IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 6 August 2023, accepted 24 August 2023, date of publication 31 August 2023, date of current version 18 September 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3310887

== RESEARCH ARTICLE

Data-Driven MPC for a Fog-Cloud Platform With
Al-Inferencing in Mobile-Robotics

DINSHA VINOD !, DURGESH SINGH“2, AND P. S. SAIKRISHNA!

!Department of Electrical Engineering, Indian Institute of Technology Tirupati, Tirupati 517619, India
2Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai 600036, India

Corresponding author: Dinsha Vinod (ee18d501 @iittp.ac.in)
This work was supported by the Science and Engineering Research Board (SERB) under Project SERB/F/8288/2020-21.

ABSTRACT One of the most appealing challenges, especially in mobile robotics, is the real-time inferencing
of the vision data offloaded from a mobile robot for its enhanced navigation performance. Leveraging the
benefits of an on-premise and an integrated fog-cloud computing platform for processing vision data is
a viable solution. This paper addresses the mentioned challenge via a data-driven control approach for the
development of an autonomic fog-cloud computing platform suitable for processing the offloaded vision data
within a prescribed time bound called the service time. The approach comprises developing a data-driven
linear parameter varying (LPV) framework for modeling and design of a model predictive controller (MPC)
for the fog and the cloud platforms independently. A heuristic algorithm performs the distribution of the
mobile robot vision data (MRVD) between the fog and the cloud platforms. The LPV model for the fog and
the cloud platforms are developed by characterizing the MRVD as the variable frame rate and resolution
of the objects (under active consideration in a given frame) acquired during navigation. We validate the
developed theory for a mobile robot while navigating in the application environment such as the warehouse.
The experimental results presented for object detection under service time bounds show the efficacy of the

proposed approach.

INDEX TERMS Fog and cloud computing, model predictive control, robot vision, system identification.

I. INTRODUCTION

Autonomous mobile robotics is a rapidly expanding field
of research owing to its prominent applications in diverse
areas such as autonomous vehicles, personal assistance,
space exploration, healthcare, security, and defense [1].
Autonomous mobile robots (AMR) can work in unpredictable
environments with no operator assistance with human-like
intelligence and ingenuity for independent decision-making.
The onboard perception sensors of an AMR are used to enable
its core functions such as localization and path planning by
visualizing and analyzing the external environment.

The vision system of an AMR implements image pro-
cessing and computer vision algorithms to emulate human
vision [2]. In general, the sequence of image frames received
from the vision system is subjected to image pre-processing
steps like image restoration and image enhancement to

The associate editor coordinating the review of this manuscript and

approving it for publication was Dong Shen

remove the environmental effects such as noise, haze, and
blur. The post-processing steps involve computer vision algo-
rithms as a series of measures such as object detection, texture
removal, and edge detection [3].

Traditional computer vision and image processing tech-
niques are computationally intensive and therefore may not
be feasible to execute them on distributed computing plat-
forms [4]. Therefore, it is not possible to scale computing
nodes on such systems to improve service time. Recent
advances in deep learning and machine learning have shown
that complex tasks can be performed efficiently and seam-
lessly on fog and cloud platforms. Deep learning frameworks
like Tensorflow, Microsoft Cognitive Toolkit, Caffe2, Torch,
Keras, Apache MXNet, and Theano work well on a dis-
tributed computing platform [5], [6].

Object detection is a technique to locate and identify an
object in an image or video frame. This technique involves
pre-trained or custom models with train and test data sets
of images. The processing time required for object detection

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

VOLUME 11, 2023

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

99589

https://orcid.org/0000-0003-1542-6664
https://orcid.org/0000-0002-9658-2118
https://orcid.org/0000-0003-1063-1351

IEEE Access

D. Vinod et al.: Data-Driven MPC for a Fog-Cloud Platform

depends on image resolution and frame rate. Therefore,
we characterize the mobile robot vision data (MRVD) as the
variable frame rate and resolution of the objects (under active
consideration in a given frame). Drawing an inference from
MRVD is a computationally intensive and power-hungry
task that affects the mobile robot’s onboard battery life and
navigation performance. For this reason, we leverage an
on-premise distributed fog and cloud computing platform for
offloading MRVD.

An open source DL algorithm is used to extract informa-
tion from the MRVD for object detection in a warehouse.
However, the service time for the DL algorithm increases sig-
nificantly with a higher frame rate and high image resolution.
Therefore, it becomes necessary to harness the computing
power from a distributed fog and cloud platform.

