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ABSTRACT This paper presents a novel control strategy for pumps in storage tanks that accounts for
fluctuations in energy prices. Storage tanks are commonly used in industrial and commercial applications
to store and transport large quantities of liquids or gases. The energy consumed by pumping systems can
contribute up to 20% of the total electricity usage in industrialized countries. Recent spikes in energy
prices have had a detrimental impact on industries reliant on pumping systems, but the growing adoption
of renewable energy sources presents new opportunities for energy demand response strategies to balance
supply and demand. This study proposes a control strategy that incorporates energy price fluctuations, liquid
level, input flow rate, and storm forecasting as input variables. The controller adjusts the pumpflow rate every
five minutes based on all four inputs. Additionally, this study highlights the environmental advantages of
shifting energy usage to maximize renewable energy consumption. The simulation results on a sewer system
model demonstrate a 40% reduction in wastewater volume overflow and a 15.5% reduction in energy costs
compared to the results of traditional control strategies.

INDEX TERMS Fuzzy control, pumps, storage tanks, sewer system, energy price.

LIST OF SYMBOLS
h Wastewater level in storage tank.
Ast Area of storage tank.
Vst Volume of storage tank.
Qin,st Input flow rate.
Qout,st Output flow rate.
Qovf ,st Overflow rate.
Cst Constant for weir overflow.
Lweir Length of the weir.
hovf ,st Height of the overflow weir.
Pm Motor power.
ρ Fluid density.
g Standard acceleration of gravity.
ψ Energy head added to the flow.
η Efficiency of the pump.

The associate editor coordinating the review of this manuscript and

approving it for publication was Xiaojie Su .

1EP Difference between the current energy price and
the mean value for the corresponding day.

kp Proportional gain.
ki Integral gain.

I. INTRODUCTION
Pumping systems and storage tanks play a vital role in vari-
ous industrial and commercial operations. Storage tanks are
commonly coupled with pumping systems to store and move
large volumes of liquids or gases to different locations for
use or further processing. Centrifugal pumps are prevalent in
these systems [1], and they are commonly used to temporarily
store (buffering) materials such as water, wastewater, fuel,
pharmaceuticals, oil, gas, and mineral sludge. These material
transfer operations require a substantial amount of electrical
energy. Kaya et al. [2] estimated that the demand for energy
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in pumping systems can account for up to 20% of the total
electrical power consumed in industrialized nations.

In recent years, the sudden and substantial spike in energy
prices has had a negative impact on many industrial sec-
tors, including those highly dependent on pumping systems.
According to the International Monetary Fund (IMF) in [3],
the average cost of wholesale electricity in Europe surged by
over four times its original value, rising from an average of
e35 per megawatt-hour (MWh) in 2020 to approximately
e250 per MWh by the end of 2021. This was before the
conflict in Ukraine, which further escalated prices, pushing
the average wholesale price of electricity to above e500 per
MWh in March 2022.

The increasing adoption of renewable energy sources, such
as solar andwind power, has the potential to decrease electric-
ity prices in the long term. Still, it also leads to fluctuations
in electricity prices throughout the day. This is because the
output of renewable energy sources is dependent on weather
and seasonal conditions, which can result in variations in
supply. For example, solar power output is highest during
peak sunlight hours, and wind power output is highest dur-
ing periods of high wind. This dynamic causes wholesale
electricity prices to tend to be lower during periods of high
renewable energy output and higher during periods of low
output. This creates a dynamic pricing system known as time-
of-use pricing, where electricity costs vary depending on the
time of day and the demand [4]. While the energy price
fluctuation can be challenging for consumers and businesses
that require a consistent energy supply, it also presents new
opportunities for energy storage and demand response strate-
gies that can help to balance supply and demand.

Storage tanks do not typically require a fixed output flow
rate. They are designed to store a large volume of liquids or
gases and release them as needed without a fixed output flow
rate. Usually, the only requirements are not to overflow and
not to let the tank become totally empty. Thus, the material
flow rate is adjusted based on the process’s specific needs,
which allows for flexibility in the system’s operation. This
characteristic is attractive when it comes to energy price
fluctuations: filling and emptying the tank are actions that
can be shifted or anticipated depending on how cheap or
expensive the energy is at that moment of the day. Automation
systems and integration tools enabled by Industry 4.0 can be
employed to reduce energy costs in pump storage operations.

