 100))]
R> txt1000 <- txt[J(sample(movie_review$id, 1000))]

2) Once the data were uploaded, iterations were per-
formed. A total of 100 iterations were chosen for each
package using the constant ITERATIONS. The code is:
R> for (i in 1:ITERATIONS) {

3) For each iteration, a call is made to the gc() function
so that the garbage collector is in charge of recovering
unused memory, which takes an appreciable amount of
time and thus avoid misleading results during profiling.
The code is:
R> gc()

4) Tests were performed with the Rprof() function,
which enables profiling of the execution of R expres-
sions if MEMORY_PROFILING constant is FALSE or
the memory usage if it is TRUE. The results are written
to a file with the file name following the format of the
package name and the iteration number. The code is:
R> filename <- paste(PACKAGE, i, ".out", sep="")
R> Rprof(filename, interval = 0.01,
memory.profiling = MEMORY_PROFILING)

5) For each package of a technique, the necessary func-
tions of the package are used to run the tests. The code
for this step is explained below for each technique and
package.

6) Median for runtime or reserved memory is extracted
from the result files using the summaryRprof()
function. The code is:
R> summaryRprof(paste(PACKAGE, ITERATIONS, ".out", sep=""))

R> x <- c()

R> for (i in 1:ITERATIONS) {

R> if (MEMORY_PROFILING) {

R> summary <- readLines(paste(PACKAGE, i, ".out",

sep=""))

R> lastLine <- summary[length(summary)]

R> split <- strsplit(lastLine, ":")[[1]]

R> if (length(split) >= 3) {

R> smallVallocSize <- as.numeric(split[2])

R> largeVallocSize <- as.numeric(split[3])

R> total <{-} smallVallocSize + largeVallocSize

R> x <- c(x, total)

R> }

R> } else {

R> summary <- summaryRprof(paste(PACKAGE, i, ".out",

VOLUME 11, 2023 99091



C. J. Hellín et al.: Comparative Study on R Packages for Text Mining

sep=""))

R> total <- summary$by.total$total.time[1]

R> if (is.na(total)) {

R> x <- c(x, 0)

R> } else {

R> x <- c(x, total)

R> }

R> }

R> }

R> median(x)

TABLE 5. Runtime (milliseconds) for lemmatization.

Step 5
Due to the interoperability offered by the packages, a com-

plete analysis on functionality combining packages is some-
thing that, without having a clear analysis objective, would
mean a much more complete development, without being
able to go deeper into the benefits offered by each package.
For this reason, the decision taken at the time of this com-
parison is to focus on the functionality offered by each one
independently, so that, when carrying out a future analysis,
it will serve as a guide as to which package offers better
performance according to a specific objective. Therefore,
step 5 is described below with the code used being separated
from the rest.

1) udpipe. With udpipe it is necessary to have the model
of the language to be used, as well as the information to
be processed (the text to be processed and the id of each
one). The function has some extra parameters activated
by default, which are tagger and parser (if they are
with ‘‘default’’ value, they look for lemmatization/POS
and lexical dependencies respectively). To speed up the
function, the value of these variables will be ‘‘none’’,
forcing udpipe to perform only tokenization. Because
udpipe has been forced to perform only tokenization,
there will be variables with null values.
R> library(udpipe)
R> library(profvis)
R> longstr <- paste0("../eng.udpipe")
R> udmodel <- udpipe_load_model(longstr)
R> udp10 <- udpipe_annotate(udmodel,
x = txt10$review, doc_id = txt10$id,
tagger = "none", parser = "none")
R> udp10 <- as.data.frame(udp10)

2) text2vec. With the text2vec package, the samples must
be passed as a parameter to theword_tokenizer().
R> library(text2vec)
R> t2vtkn10 <- word_tokenizer(txt10[[3]])

The result with text2vec is different. Unlike udpipe,
the result object is a list of lists (with token inside)
corresponding to each of the processed documents.
Package text2vec has a good performance (more on
this later in the results’ comparison) but it would be
even better if it could perform the tokenization func-
tion using iterators in several threads (as it uses when
creating a DTM or TCM).

3) tm. With the tm package, the process differs. In order
to apply tokenization, the input must be a Corpus.