We consider an on-premise fog-cloud platform for experi-
mentation in the presented work. We restate that the average
processing time required for object detection when MRVD
is processed over the fog or the cloud is referred to as ser-
vice time. By conducting preliminary experiments on the
distributed fog computing platform, we find that the service
time is well within the desirable limits until the scalable limit
on fog nodes is reached [7].

However, since the on-premise cloud platform offers
an alternative pool of computing resources on-demand,
we develop a scalable cloud platform in addition (to the
fog platform) to meet service time requirements. Such an
integration is referred to as the fog-cloud platform.

Since the fog-cloud platform is on-premise, the communi-
cation overheads are minimal and do not affect the navigation
and the auto-scaling control loop performance. Auto-scaling
compute nodes for a desirable service time bound is achieved
by adopting a control-theoretic approach. In this context,
firstly, a linear parameter varying (LPV) model is developed
independently for the fog and the cloud. For the LPV model,
we consider the number of computing nodes as the control
input, the service time as the output, and the characteristics
of MRVD as the time-varying parameter. Finally, we imple-
ment decentralized LPV-MPC controllers (fog and cloud) and
perform validation in the actual application environment. The
decentralized framework for control gives us the flexibility
to modulate the service time response under time-varying
MRVD by choosing a set of configurable MPC parameters.
For mobile robot navigation, we have implemented Extended
Kalman Filter (EKF) based SLAM [8] and the bug-based path
planning algorithm [9], which run on the on-board computer
of the mobile robot. The contributions of this paper are pre-
sented in Table 1.

The rest of the paper is organized as follows: Section II
describes the related work, whereas Section III outlines the
problem formulation. In Section IV, we detail the mobile
robot vision system. Section V describes the system iden-
tification approach for modeling of the fog and the cloud
platforms, whereas in Section VI, we present control design
and experimental validation for the proposed LPV-MPC con-
trollers in a simulated and realistic environment. Finally,

99590

TABLE 1. Contributions of the paper.

Contribution Technique Platform Remarks
Localization EKF based SLAM [8] onboard Implemented
Path Planning Bug-based [9] onboard Implemented
Obstacle avoidance Collision avoidance [10] onboard Implemented
Object Detection COCO-SSD mobilenet [11] | Fog-cloud | Implemented
Fog: modeling LPV local approach Fog Proposed
Cloud: modeling LPV global approach Cloud Proposed
Fog: Auto-scaling LPV based MPC Fog Proposed
Cloud: Auto-scaling LPV based MPC Cloud Proposed
Load balancing Heuristic algorithm Fog-cloud Proposed

we conclude the paper in Section VII. Additionally, we have
added more details on the modeling and navigation of mobile
robots in Appendix A.

Il. RELATED WORK

This section discusses the relevant research on control design
in distributed fog and cloud computing platforms, object
detection, and mobile robot navigation.

A. MOBILE ROBOT NAVIGATION

The mobile robot navigates in an application environment
to accomplish the task of object detection. Navigation com-
prises various tasks such as localization, path planning, and
obstacle avoidance. Numerous approaches present in the lit-
erature, such as EKF-based SLAM [8] and bug-based path
planning [9], have demonstrated promising outcomes in the
navigation of the mobile robot. The authors of [10] have
proposed an obstacle avoidance algorithm that ensures the
navigation of the mobile robot by avoiding obstacles in the
path. A survey of mobile robot navigation in indoor and
outdoor environments is conducted by the authors of [12].
Table 1 summarizes the navigation algorithms presented in
this paper.

B. OBJECT DETECTION

The literature has provided a wide range of object detection
algorithms that maintain a balance between accuracy, speed,
and memory [13]. You Only Look Once (YOLO), Single Shot
Multibox Detector (SSD), R-CNN (Regions with Convolu-
tional Neural Network), Faster-RCNN, [11], [14] are a few
of the significant object detection algorithms.

R-CNN and Faster RCNN are two-stage algorithms that
use image identification for region selection before subjecting
it to detection. In contrast, SSD and YOLO are one-stage
methods. Without defining the region of objects, the entire
image is submitted to detection, and the results are decoded
to provide the final bounding box across the objects. For this
reason, one-stage methods are faster than two-stage methods,
although this may result in some accuracy loss, specifically.
In this work, an SSD mobilenet model is used for object
detection [11].