The most common type of automatic control for storage
tanks follows this simple algorithm: if the water level exceeds
an assigned value, the pump turns on; conversely, when the
water surface decreases below a minimum value, the pump
turns off. In contrast to established methods, this paper pro-
poses a new control strategy for pumps in storage tanks that
also considers energy price fluctuation. The study is based
on a realistic sewer system model [5], where the pumps are
the main energy consumer and their cost is important for
the overall budget of this kind of business [6]. This problem
is challenging since there is a conflict between shifting the
utilization of pumps and not allowing overflow pollutants

into the environment. Therefore, two sensors for continuous
variables are used in the process and are taken as controller
inputs: the level of wastewater in the tank and the tank inflow
rate. In addition, two external data sources are included as
inputs: weather forecasts and day-ahead energy prices. The
controller changes the pump velocity every five minutes
based on all four types of input information.

Our proposal differs from other control approaches in
that it incorporates the following contributions in an inte-
grated manner: (i) the energy price is actually included as
a member function of a fuzzy controller; (ii) there are no
fixed values that define a cheap or expensive energy price,
and this is instead defined according to the mean price
of the current day; (iii) we consider the application of a
variable-frequency drive (VFD) to manipulate the pump flow
rate; and (iv) control loop integration with IT systems in
line with Industry 4.0 practices is used to obtain weather
forecasts and day-ahead energy prices. Finally, this study also
highlights the advantages from an environmental perspective
of shifting the use of energy, maximizing the amount of time
during which renewable sources produce most of the energy.

II. MOTIVATION
Postponing an eventual increase in the pump flow rate to
avoid expensive energy tariffs is economically and environ-
mentally advantageous. The cost of electricity is the dominant
proportion of the total lifecycle costs of a wastewater pump-
ing system, accounting for 34% [7]. Additionally, according
to the IPCC report in [8], the generation of electricity and
heat accounted for 25% of global greenhouse gas emissions.
In addition, assuming there is available capacity in the storage
tank, there is no negative impact of temporarily accumulating
some wastewater and releasing it at a more reasonable time.

Figure 1 illustrates a typical curve of the amount of electri-
cal energy generation according to the source type and the
respective energy prices during one day in Germany. The
energy price changes hourly, and there is a great difference
between the minimum and maximum prices on the same
day. In the sample day illustrated in Figure 1, the maximum
value is 500 EUR/MWh at 8 a.m., and the minimum is 147
EUR/MWh at 2 p.m. The two peaks in the maximum price
also occur when nonrenewable energy generation types are
at their total capacity. In contrast, the minimum price occurs
when renewable energy production reaches its maximum
generation capacity. Thus, following the lowest energy prices
indirectly contributes to a higher percentage of renewable
energy consumed. The more renewable energy is produced,
the lower the energy prices tend to be.

Due to factors such as government subsidies and fluctua-
tions in commodity prices, renewable energy sources may not
always result in lower prices. Nevertheless, various policies
and strategies such as carbon emissions pricing, fossil fuel
taxation, strict emission standards, and the discontinuation
of fossil fuel subsidies have the potential to significantly
increase the cost of nonrenewable energy sources, as empha-
sized in previous research [9].
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FIGURE 1. The electricity energy production in Germany on 05.10.2022.
The total generation according to the production type (top) and the
hourly energy price (bottom). Data extracted from ENTSO-E .

III. RELATED WORKS
In this section, we review papers that share two key features
in their controller or support decision system: (i) the incor-
poration of energy tariffs into the computation of storage
tank decisions; and (ii) the manipulation of pump equipment.
While we do not impose any application site restrictions,
we find that the relevant contributions are limited to water
distribution networks and sewer systems. Furthermore, our
analysis reveals that the majority of works focused on imple-
mentation methods fall under the control system and opti-
mization domains.

In [6], a fuzzy controller was introduced to regulate the
number of pumps running in a sewer station, accounting
for tariff costs that were categorized into three groups: low-
cost, normal, and high-cost. To handle these groups, a fuzzy
inference system (FIS) was developed for each. The con-
troller chooses the appropriate FIS according to the tariff
group on any given day. This strategy was tested through
a 24-hour simulation under dry weather conditions, and the
results indicated up to 4.3% energy cost savings. A similar
approach was presented in [10] and [11], where a rule-based
controller was proposed to determine when to switch pumps

on and off in a sewer system. The controller was evaluated
through a simulation model of a sewer network in Australia,
taking into account liquid level and energy market prices.
The tariff prices were limited to three groups and fixed for
the entire simulation period, and both dry and rainy weather
conditions were considered. An energy cost reduction was
achieved by increasing the frequency of pump switching,
which may impact the equipment’s lifespan.