A Corpus is a set of documents stored in the same
standard structure. Therefore, this is the first step to be
followed.
R> library(tm)
R> c <- data.frame(doc_id = txt10$id,
text = txt10$review)
c <- DataframeSource(c)
R> corpus10 <- VCorpus(c)

Once the Corpus has been obtained, tokenization
can be performed. There are three different func-
tions with which tokenization can be done, which
are Boost (uses Boost_Tokenizer() via Rcpp),
MC_tokenizer() (which implements the MC tok-
enizer) and scan_tokenizer(), which simulates
the scan function, forcing characters to be taken. These
functions are analyzed separately to obtain the results
of each one.
R> boost10 <- Boost_tokenizer(corpus10)
R> mc10 <- MC_tokenizer(corpus10)
R> scan10 <- scan_tokenizer(corpus10)

The result variable with the tokenization follows a
similar structure to the one obtained with the text2vec
package, with the difference that it appears that the
result (the list of lists) has been converted to a char-
acter vector, containing all the tokens of the processed
documents (in the first position, a String with value
‘‘list(list(content))’’ is stored).

4) tau. With the tau package, it has a very similar function
to the previous ones, and whose result is a list of
characters with the tokens obtained.
R> library(tau)
R> tautkn10 <- tokenize(txt10$review)
R> tautkn10[1:12]

5) cleanNLP. Finally, the cleanNLP package. This pack-
age is an interface that uses other packages to pro-
vide functionality. Specifically, the coreNLP package
(based on Java, and with which it has a connection
through rJava), the tokenizers package (R’s own),
udpipe (already analyzed, and therefore obviated) and
finally the Python spaCy package can be used in an
underlying way. Due to a bottleneck problem with
memory and the rJava interface, the analysis will be
performed with tokenizers, which is R’s own. To get
the tokens that are part of the documents, first the
annotation is performed and subsequently the tokens
found are extracted.
R> library(cleanNLP)
R> cnlp_init_tokenizers()
R> cnlp10t <- cnlp_annotate(txt10$review,
text_var = txt10$id)

The result is an object with the same structure obtained
with udpipe (although without some variables, such as
the division by sentences or paragraphs).

The other techniques and packages follow the same
methodology proposed here.

V. COMPARISON AND RESULTS
This section provides a discussion and critical comparison of
packages for text mining with R.
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TABLE 6. Memory usage (MB) for lemmatization.

TABLE 7. Runtime (milliseconds) for stemming.

TABLE 8. Memory usage (MB) for stemming.

TABLE 9. Runtime (milliseconds) for POS tagging.

The main factor involved in this comparison is the per-
formance, both in execution time and memory used, which
will be compared by trying documents using the packages
described in the previous sections. It should be noted that
although these values are dependent on the architecture
and characteristics of the system, this will allow giving
an approximation about them in a particular environment,
so that this information can be generalized, based on the
samples.

It is important to mention that searches in literature
databases regarding similar studies provide scarce results for
comparison with the obtained results.

A. TOKENIZATION WITH R
As it can be seen in Table 1, the packages that offer the best
performance in this sample are text2vec and tm, with the
Boost and Scan functions. While tau and cleanNLP have a
slightly higher time, alongwith, udpipewhich has the highest
execution time.

The tm package perceives an increase in time and memory
that it suffers as the sample size increases, due to the creation
of the Corpus in order to be able to perform a later tokeniza-
tion. There is also a noticeable increase in memory used from
cleanNLP in the 1,000 document sample (see Table 2).
As a conclusion, the best package in terms of perfor-

mance when dealing with Tokenization is the text2vec
package. Alternatively, there is the tm package (Boost and
Scan), which has similar performance, especially in memory
management.

It should be noted that udpipe has such poor performance
because for Tokenization the language model to be used must
be loaded in memory beforehand, otherwise the function does
not provide results. If it were not for this fact, performing Tok-
enization with udpipe using parallelism would have better
results than those obtained.

TABLE 10. Memory usage (MB) for POS tagging.

FIGURE 5. Runtime in milliseconds for lemmatization on the
movie_review dataset utilizing 10 documents (×), 100 documents (∗) and
1000 documents (▲).

FIGURE 6. Memory usage in megabytes for lemmatization on the
movie_review dataset utilizing 10 documents (×), 100 documents (∗) and
1000 documents (▲).

B. STOPWORDS WITH R
Regardless of the sample size, as it can be seen in Table 3,
the package that offers the best performance is tau. However,
it should be noted that this package does not work with DTM
but with plain text, so if the input is taken into account as a
factor, the package that offers the best performance (working
with DTM) is text2vec.