C. CONTROL IN FOG-CLOUD PLATFORM
Mobile robots have limited battery life and on-board process-
ing power. Hence, a distributed computing platform is a good

VOLUME 11, 2023

D. Vinod et al.: Data-Driven MPC for a Fog-Cloud Platform

IEEE Access

Mobile Robot Navigation Control Loop
Positi = Patir Planning with |Target Point
s Position Update > ‘g =
¥ e Obstacle avoidance
Interoceptive Prediction of % ‘[‘ Matched
{43 . -
Sensors Peosition -~ Observations Motion Plan
I Predicted Position .~ \ Pail F‘H -
<Matching > L ,{ ail rotlowing
3 i Control
b 3 Map Database xtracted
% Exteroceptive Features :
E Sensors Control Signal
Ry -
TImage Files *Resolution i
Camera — Quantify MRVD *Frame Rate Fog Robotic Server
(Vision Application) El
Fog Platform %
Fog Nodes S— - a—
IS €
i kNod,
= mpPc
TensorFlow (TF) Implementation / oxls tord FaN. controller

Service Time,

Data Tuiage
Collection Annotation

Label Map
Preparation

TF Record
Generation

: " ..] Cloud Nodes
Testing Object le] Inference || Model Training S RVieed
Detection Graph Training Configuration |[* L ¥Nodes| ase
M1 VM2 PMN controller

FIGURE 1. Control scheme for mobile robot navigation with object detection.

choice for offloading computationally heavy workloads. The
use of fog and cloud platforms for different robotic appli-
cations to perform complicated computing tasks including
vision recognition, object detection, and voice recognition
has been investigated by a number of researchers. Further-
more, heuristic algorithms are used for scaling the computing
nodes. Table 2 presents a few of the well-known and recent
works.

We provide a control-theoretic approach for processing the
MRVD offloaded to the fog and cloud platforms, in contrast
to the previously described related work. According to the
control-theoretic formulation, a mathematical model of the
system is necessary to develop a controller. In this paper,
we use system identification to develop a mathematical model
in the state-space form from the input-output data [23], [24].
Later, an MPC is designed with tunable parameters for
resource allocation in the fog and cloud platforms [25].

To our knowledge, no researchers have yet tried the
control-theoretic approach described in this paper for devel-
oping an autonomic fog-cloud platform for vision appli-
cations using mobile robots. Hence, we believe that our
contribution is novel.

ill. PROBLEM FORMULATION

Fig. 1 shows the schematic diagram of a mobile robot vision
system consisting of the mobile robots in the application
environment with a distributed fog-cloud computing platform

VOLUME 11, 2023

Semvice Time

Cloud Plaifor

(additional details are available in Section IV). The mobile
robot, while navigating across the application environment,
captures the images of the objects (items) stacked in racks,
which is referred to as MRVD.

The MRVD is characterized by the frame rate and image
resolution. An open-source DL algorithm is then executed
for object detection. However, the service time for the DL
algorithm increases significantly with a higher image res-
olution and high frame rate. This demands the need for
a distributed computing platform with multiple computing
nodes to offload the vision data from the mobile robot.
In this work, we consider the fog and the cloud as the two
independently controlled distributed computing platforms
on-premise. A heuristic algorithm decides the distribution of
image processing tasks among the fog and the cloud layers
based on MRVD characteristics.

Based on our preliminary experiments with the distributed
fog computing platform, the service time overshoots the
desirable value when the scalable limit on fog nodes is
reached. However, this goal is accomplished by taking advan-
tage of the available compute nodes from the on-premise or
private cloud platform. The main objective is to comply with
the service time requirements. We model each computing
platform as an LPV state-space system with the objective of
the controller as meeting the service time requirement under
time-varying MRVD, with optimal use of the computing
nodes. We choose MPC to achieve the mentioned objective.

99591

IEEE Access

D. Vinod et al.: Data-Driven MPC for a Fog-Cloud Platform

TABLE 2. Robotics applications: On-premise, fog or cloud computing.

Ref. Application Platform Remarks
[15] Object recognition, speech recognition, Fog-Cloud Speech recognition task performed in Google Cloud while
vision recognition object recognition task in the fog
[16] 3D Mapping Cloud Sensor data merged to a point cloud and estimate the pose
of the moving camera via Software Product Lines
[17] Object recognition and grasp planning Cloud An approach that distributes compute, storage, and net-
working resources between the cloud and the edge node
[18] Motion planning Cloud Splits the motion planning computation between the robot
and a high-performance cloud computing service
[19] Human-robot interaction and environ- Cloud Modules for smart environment, reminder, text-to-speech,
mental sensing internet access and speech recognition are deployed in the
cloud
[20] Video based SLAM Cloud Implemented a ROS-based VSLAM algorithm in a cloud
[21] Deep learning based object detection Fog-Cloud Deployed deep learning-based applications in fog-cloud
platform
[22] SLAM Fog-Cloud A hybrid edge-fog-cloud architecture for mobile robots.