In contrast to control systems approaches, other papers
have addressed the use of pumps in storage tanks as opti-
mization problems. An optimization method for the time
scheduling of pumps in a water distribution network is intro-
duced by [12]. The energy consumption cost was considered,
but only two different tariffs were assumed per day (peak and
off-peak). An elegant optimization problem was proposed
in [13] to reduce energy costs in a water distribution sys-
tem (WDS). The cost function was formulated to minimize
the water procurement cost and maximize the profit of pro-
viding the services. The problem was solved in two steps
via a mixed-integer linear programming (MILP) model. The
results showed a financial reduction of WDS operation of up
to 11.5%. The authors also showed that structural changes
on the numbers of tanks and pumps could improve the profit
energy gains. As a restriction for regular implementation,
the method requires precise forecasts of water demand and
electricity prices.

To date, we have found no reports in the scientific literature
proposing a controller or support system that simultaneously
considers the minimization of energy costs, avoidance of
overflows, and use of variable-speed drives (VSDs). Further-
more, we have found no evaluations of such methods for
long-term situations, such as seasonal changes in weather
and energy prices. Given the practical importance of these
considerations, the present work aims to fill this gap in the
literature.

IV. THE SEWER STORAGE MODEL
A sewer network is a complex system that comprises various
components, such as pipes, pumps, and storage tanks. These
components work together to ensure the safe and effective
disposal of wastewater and waste products from residential,
industrial, and other structures to treatment facilities. The
pumps play a critical role in the operation of a sewer system,
as they are responsible for moving wastewater through the
pipes. The storage tanks, on the other hand, serve as tempo-
rary storage reservoirs for wastewater and sewage before it is
transported to the treatment facility.

In this study, we used the benchmark model of a sewer
system integrated with a wastewater treatment plant in [5],
[14], and [15]. Although the model is complete, we only use
part of the implemented sewer system, namely, one catchment
area and the associated storage tank. The process model was
originally coded in Simulink, and it is available to download
at github.com/wwtmodels. The next subsections describe the
model subparts of interest for this study.
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A. CATCHMENT AREA AND INFLOW RATE
In the context of sewer networks, the term ‘‘catchment area’’
describes the geographical region that contributes wastewater
to a specific segment of the sewer system, typically delineated
by the boundaries of the drainage basin or sewershed. In
the simulated model utilized in this study, the catchment
block generates the wastewater flow rate that feeds the reser-
voir tank. During dry weather conditions, the sewage flow
rate exhibits changes in response to various diurnal, weekly,
and seasonal factors. Conversely, during rainfall events, the
stormwater flow rate is added to the sewage flow rate. The
data analyzed in this paper span a one-year period and
are depicted in Figure 2. This figure also gives a detailed
representation of selected dry weather days, highlighting a
substantial disparity in flow rate amplitude between dry and
stormy days. The flow rate value is updated at five-minute
intervals, with no control mechanism in place. Consequently,
from a control standpoint, the input flow rate represents a
measured disturbance.

FIGURE 2. Input flow rate for the storage tank in a one-year simulation.
The highlighted area shows two regular days with dry weather.

The model utilized in this study also accounts for vari-
ations in the levels of different pollutants present in the
wastewater flow. These pollutants include suspended solids,
ammonium nitrogen, and total phosphorus. The simulation
takes into account the original model’s values for these pol-
lutants; however, none of these parameters serve as inputs
for any controller. As a result, reducing these pollutants
in the environment is a consequence of overflow reduc-
tion and not a specific control strategy aimed at mitigating
them.

B. THE STORAGE TANK
The function of storage tanks in fluid management is to
mitigate flow rate variations by serving as a buffer between
the input and output streams. Through the storage of excess
fluid during periods of production that exceed demand and
the release of fluid when demand exceeds production, storage
tanks contribute to the maintenance of a consistent and steady
supply of fluid. This helps to ensure system stability and
minimize disruptions. In the investigated model, the output
flow rate (Qout,st ) is controlled by a pump, while the input
flow rate remains uncontrolled. Furthermore, in situations
where the fluid level in the tank reaches the height of the weir,
wastewater overflows (Qovf ,st ) into the river. Therefore, the
variation in wastewater level in the storage tank with respect
to time is described by the following equation:

dhst
dt
=

1
Ast

(
Qin,st − Qout,st − Qovf ,st

)
, (1)

where Ast denotes the fixed area of the storage tank.
In this study, pass-through tanks are considered, where the

overflow weir is located at the end of the storage tank, mean-
ing that all inflow passes through the tank before reaching the
outlet or overflowing into the river. The overflow rate is given
by:

Qovf ,st =

{
Cst · Lweir ·

(
h− hovf ,st

)3/2
, if h ≥ hovf ,st

0, otherwise,

(2)

whereCst is a constant for weir overflow [
√
m/d], Lweir is the

length of the weir [m], h is the water level in the tank [m], and
hovf ,st is the height of the overflow weir measured from the
bottom of the tank [m]. Table 1 presents the main parameters
for the storage tank model.