When changing the sample size, the time taken by the
lsa package increases considerably, especially in the case
of the sample of 1,000 documents, where the performance
offered by lsa is the worst among the other packages. The
performance of the rest remains uniform, both in the tau
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FIGURE 7. Runtime in milliseconds for stemming on the movie_review
dataset utilizing 10 documents (×), 100 documents (∗) and
1000 documents (▲).

FIGURE 8. Memory usage in megabytes for stemming on the
movie_review dataset utilizing 10 documents (×), 100 documents (∗) and
1000 documents (▲).

package, the most efficient in plain text, and in the text2vec
package, the most efficient among those working with DTM.

Regarding memory management shown in the Table 4,
the most resource-intensive package in all samples is lsa,
followed by textmineR, while text2vec, tm and tau make
better use of memory.

In conclusion, there are five packages, two that apply
to pure text, such as tm and tau (tm to a Corpus, which
composes the set of documents of the sample space, while
tau is to a plain text) and three others that apply stopwords
elimination to DTM. In terms of memory management, tau
is more efficient than tm in plain text, since generating the
Corpus from samples of many documents implies a higher
use of resources. Among those applied to DTM, text2vec is
more efficient than textmineR in both memory and time.

FIGURE 9. Runtime in milliseconds for POS tagging on the movie_review
dataset utilizing 10 documents (×), 100 documents (∗) and
1000 documents (▲).

FIGURE 10. Memory usage in megabytes for POS tagging on the
movie_review dataset utilizing 10 documents (×), 100 documents (∗) and
1000 documents (▲).

C. LEMMATIZATION WITH R
Tables 5 and 6 show, by comparing all samples, that the best
package is textstem, although udpipewith parallelismwould
have better results.

As formemory, there are few differences here.Udpipe uses
a lot of resources in its base function, which scales according
to the sample size. However, textstem, like udpipe’s base
function, increases memory usage with sample size, but to
a lesser extent.

In conclusion, in terms of execution time, the best package
is textstem on samples of ten, one hundred and one thousand
documents, while udpipe without parallelism is not as fast.
Both packages use more or less the same memory, so the
choice is left to the user’s needs.
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TABLE 11. Comparative runtime (milliseconds) for TF-IDF.

TABLE 12. Comparative memory usage (MB) for TF-IDF.

TABLE 13. Runtime (milliseconds) for normalization.

TABLE 14. Memory usage (MB) for normalization.

FIGURE 11. Runtime in milliseconds for TF-IDF on the movie_review
dataset utilizing 10 documents (×), 100 documents (∗) and
1000 documents (▲).

D. STEMMING WITH R

Table 7 shows that, when the sample contains a low volume
of documents to which to apply this reduction technique,
the time is negligible in both packages. However, when the
sample increases, large differences are present. While the
tm package maintains a good performance (even taking into
account that the Corpus had to be created beforehand to per-
form this technique), the execution time of textstem increases
when the sample reaches a thousand documents.

In memory usage (see Table 8), the result is similar. While
the tm package does a better memory management even if it
has to store in memory the Corpus it is going to work with,
textstem requires more resources to produce the same result.
In conclusion, for Stemming, the package that offers the best
performance is the tm package.

FIGURE 12. Memory usage in megabytes for TF-IDF on the movie_review
dataset utilizing 10 documents (×), 100 documents (∗) and
1000 documents (▲).

FIGURE 13. Runtime in milliseconds for normalization on the
movie_review dataset utilizing 10 documents (×), 100 documents (∗) and
1000 documents (▲).

FIGURE 14. Memory usage in megabytes for normalization on the
movie_review dataset utilizing 10 documents (×), 100 documents (∗) and
1000 documents (▲).

E. POS TAGGING WITH R
As it can be seen in the runtime Table 9, openNLP could be a
clear winner. The disadvantage is that it consumes too much
memory, as shown in Table 10 (even sometimes R cannot
allocate that muchmemory with a thousand documents). This
is because it uses rJava as an interface to connect to Java
and use it in an underlying way, which causes unnecessary
memory and time expenditure.

So if better memory consumption is needed the udpipe
package is a good choice, but openNLP has less execution
time considering that it is compared only with udpipe and it
also needs the Java Virtual Machine, which consumes more
resources.
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TABLE 15. Runtime (milliseconds) for topic modeling.