TABLE 3. Overall System Configuration.

Item
* Mobile Robot
(ARLO)

Description

* Robot height: 33 cm

* Robot weight: 12.5 kg

* Payload capacity: 15.84 kg

* Maximum speed: 0.65 m/sec

* Wheel base: 39 cm

* Wheel diameter: 15.4 cm

* Chasis diameter: 45 cm

* Battery: 12V, 4 Ah

* Resolution: 8 megapixels

* Sensor: Sony IMX219

* Focal length: 3.04 mm

* Scan Angles: (—n/4,7/4) rad

* Max Range : 10 m

¢ Quadrature encoder

* Voltage: 5.5 VDC at 11.6 mA

* Range: 10 cm to 80 cm

* Voltage: 4.5 VDC to 5.5 VDC.

e Current : maximum 40 mA

* Range: 2 cm to 3 m.

* Voltage: +5 VDC

e Current: 35 mA maximum
Fog-cloud computing platform

Fog node * CPU: Quadcore Broadcom BCM2837
(Raspberry Pi 3B) 64bit CPU @ 1.2GHz

* Memory: IGB RAM

¢ CPU: Intel Xeon @ 2.5 GHz, 24 cores
* Memory: 48 GB RAM ¢ Disk: 2 TB

¢ Camera

* LiDAR

* Encoders

¢ IR Sensor

 Ultrasonic
distance sensor

Cloud Server

IV. MOBILE ROBOT VISION SYSTEM

This section describes the details of the mobile robot vision
system. In this work, we use a differential drive mobile robot
(DDMR) as depicted in Fig. 1 for navigation. Further details
on the kinematic model used in navigation algorithms of the
mobile robot are provided in Appendix A-A.

The mobile robot includes different sensors such as ultra-
sonic, LiDar, and infrared sensors to visualize the external
environment. The hardware configuration and the details of
the perception system of the mobile robot are shown in
Table 3.

‘We consider the application environment to be a warehouse
with numerous racks stacked with items to be detected (See
Fig. 1).

99592

TABLE 4. Performance of pre-trained models.

Model Name Speed COCO

mAP
ssd_mobilenet_v1_coco fast 21
ssd_inception_v2_coco fast 24
rfen_resnet101_coco medium 30
faster_rcnn_resnet101_coco | medium 32
faster_rcnn_inception_ slow 37

resnet_v2_atrous_coco

These items are used for training and testing in the context
of object detection. A 140 cm-tall tripod stand holding three
identical cameras is attached on the upper base of the mobile
robot for collecting visual information from various racks.

A. FOG AND CLOUD COMPUTING PLATFORM

To process the MRVD for real-time object detection within
a specific time-bound (called the service time), deep learning
(DL) algorithms are hosted on distributed fog and cloud com-
puting platforms. In Fig. 1, we present a distributed comput-
ing platform. A heuristic algorithm, primarily based on frame
rate, is proposed in this work to distribute MRVD between
autonomic fog-cloud computing systems. Eight Raspberry Pi
modules with the specification listed in Table 3 serve as the
fog nodes. Similarly, virtual machines on the cloud server
serve as the cloud nodes. The cloud server allows instantiation
of 10 VMs, with each VM assigned to 1 CPU core, 2 GB
memory, and 50 GB disk space.

B. OBJECT DETECTION METHODOLOGY

SSD mobilenet model [11] is used in this work for real-time
object detection. The objective is to detect and classify the
objects by creating a bounding box across objects based on a
deep neural network (DNN). It is the first method that uses a
single deep neural network by eliminating the region proposal
and feature sampling steps. For this reason, it is faster com-
pared to conventional two-stage methods and more accurate
compared to single-stage methods like YOLO. Mean Average

VOLUME 11, 2023

D. Vinod et al.: Data-Driven MPC for a Fog-Cloud Platform

IEEE Access

TABLE 5. Object detection accuracy of all items during training phase.