TABLE 1. Main parameters for the storage tank model.

C. PUMP AND ITS ENERGY CONSUMPTION
For the purposes of this study, we adopt a simplified pump
model in which the required flow rate is immediately set by
the pump. This assumption is held constant across all con-
troller methods tested, with no variation in pump efficiency.
Our objective is not to enhance the equipment’s performance,
but rather to optimize its utilization in an intelligent manner,
thereby taking advantage of opportunities for obtaining low-
cost energy. The total motor power required by the pumps is
represented by the following equation:

Pm =
Q
24
·

ρ · g · ψ
36000000 · η

, (3)
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where Pm represents the motor power [kW], Q is the flow
rate in [m3/d], ρ is the fluid density [kg/m3], g is the standard
acceleration of gravity [m/s2], ψ is the energy head added to
the flow, and η is the efficiency of the pump plant as a decimal
value. The parameter values utilized in our study are detailed
in Table 2.

TABLE 2. Required shaft power for the pump system.

D. THE ENERGY PRICE
The energy price data for this study were collected from
the European Network of Transmission System Operators
for Electricity (ENTSO-E). The data represent energy prices
in Germany for the year 2022 in the day-ahead trading
market. The price varies every hour. Furthermore, we ana-
lyzed the source type of the electrical energy with the
ENTSO-E dataset, and the types were classified as renewable
or nonrenewable.

The total cost of energy in the simulation was calculated
using this set of prices for all control strategies evaluated. In
particular, the proposed method utilized this set of data as an
input for the fuzzy controller. However, instead of feeding
the controller the raw price value, the difference between the
current price and the mean value for the corresponding day
(1EP) was used. This approach facilitates the definition of
the membership function for the fuzzy controller, as it keeps
the limits of the membership function constant and eliminates
the need for regular manual maintenance of the controller or
any complex method to adapt the controller to seasonal price
variations. Figure 3 shows the raw energy price value and the
corresponding 1EP.

V. THE EVALUATED CONTROL STRATEGIES
Three different control strategies for the storage tank system
are presented in this section. The first is the most common
approach, which is to switch the status of the pump between
on and off according to the liquid level in the tank. The sec-
ond, a proportional-integral (PI) controller, keeps the level of
the tank at a set point by manipulating the outflow. The third
corresponds to our proposal, in which a fuzzy controller is
designed to prevent tank overflow andminimize the operation
cost of the pumping system. In this context, only our proposal
takes advantage of the day-ahead energy prices.

A. ON-OFF CONTROLLER
The on-off control strategy is a widely used method for the
regulation of sewer storage tank networks. This approach
entails controlling the pump operation in an all-or-nothing

FIGURE 3. The raw energy price (left) and the corresponding difference
between the energy price and the average of the day (right).

manner based on the level of wastewater present in the storage
tank. The implementation of this strategy does not necessitate
the use of a variable-speed drive, and it can be imple-
mented through simple ladder logic programming. Despite
its simplicity, the frequent switching of pumps can result in
increased wear and tear, leading to increased maintenance
costs, as reported in [16]. Figure 4 presents a control diagram
for the on-off strategy.

FIGURE 4. Closed control loop for a storage tank with a on-off controller.

Algorithm 1 illustrates a typical sequence of actions for
on-off control. The algorithm takes as input a setpoint value,
deadband value, and liquid level measurement, and it out-
puts a pump state that controls the pump’s output flow. The
algorithmworks by continuouslymeasuring the current liquid
level and calculating a control signal based on the difference
between the current liquid level and the setpoint value. If the
current liquid level falls below the setpoint value minus the

VOLUME 11, 2023 93705



T. A. M. Euzébio et al.: Energy Price as an Input to Fuzzy Wastewater Level Control

deadband, the control signal turns the pump off. If the current
liquid level exceeds the setpoint value plus the deadband, the
control signal turns the pump on. The pump state is then
updated based on the control signal, and the pump output
flow is controlled accordingly. By using this algorithm, the
liquid level in the tank can be effectively maintained within a
desired range, while also controlling the pump’s output flow
to optimize system performance.