TABLE 16. Memory usage (MB) for topic modeling.

TABLE 17. Runtime (ms) for sentiment analysis.

TABLE 18. Memory usage (MB) for sentiment analysis.

F. TF-IDF WITH R
Conclusions on this technique based on Tables 11 and 12 are
that, textir and text2vec offer a negligible execution time in
the ten and one hundred document samples. This is, however,
different for the larger samples, such as the one thousand
document sample, where the execution time increases more
with text2vec than with textir. This was expected since for
the creation of this type of matrix, text2vec has to first create
a vocabulary of the documents, the DTM on this vocabulary
and finally, create the TF-IDF. Regarding memory manage-
ment, both packages follow the same line as in the runtime
table. This improvement, compared to textmineR, is due
to the use of iterators that work in parallel traversing the
documents to form the frequency matrix.

As for the textmineR package, its performance is quite
poor compared to the other two packages, requiring more
memory needed for the execution in the sample of one
thousand documents, and also longer execution time in this
same sample compared to the other packages. The last pack-
age, openNLP, does not offer a better result. While the
ten-document sample shows a decent result, with larger sam-
ple sizes it proves to be inefficient compared to the other
packages. Therefore, the best result is offered by the textir
package.

G. NORMALIZATION WITH R
Tables 13 and 14 show that text2vec uses more resources,
both time and memory, to perform this function. Except in
the sample of one thousand documents, where the execution
time of fastTextR is higher. However, its usefulness is much

FIGURE 15. Runtime in milliseconds for topic modeling on the
movie_review dataset utilizing 10 documents (×), 100 documents (∗) and
1000 documents (▲).

FIGURE 16. Memory usage in megabytes for topic modeling on the
movie_review dataset utilizing 10 documents (×), 100 documents (∗) and
1000 documents (▲).

FIGURE 17. Runtime in milliseconds for sentiment analysis on the
movie_review dataset utilizing 10 documents (×), 100 documents (∗) and
1000 documents (▲).

FIGURE 18. Memory usage in megabytes for sentiment analysis on the
movie_review dataset utilizing 10 documents (×), 100 documents (∗) and
1000 documents (▲).

greater, since applying normalization to a DTM is more
convenient than applying it to a text and then transforming
it, because it increases the execution time and the memory
reserved for this task. In this case, fastTextR uses practically
no memory, since the result is saved as plain text.
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TABLE 19. Summary of benchmarking results considering runtime
(miliseconds). (C stands for classification and S stands for score.)

H. TOPIC MODELING WITH R
With Tables 15 and 16 the following observations can be
made: the Supervised Classification of fastTextR gives the
base algorithm a remarkable performance. Regarding mem-
ory usage, fastTextR does not reserve too much memory for
this process, which is an advantage over its competitors, since
textmineR and lsa need much more megabytes (especially
in samples of one hundred and one thousand documents)
when reserving memory for the model. For instance, accord-
ing to Table 16, fastTextR uses only 3.90 MB of memory
when analyzing 10 documents, while textmineR and lsa use
6.17 MB and 3.92 MB, respectively. This pattern persists for
bigger document sizes, as fastTextR consistently uses only
3.91MBofmemory, while textmineR and lsa require signifi-
cantly more memory. As a conclusion, the package that offers
the best performance in both aspects of execution time and
memory used is fastTextR with its Supervised Classification
algorithm.

I. SENTIMENT ANALYSIS WITH R
The results for sentiment analysis with R are shown in
Tables 17 and 18. The packages offer similar functionality,
separated by Score and Classification. While sentimentr is
built using R’s own resources, RSentiment uses an interface
to Java in order to develop its functionality. This is a runtime
disadvantage as shown in the tables, due to the resources that
need to be provided to Java. The clear winner is sentimentr
in terms of computational efficiency, but in terms of memory

TABLE 20. Summary of benchmarking results considering memory usage
(MB). (C stands for classification and S stands for score.)

TABLE 21. Summary of the best and worst packages for each technique
depending on memory usage and time consumed.

TABLE 22. Packages and versions information.

usage it consumes somewhat more especially with 100 and
1,000 documents, which unlikeRsentimentmakes better use
of memory. For example, Table 17 shows that sentimentr
uses 6.16MB and 10.76MB of RAMwith 100 and 1000 doc-
uments, respectively, while Sentimentr uses 4.38 MB and
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5.46 MB with the same document sizes. As a result, while
assessing sentiment in bigger document sets, Rsentiment
shows superior memory efficiency, making the most use of
available resources.