Item Accuracy (%) Item Accuracy (in %) Item Accuracy (%) Item Accuracy (%)
Item-1 80-98 Item-11 70-95 Item-21 70-96 Item-31 90-95
Item-2 85-99 Item-12 84-98 Item-22 75-96 Item-32 90-98
Item-3 80-99 Item-13 80-95 Item-23 70-80 Item-33 80-95
Item-4 80-97 Item-14 96-99 Item-24 85-97 Item-34 70-99
Item-5 90-98 Item-15 84-92 Item-25 80-84 Item-35 92-98
Item-6 75-98 Item-16 70-95 Item-26 92-97 Item-36 89-98
Item-7 70-96 Item-17 80-86 Item-27 89-93 Item-37 80-90
Item-8 90-99 Item-18 90-99 Item-28 87-97 Item-38 80-91
Item-9 90-99 Item-19 80-86 Item-29 81-92 Item-39 92-99

Item-10 70-97 Item-20 70-75 Item-30 90-98 Item-40 95-99

(b) Item-2

(g) Item-7

lux_velvet: 99%

LUX

s b
lux_velvet: 97%;

lux_velvet: 99%

(h) Item-8 @i) Item-9 (j) Item-10

(k) Item-11

‘comfort: 98% comfort: 98% comfort: 99%|

© o
T
P 2
1) Item-12 (m) Item-13 (n) Item-14

FIGURE 2. SSD based object detection for selected items (14 out of 40) during training phase.

Precision (mAP) is a metric to measure the accuracy and
speed of various pre-trained models presented in Table 4 [26].

In SSD, the output space of the bounding box is discretized
to default boxes spanning various aspect ratios and scales per
feature map location [11]. The confidence score indicates the
match of each object in the default box with the pre-trained
classes. SSD has two components, the backbone model and
SSD head. The backbone model is Common Objects in Con-
text (COCO) pre-trained model with mobilenet as the feature
extractor. This helps to convert the pixels to features, and SSD
head are the convolutional layers that convert the image to
bounding boxes and classes.

In this work, the onboard cameras of the mobile robot are
used to gather image frames of the objects in the application
environment. The object detection model is pre-trained to
localize and classify these objects, and a round-robin schedul-
ing algorithm is used to distribute these frames across the
fog-cloud platforms.

We have provided a comprehensive data set with multiple
images of the numerous objects in the racks for efficient
object detection. Images of the objects from various angles
are part of the training set for the robust classifier. As a
preliminary experiment, we performed object detection for

VOLUME 11, 2023

40 objects, with 70 images of each object available for
training.

Bounding boxes are frequently used in annotations in the
SSD mobilenet model to specify the location of the target
object. In this paper, the collected images were labeled using
the Labellmg image annotation tool. As illustrated in Table 5,
we attained a detection accuracy Of 70-98% during validation.
Some sample items are shown in Fig. 2.

V. SYSTEM IDENTIFICATION

In this work, we propose a control-theoretic approach to
develop an autonomic fog-cloud platform for robot vision
applications. The objective is to meet the service time require-
ments for object detection with time-varying MRVD while
the robot navigates across an application environment.

The time for processing the MRVD is referred to as
the service time. Since object detection is computationally
intensive, especially for high frame rate and high image
resolution, an object detection algorithm is hosted on each
of the computing nodes, which can eventually be scaled as
per requirement. The variation in the number of computing
nodes has an impact on the service time [27]. The increase in
the number of computing nodes decreases the service time.

99593

IEEE Access

D. Vinod et al.: Data-Driven MPC for a Fog-Cloud Platform

aé 5 == Measured output Model output\
= T
=~
o
LR
sZ
3
@
(/2]
7] I T e-0-0-0-0-0- I I
§s veseed T leneeey
Zo 9-0-0-0-0-0-0-0-6 ! ! ! 5—-0-.-‘!-
s I I I I)
0 50 100 150 200 250 5
L 7 | | . . 1 £
<
&~ [+++=:Frame rate **+*/Image resolution| &
n i ; 2
- M T T T V=
EL | | | | £
E g lrearreanaene tersnsasarand (TTTTTTT borsnnananand CETTTTTTeN g
0 50 100 150 200 250 &
Sample

FIGURE 3. LTI validation plot: Fog computing platform.

Thus, in the mathematical model (proposed later in Section
V-B and V-B2), the number of computing nodes is considered
as the control input, the service time is considered as the
output, and frame rate and image resolution as the parameters
(refer Section V-A) for the proposed mathematical model.
The modeling of each computation platform and its respective
controller design is presented in the following subsections.