Algorithm 1 On-off Control of the Liquid Level in a
Tank, With a Pump Controlling the Output Flow Rate
Data: Setpoint: SP, Deadband: DB, Liquid level

measurement: LL
Result: Pump state: PS (0 = off, 1 = on)
begin

Initialize PS = 0
repeat

Measure the current liquid level:
LL = measure_liquid_level()
Calculate the control signal: CS = 0 (off) or 1
(on)
if LL < SP− DB then

CS = 0
else if LL > SP+ DB then

CS = 1
Update the pump state: PS = CS
Control the pump: control_pump(PS)

until
end

In an on-off control system, the deadband is important
because it defines a range around the setpoint where no action
is taken. This helps to prevent rapid switching of the control
signal when the measured variable (in this case, the liquid
level in the tank) is near the setpoint. Without a deadband,
the control signal could rapidly switch between on and off
states as the measured variable fluctuates around the setpoint,
leading to unstable system behavior and increased wear and
tear on the control equipment.

In addition, it is important to note that two pumps are
usually used in the storage tank: the duty pump and assistant
pump. The first is used more frequently, and the second is
turned on to support the duty pump in reducing a prohibitively
high liquid level. In this case, two instances of Algorithm 1
run in parallel. The duty pump requires a low-level setpoint
and the assistant pump a high-level setpoint. Normally, the
deadband for the assistant pump is also greater than the one
chosen for the duty pump. Table 3 presents the values for the
set point and deadband for the duty and assistant pumps in
the simulation.

B. PI CONTROLLER
Figure 5 illustrates the control diagram of a PI controller for
the wastewater level in a storage tank. The PI controller is
the most often used algorithm in the regulatory automation

TABLE 3. On-off controller parameter values for the simulation.

layers of industrial control systems due to its simplicity and
effectiveness in regulating process variables [17]. It works by
continuously measuring the process variable, comparing it to
the desired setpoint, and using the error signal to calculate
the appropriate control action to bring the process variable
back to the setpoint. The proportional term of the PI controller
provides an immediate response to changes in the process
variable, while the integral term ensures that any steady-state
error is eliminated over time. The PI controller considered in
this paper is formulated with a Laplace transform:

C(s) = kp +
ki
s
, (4)

where kp and ki are the proportional and integral gains,
respectively.

FIGURE 5. Closed control loop for a storage tank with a PI controller and
a safeguard system.

The safety interlock block is a control algorithm that helps
to ensure safe operation of a pump system by limiting the
pump flow rate in response to the liquid level in a tank.
The algorithm restricts the pump flow rate in response to the
liquid level in the tank, which is measured and transmitted
as an input signal to the algorithm along with the desired
pump flow rate computed by the PI controller. Based on these
inputs, the algorithm produces an output signal representing
the required pump flow rate. The algorithm includes two
limits - a minimum- and a maximum-level value - to ensure
the safe and efficient operation of the system. If the level
falls below the minimum value, the algorithm sets the pump
flow rate to zero to prevent damage to the system. If the
level rises above the maximum value, the algorithm sets the
pump flow rate to the maximum to prevent tank overflow. If
the level falls within the limits, the algorithm sets the pump
flow rate to the desired value. A repeat-until loop structure is
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implemented to continuously run the algorithm, allowing it to
constantly monitor the liquid level and adjust the pump flow
rate as required. By implementing the safety interlock block,
the pump system can be operated with increased safety and
efficiency, reducing the risk of accidents or system damage.

Algorithm 2 Continuous Safety Interlock Block
Data: minimumLevel, maximumLevel,

maximumPumpFlowRate
Input: desiredPumpFlowRate
Output: requiredPumpFlowRate
repeat

read level;
if level < minimumLevel then

requiredPumpFlowRate← 0;
else

if level > maximumLevel then
requiredPumpFlowRate←
maximumPumpFlowRate;

else
requiredPumpFlowRate←
desiredPumpFlowRate;

end
end
write requiredPumpFlowRate;

until false;

The PI and safety interlock parameters designed for this
strategy are shown in Tables 4 and 5, respectively. The limits
for safety were chosen based on the tank dimensions and
assuming that the level set point would be fixed at one meter.
Moreover, the gains of the PI controller were computed using
the tuning method in [18], which guarantees a smooth control
action in a trade-off between robustness and performance.