Tables 19 and 20 give a summary of the packages for each
technique while taking their runtime and memory usage into
account. Researchers can use these tables to gain important
insights for their analysis.

VI. CONCLUSION
This section will show the conclusions drawn based on the
results, as well as the issues related to it.

Starting with Tokenization, the packages that stand out the
most are text2vec and tm. The only R package that performs
worse is udpipe. It is worth noting that udpipe could achieve
better results working in parallel. To take advantage of the
parallelization capabilities of contemporary hardware and
maybe enhance the tokenization process, parallel computing
utilizing packages like parallel [42] or future [4] could be
investigated. Also, the text2vec package is one of the most
efficient in the Stopwords technique applied to DTM, while
tau is the most efficient for plain text.

As for the Lemmatization and Stemming techniques, the
best package is textstem, but in Stemming the tm package
is even better considering that it had to create and store in
memory the Corpus. This package was already outstanding
in Tokenization.

Regarding the POS Tagging technique, it is more difficult
to make a choice, since udpipemakes a good use of memory
but openNLP has better execution times. In contrast, this
is not the case for the TF-IDF technique, where the textir
package is a clear choice.

ApplyingNormalizationwith the text2vec package ismore
convenient as it does not use plain text. But fastTextR
does not use so much memory and is also the best package
for Topic Modeling thanks to the Supervised Classification
algorithm.

Finally, the Sentiment Analysis technique with the sen-
timentr package will give better performance in terms of
execution time, butRSentimentmakes better use of memory
if the documents to be analyzed are of a large volume.

Even though some packages proved to be better at certain
strategies, there is still future work, especially in fields like
parallel processing, hybrid approaches, and novel algorithms.
It is possible to improve the effectiveness, scalability, and
precision of text analysis tasks in the R environment by
addressing these issues.

In conclusion, researchers should take into account the
particular needs of their text mining activities and select the
best R package based on performance metrics like execution
time and memory utilization. These are the recommended
packages for various tasks, as shown in Table 21:

• Tokenization: the text2vec package is advised for the
best time performance.

• Stopwords: text2vec is the suggested package for man-
aging stopwords within a DTM. On the other hand, tau

is the suggested package if it needs to handle stopwords
in plain text.

• Lemmatization: The recommended package is textstem
in terms of time for effective lemmatization. However,
udpipe with parallelism is the recommended option if
memory usage is a concern.

• Stemming: In terms of time and memory requirements,
the tm package is suggested for stemming tasks.

• POS Tagging: openNLP is the recommended package
if quicker execution is a top priority. On the other hand,
udpipe is the best option if memory use is an issue.

• TF-IDF: textir is the recommended package for TF-IDF
calculations in terms of both time and memory.

• Normalization: The suggested package is text2vec for
improved runtime efficiency. The fastTextR package is
the best option if memory utilization is a problem.

• Topic Modeling: When it comes to time and memory
requirements, the fastTextR (Supervised Classification)
package is suggested for Topic Modeling

• Sentiment Analysis: sentimentr is the recommended
package if computational effectiveness is a top concern.
However, RSentiment is the best option for memory
effectiveness.

These recommendations give researchers information on
the advantages and disadvantages of several R packages for
various text mining tasks, empowering them to make wise
choices based on their unique requirements and available
resources. The version of the analyzed packages can be found
in Table 22 for reference by the researchers.

COMPUTATIONAL DETAILS
The results in this paper were obtained usingR 4.1.1 [43] and
used packages udpipe version 0.8.8 [61], textstem version
0.1.4 [47], openNLP version 0.2-7 [24], text2vec version
0.6 [49], lsa version 0.73.2 [62], tm version 0.7-8 [16],
textmineR version 3.0.5 [26], textir version 2.0-5 [55], tau
version 0.0-24 [8], fastTextR version 0.0.2 [48], sentimentr
version 2.9.0 [46], cleanNLP version 3.0.3 [1] and RSen-
timent version 2.2.2 [6]. The benchmarks were performed
on a Windows 10 × 86-64 Machine with Intel(R) Core(TM)
i7-7700 CPU 3.60 GHz. R itself and all packages used
are available from the Comprehensive R Archive Network
(CRAN) at https://CRAN.R-project.org/.
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