A. QUANTIFYING MRVD

To gather the vision data (MRVD) from the application envi-
ronment, the mobile robot follows different paths such as
square, elliptical, or eight shaped depending on the navigation
algorithm. Appendix A-B provides further information on
mobile robot navigation. Depending on the path of the mobile
robot, the distance between center of gravity of the robot and
the location of the image varies. This variation in distance is
reflected in the resolution of the object under consideration
in the image captured by the robot. Furthermore, there would
be a change in the frame rate since the mobile robot may nav-
igate at different speeds as per the path plan and unintended
obstacles. Hence, the image resolution and the frame rate are
considered as the parameters of the LPV model described in
the next subsection.

B. LPV MODELING OF THE FOG AND THE CLOUD
PLATFORM

The first principle method and the empirical approach are
commonly used methods for modeling a system. The physics
of the system serves as the foundation for the first-principle
method. For systems whose dynamics are not entirely known,
empirical modeling often referred to as “‘black-box model-
ing,” is the best option. Since the application under discussion
may depict system dynamics over a larger operating region
with time-varying MRVD parameters, the LPV state-space
model suits the requirement.

To develop an LPV model of the system, either a local or
global approach can be used [23], [24]. In the local approach,
we interpolate LTI models found at specified operating points
to develop the LPV model, but in the global approach, the

99594

o
E
2o
@
L0
2
o O
n
0
)] 5
o
2
* 0
)
#
2 2
S _9r—— {e=vframe rate E)
4 :
EL’ '
&
&

FIGURE 4. LPV validation plot: Fog computing platform.

LPV model of the system is developed directly from the data.
In this paper, for the fog platform, we use the n4sid tech-
nique to implement the local LPV approach. We employ the
global LPV approach with the prediction error minimization
approach for the cloud platform.

1) LPV MODELING OF THE FOG PLATFORM

The LPV state-space model of the distributed fog computing
platform is derived in this section using system identification
via the local approach [24].

To gain insight into the service time dynamics with regard
to fog nodes at constant frame rate and image resolution,
an identification experiment is conducted with a sampling
period of 1 sec. This represents a single operating region for
the LTI state-space system.

An LTI state-space model is identified, and the model
parameters are estimated using the system identification tool-
box in MATLAB. We find that a second order model has the
best fit in comparison to other orders. This is given by:

z(k + 1) = Az(k) + Bu(k)
y(k) = Cz(k) + Du(k) ey

where z € R”, u € R and y € R (for a second-order model
with single output and single input, m = 2, w = 1,1 = 1).
Since the number of fog nodes, n affects the service time, it is
considered as the input of the system, and the service time,
Ts is chosen as the output of the system.

The observable form of representation is used to consis-
tently define the local LTI models [23]. Each of the iden-
tified LTI models is valid for a particular operating region.
We derive twenty such LTI models, each corresponds to an
operating region of distinct frame rate and image resolution,
which eventually are chosen as the scheduling parameters for
the proposed LPV state-space model.

The scheduling parameters of all the operating regions are
chosen in the range [1,15] FPS and [0.01, 0.25] megapixel,
respectively, for frame rate and image resolution. The bounds
of the parameters are chosen such that the service time con-
straints are satisfied.

VOLUME 11, 2023

D. Vinod et al.: Data-Driven MPC for a Fog-Cloud Platform

IEEE Access

The model validation plots for the 3’¢ operation region
(frame rate: 6 FPS, image resolution: 0.09 megapixel) are
shown in Fig. 3. The LPV model is obtained by interpolat-
ing the constituent LTI models corresponding to the twenty
operating regions. We present a general optimization method-
ology to obtain the LPV models using the local approach from
the constituent LTI models in the following section. Fig. 4
shows the LPV validation plot with time-varying frame rate
and image resolution.

An LPV model can be obtained by interpolating the local
LTI state-space models. The parameter vector, p (parameter
vector p(k) is written as p in short) includes time-varying
parameters, frame rate (y) and image resolution (o) and is
given by:

=[r o])
The discrete-time LPV system is represented as:

2k +1) = A(y, p)z(k) + B(y, p)u(k)
y(k) = C(y, p)z(k) + D(y, p)u(k) 3

The structure of the state-space matrices is as below.

Aly. p) = [0 ar1(y, p)}

1 a;2(y, p)
1
Bly.p)= [br,l(y, p)}
Cly.p) =1 0]
D(y, p) = [0]

The system dynamics of the LTI models depend on
the time-varying parameters. The least square optimization
method is used in this work to estimate the LPV model by
interpolating the constituent LTI models [23]. The matrix
representation of the LPV system is:

_[A0)[B®)
1= o) @

The polynomial dependency of each block in (4) on p is
given by:

Ap) =D Ad(e) B(p) = D Ba(@)
d=1 d=1

Cp) = Cale) D(p) =D Da@) (5
d=1 d=1

where « is a polynomial function of degree N, in terms of p.