TABLE 4. PI controller parameters.

TABLE 5. Safety interlock block parameters.

C. FUZZY CONTROLLER
The proposed control method considers not only the level in
the tank but also the input flow rate and two other external
data signals: energy prices and storm forecasts. However, the
dynamics of these different signals are not only nonlinear

but also difficult to describe using a mathematical model.
Consequently, we use a fuzzy logic approach to develop a
control strategy that can effectively integrate the different data
sources and provide appropriate control signals to the system.
By utilizing fuzzy logic, we can account for the imprecise and
uncertain nature of the input signals and generate suitable
control actions based on the knowledge of an expert in the
field. Our approach offers a robust and flexible framework
for managing water levels in tanks that can be adapted to a
wide range of practical applications.

As depicted in Figure 6, the process diagram shows the
integration of a fuzzy controller in the advanced control layer
and a PI controller in the regulatory control layer. The fuzzy
controller is responsible for managing two process variables:
the current input flow rate at the tank and the energy price
for the upcoming hours of the day. Based on these input
signals, the fuzzy controller determines the optimal set point
level that the regulatory controller proposed in the previous
subsection should aim at. By combining these two control
loops, we aim to achieve maximum system efficiency, result-
ing in safe and energy-efficient operations. However, in the
event of a storm forecast, a low fixed value is used as the
level set point to prevent overflow. The design details of this
controller are discussed in the following subsections.

1) FUZZY INFERENCE SYSTEM
A fuzzy inference system (FIS) is an artificial intelligence
system that uses fuzzy logic to make decisions based on
uncertain or imprecise information by converting inputs into
fuzzy sets, applying fuzzy rules, and generating a fuzzy
output that is then converted into a crisp output. Here, the
Mamdani inference method [19] is used in the developed
fuzzy inference system. Table 6 presents the selected input
and output variables of this fuzzy inference system.

TABLE 6. Variables of the fuzzy inference system.

2) MEMBERSHIP FUNCTIONS
The membership function is a crucial component in a fuzzy
inference system, as it maps an observed input space to fuzzy
sets in a universe of discourse, allowing for the representation
and manipulation of uncertainty and imprecision. To define
membership functions, critical values are identified for each
variable, and suitable curves must be established according
to these values. For instance, to define membership functions
for the fuzzy inference variables presented in Table 6, critical
values of very low, low, normal, high, and very high are
identified. Due to the coupling between the variables, trape-
zoidal membership functions are commonly used, as they
can provide more flexibility in representing complex and
uncertain relationships between variables. Figures 7 and 8
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FIGURE 6. Proposed controller diagram. The yellow boxes represent the process, the blue boxes are the controller components, and the green
boxes are the external data.

illustrate the membership functions for the two inputs. The
universe of discourse of the inputs for the fuzzy controller is
described as follows.
• Input Flow Rate: The universe of discourse ranges
from 0 to 160000 m3/d, which is the range of historic
inflow to the studied tank. As shown in Figure 7, there
are five fuzzy sets for this variable. The very-low, low
and medium sets cover the daily flow rate fluctuations
caused by domestic behavior and weak rains. The sets
high and very-high were defined to cover extreme events
caused by storms or heavy rainfall. Since lower flow
rates aremore common during the year, a greater number
of sets were reserved for the range 0 to 40000 m3/d.

• 1EP: The universe of discourse ranges from
-300 to 300 e/MWh. These extremum values were
defined based on historical data. According to Figure 8,
three sets are defined: cheap, average, and expensive.
The cheap set represents prices at which it is viable to
use the pump, while the expensive set represents prices
at which it is preferable to avoid energy consumption.
The average set, which ranges from -20 to 20 e/MWh,
represents differences from the daily average price that
are considered small enough to be considered neutral.
It should be noted that the universe of discourse for
the 1EP membership function is not based on the raw
energy price but on the difference between the current
price and the daily average price.

The defuzzification interface is responsible for convert-
ing the results of the fuzzy inference process into nonfuzzy
control actions that can be used by the actual control sys-
tem. The goal is to obtain a real number that represents the
appropriate control action for the system. The membership
function for the output variable is illustrated in Figure 9, and
the output variables of the fuzzy controller are obtained using

FIGURE 7. Membership function for the first fuzzy input: input flow rate.

the centroid (or center of area) defuzzification method. The
universe of discourse for the output membership function is
divided into five fuzzy sets, ranging from 0 to 4.5m, which
represent different levels of the system variable. It should be
noted that the limits of safe operation are not considered in
the fuzzy system but in the interlock system, as the authors
preferred to decouple efficiency aspects from safety require-
ments. Furthermore, the level set point, which is a reference
for the level process variable, takes several minutes to reach
zero error (set point equal to the actual tank level), depending
on the system dynamics.

3) THE FUZZY RULES
Fuzzy rules are a way to capture expert knowledge about
how to combine input variables in order to produce output
variables. Each fuzzy rule consists of an antecedent (the ‘‘if’’
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FIGURE 8. Membership function for the second fuzzy input: 1EP .

FIGURE 9. Membership function for the unique fuzzy output: level set
point.

portion) and a consequent (the ‘‘then’’ portion) connected by
the fuzzy operator ‘‘and.’’ The antecedent specifies the input
conditions in terms of fuzzy sets, while the consequent spec-
ifies the output action in terms of a fuzzy set. For example,
the rules presented in this system have the form: IF the input
variable n is characterized by {very-low, low, normal, high,
very-high} AND the input variable m is characterized by
{cheap, average, expensive}, THEN the output variable z is
characterized by {very-low, low, medium, high, very-high}.
The rules are evaluated using a T-norm operator, which in
this case is the minimum operator. Figure 10 illustrates the
15 rules developed for this controller.

The rules depicted in Figure 10 demonstrate a direct rela-
tionship between the energy price and inflow rate on the
one hand and the level set point for wastewater in the tank
on the other. Specifically, as the energy price decreases and
the inflow rate decreases, the level set point for the tank
correspondingly decreases. Conversely, as the energy price
increases and the inflow rate increases, the level set point
proportionally increases. The overarching objective of these

FIGURE 10. Fuzzy controller rules.

rules is to utilize the tank as a buffer, with a view to mini-
mizing the usage of the pump during periods of unfavorable
economic conditions. As such, the tank temporarily stores
wastewater until the energy prices decrease, at which point
the wastewater can be released.

4) THE STORM SWITCH
Referring to Figure 6, there is a switch between the output
of the fuzzy controller and the set point of the regulatory
controller. This switch is subject to storm predictions. In
instances where there are no storms predicted, which is typi-
cally the case for most of the year, the level set point receives
its value from the fuzzy controller output. However, when a
storm is predicted to occur the next day, the level set point
is fixed at 0.3m. This value represents the minimum level
required to empty the tank in anticipation of the heavy rain to
follow. This state is maintained for a period of two days, after
which the switch returns to the fuzzy controller. In addition,
it is worth noting that in this context, a storm is defined as
heavy rain that can produce an average input flow rate of
80000m3/d.

VI. RESULTS AND DISCUSSION
Table 7 presents the outcomes of a one-year simulation for
each of the control strategies. The findings indicate that
the proposed method outperforms the other two methods in
terms of overflow frequency, duration, and volume. Notably,
the fuzzy approach effectively prevented nearly 1000 m3 of
wastewater from overflowing when compared to the on-off
approach. This success can be attributed to the storm predic-
tion module that enables the system to initiate the emptying
of the storage tank one day in advance, thus enhancing the
method’s efficacy. Minimizing overflow is crucial as tank
volume is a cost issue - if we can minimize the overflow by a
new control system, we reduce the requirement of expanding
the volume capacity of the tanks.

In terms of the overflow quality index, both the PI and
fuzzy strategies resulted in significant reductions. However,
the PI controller demonstrated an advantage over the fuzzy
controller, as the moments when the PI controller allowed for
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overflow were generally different and coincidentally resulted
in higher-quality content within the tank. It is important to
note that none of the three methods take into account the
quality index in their decision-making processes.

Table 7 also illustrates a minor difference in the energy
consumption among the three approaches. This result is
anticipated, as the mass transfer among the three scenar-
ios is similar, leading to nearly equivalent pumping efforts.
However, the fuzzy controller results in a more economical
outcome, with a 15.5% reduction in energy cost, equivalent
to savings of over e65000, compared to the baseline. Com-
paring the PI and on-off approaches, it can be concluded
that the introduction of the variable-speed drive alone did not
have a significant impact on reducing energy costs. Further-
more, the energy consumed by the pumps in the proposed
strategy was predominantly derived from renewable sources,
which supports the adoption of an approach that prioritizes
environmentally beneficial practices while also minimizing
expenses.