From the local LTI model, the state-space matrices Ay, By,
C4 and Dy can be obtained and are given by:

| Aa|Ba
Ha = [cﬁ‘w} ©

where r is the number of operating regions taken into con-
sideration and d=1, 2,..., r. A parameter, p, is assigned to
each operating region. As a result, the parameters p1, pa,...,
pr correspond to different operating regions. The following

VOLUME 11, 2023

is the cost function for the optimization algorithm to estimate
the LPV model from the constituent LTI models:

Fain, by, cin) = ZZ |} — Zal i)' P

j=1 i=1

+ Z b, — Zbl DI ()

where r LTI models are indexed by j and i is used for indexing
the coefficients, a; and, a;. The objective of the optimization
problem is to minimize the error between each state-space
matrix entry and their polynomial estimation.

Consequently, (7) is redefined as:

F(s) = [ITG)I* = T(s)T(s) (8)
where
— (“{,0 + a}ylpl + a}’zp% +...+ a%’ijlv)'
— (a%’0 + a%,lpz + aiszp% +...+ ai’Nplzv)
1 1 BT
—(ajo+ayprtap+...+ al Nl’r ")
a, — (aio + aé’lpl + a%’zp% +...+ a2 Np1)
T(s)=|a3— (“;,0 + aéylpz + aégzp% +...+ az’sz Ny
r_ o1 1 12
dy— (a5 +ay pr+ a0+ ..+ ay Npr)
— (b} o+ b} p1+D] Pt + . 4 b P
— (b} o+ b 1pr+ D] pE+ . 4 b P
9
1 1 1 11 1 1 1
s=lajg.ay a1, ... 4 NGy, a5 1, Ay 55 -, Ay]
(10)
The function T'(s) can be represented as 7(s) = Ts — v

where T and v can be obtained from (9). Thus the optimisa-
tion problem (8) can be rewritten as:

min T(s) = min ||Ts — |3 (11)
S N

and the optimized value of s is:
s* =TTy (12)

where T is the pseudo inverse of T.

2) LPV MODELING OF THE CLOUD PLATFORM
The discrete-time LPV system dynamics for cloud is given
by:

2k + 1) = A(p)z(k) + B(p)u(k)
y(k) = C(p)x(k) + D(p)u(k) (13)

where p is the scheduling parameter, z(k) € R denotes the
state, u(k) € R denotes the control input, and y(k) € R
denotes the output and A, B, C and D are matrices of appro-
priate dimension. Here, the service time is considered as the
state variable and also the output variable of the system. The
control input is the number of virtual machines active in the
cloud.

99595

IEEE Access

D. Vinod et al.: Data-Driven MPC for a Fog-Cloud Platform

w
@

g 3+ LPV Model Output
Fo25 Measured Output
o @
oL 2
2 15 L
3
? 0 20 40 60 80 100
0.4 ‘ ‘ ‘ ‘
5%
2 X
3502 |
[=]
28
XS 0 . . o .
0 20 40 60 80 100
20 : ‘ ‘ ‘
2
2
@ 10t i
[T
g
o 0 L . . .
* 0 20 40 60 80 100
10 F ‘ w \ ‘ ,
3
3 57]
4
* 0 L L
0 20 40 60 80 100
Sample

FIGURE 5. LPV validation plot: Cloud computing platform.

The LPV model of the cloud is obtained by the global LPV
approach using the prediction error minimization approach.

Global LPV identification approach: Consider the
discrete-time LPV system given by (13) where z(k) € R’
denotes the state, u(k) € R™ denotes the control input,
and y(k) € R"™ denotes the output. Here, n;, ny, and n,
represent the dimensions of z(k), y(k), and u(k) respectively
and A € R B e R C e R and D € R™*™,
p(k) is expressed as p for the sake of brevity.