To gain a better understanding of the performance of the
proposed method, we selected four days (days 6, 7, 8, and
9) of the simulation to compare the results of the PI and
fuzzy approaches. During this period, the set point was exclu-
sively determined by the fuzzy controller; that is, the storm
predictor and the safety interlocks were not triggered at any
time. Figure 11 depicts the level and pump flow rate for the
fuzzy approach (blue line) and the PI approach (red line),
as well as the inflow and energy price (black curves), which
remained the same for all simulated scenarios. On average,
the controller changed the set point only four times per day,
which provided adequate time for the system to respond. It
was expected that the measured level would deviate from the
set point, as the purpose of the controller was to adjust the
fullness or emptiness of the tank in response to the energy
price and input flow rate rather than maintain strict adherence
to the set point.

From day six to the end of day seven, we observed a
trend of maintaining a high level in the tank (accumulating
material) during a period of high energy prices. As soon as
the energy prices fell, from the end of day seven to the middle
of day eight, the control system began to empty the tank to
take advantage of the lower cost. This was despite the fact
that the average inflow rate was relatively low and no storms
or consistent rains were detected. On day 9, a heavy rain
event occurred but did not trigger the storm prediction in the
proposed controller. Prior to the rain, the inflow rate was low
and energy prices were low, leading the controller to empty
the tank. The inflow rate increased rapidly as energy prices
also increased, at which point the proposed method held
material in the tank and only released it once energy prices
returned to a low level at the end of day nine. In contrast,
the fixed set point approach utilized high flow rates during
the most expensive energy prices of the day. This pattern was
repeated throughout much of the year, leading to a noticeable
difference in energy costs between the two control methods.

FIGURE 11. Four illustrative days to show the difference between the PI
strategy (red line) and the proposed strategy (blue line).The dashed lines
are the level set points for each strategy. The inflow and energy price are
the same for both strategies evaluated.

Figures 12 and 13 present a heat map depiction of the
energy price (1EP) and pump flow rate. The total energy
expenditure increases with increases in both the flow rate
and energy price. The flow rate of the PI controller is pri-
marily concentrated below 10000 m3/day, and 1EP varies
from -200 to 200, which is expected since the PI controller
does not consider the energy price. In contrast, the proposed
controller achieves a concentration of pump flow rates close
to zero while efficiently employing higher flow rates when
necessary, resulting in a higher frequency of maximum flow
rate values and contributing to the reduction of overflow.
Furthermore, the proposed approach imposes higher flow
rates when the energy prices are lower (1EP< 0). The range
of flow rates for the proposed method is wider than that of
the other approaches, as the tank is emptied and filled based
on energy prices, necessitating high flow rates to compensate
the moments when the flow rate was zero.

93710 VOLUME 11, 2023



T. A. M. Euzébio et al.: Energy Price as an Input to Fuzzy Wastewater Level Control

TABLE 7. Main results from the 364-day simulation comparing the control strategies. The on-off strategy is the baseline.

FIGURE 12. 2D heatmap representation of the pump flow rate and energy
price difference (1EP), where lighter colors indicate higher frequencies.
PID strategy.

FIGURE 13. 2D heatmap representation of the pump flow rate and energy
price difference (1EP), where lighter colors indicate higher frequencies.
Proposed strategy.

The proposed strategy adjusts the level set point based
on the available capacity of the tank, safety considerations,
and the energy price. Figure 14 demonstrates that for the
majority of the simulation time, the level set point was deter-
mined by the fuzzy controller block. During only 9% of the
year, the operating mode was switched to prevent overflows

caused by storms. The duration of operation in the safety
mode was insignificant.

FIGURE 14. The percentage of time during which each block of the
proposed controller defines the level set point.

VII. CONCLUSION
In conclusion, the proposed fuzzy control approach pro-
vides superior performance in terms of overflow prevention
and energy cost reduction compared to the on-off and PI
approaches. The implementation of the storm prediction
module enables the system to initiate the emptying of the
storage tank one day in advance, which significantly reduces
the frequency, duration, and volume of overflow. The fuzzy
controller’s ability to adjust the set point in response to energy
prices and input flow rates results in a more economical
outcome, with a 15.5% reduction in energy cost compared
to the baseline. Overall, the proposed fuzzy control approach
is a promising solution for wastewater overflow prevention in
urban areas.

For future work, the efficacy of the new strategy will be
verified in a sewer network with storage tanks. Additionally,
a learning control algorithm will be introduced to optimize
the controller parameters, further enhancing efficiency.
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