Assumption: The current value of time-varying scheduling
parameter p = [p1, p2, ..., pul € RM is known at
each sample, however, the future values are uncertain. The
elements in A, B, and C of (13) are given by:

ng np
alj(p) = Zak,;/Pk2 by(P) = Zbk,;,-Pk
k=0 k=0
Ne ne
el](p) = Zek[jpk; Cij(P) = ch,;,-Pk
k=0 k=0
We assume D(p) = 0. The parameters that are to be
estimated in the LPV model are P = [ak,-, bk[.j ck[j]zp, where
the dimension of P is L, and is equal to ngnyn, + nphyn, +
nengny. We determine the optimal one-step ahead prediction
of the output equation in (13) to estimate parameters P. The
one-step ahead prediction is denoted by y(k|k—1, ©). Finally,
the following objective function is solved for the parameter
estimation.
J(P,D 'lle P(klk — 1, P))* 14
(P,)—mﬁnwgz@() =Pkl —1,P)* (14)
where y(k) is measured output data and D is the available
data set, D = {u(k), y(k),0(k)} for k = 1,2,...,L. The
objective function can be solved numerically as the function
is nonlinear.
For identifying the LPV model, a data set D with 1200 sam-
ples is collected from cloud nodes while ensuring that the
entire input space is covered. The LPV model of cloud is

99596

obtained by solving (14) with different choices for the order
of model structure which is based on cross-validation result
obtained for various values of n,, and np, where n, and ny
denote the order of polynomial of A(p) and B(p). Firstly,
a linear model is chosen by taking n, = n, = 0. We found
that the fitis good in a few of the operating regions. Therefore,
the order is increased from 1 to 5 with a step size of 1. The
maximum accuracy is obtained for n, = n, = 1.

The model validation plot is shown in Fig. 5. We see that
the output, i.e., the service time obtained from the model
closely follows actual service time with time-varying frame
rate and image resolution.

VI. CONTROL DESIGN AND EXPERIMENTAL VALIDATION
Subsequent to modeling each of the fog and the cloud com-
puting platforms independently as LPV state-space systems,
we design an MPC for control (also called LPV-MPC con-
troller). Also, we propose a decentralized MPC for the fog
and cloud platform. The objective of these controllers is
to meet the service time requirement under time-varying
MRVD, with optimal use of the respective computing nodes.
We chose a set value of service time to be 2 seconds for
the mobile robot application under consideration; doing so
enables the mobile robot vision system to capture image
frames with minimal aberrations.

A. MPC FOR LPV SYSTEM

An explicit MPC can be designed for the discrete-time LPV
systems given in (13). In this approach, the inputs to the
system are precomputed as piece-wise affine functions of the
state and stored in a look-up table where at each sampling
instance the look-up table needs to be evaluated. In MPC,
a cost function based on finite-horizon predictions is min-
imized and the resulting control u(k) is applied. Let the
control sequence over the prediction horizon (V) be given
by U := {uk),utk + 1),...,utk + N, — 1)} and the
unknown sequence of future scheduling parameters be given
asP = {p(k +1),...,p(k + N, — 1)}. The standard cost
function for the MPC [28] is given as:

J(x(k), p(k), U, P)
Np—1
= > [xtk+ 0" oxtk +)
i=0
+ ulk +)T Ru(k + i)] +x(k + N Qux(k +N,) (15)

where the positive definite weighting matrices for the states,
control inputs, and terminal state, are denoted by Q, R, and
QO respectively.

Also, in many cases, the states and the control input of the
system are constrained and let this be given by x(k) € X and
u(k) € U. The set X covers the entire state space while the set
U includes all the possible values of control input. Also, the
terminal state is constrained over a set X;, i.e. x(k + N,) €
X;. Since the future values of the scheduling parameters are
unknown, the worst-case cost is considered. The optimization

VOLUME 11, 2023

D. Vinod et al.: Data-Driven MPC for a Fog-Cloud Platform

IEEE Access

Mobile Robots
Quantify MRVD

Yes
Frame Rate
exceeded ?

!]
Run Decentralised LPV-MPC Run Decentralised LPV-MPC

for the fog platform

Distribute across fog
layer for
object detection

TABLE 6. Model accuracy and MPC parameters.

l l

’ Processing of MRVD based on LPV-MPC controller output ‘

l

’ Share object detection information ‘

FIGURE 6. Summary of the proposed approach.

problem solved over the finite horizon is given by:

* l . . . J L L L
u () aIg Iul(lkll)lpl(lkla: ;) (IINllpn) (x()ﬂ p ()7 U) I ())

stVie {0.1,...,N,— 1}
x(k+i+ 1) = A@OK + D)x(k + i)

+ BO(k +)uk + i)
yk + 1) = Cx(k + i) < Ymax
xk+DeX: uk+iel; x(k+NpeX,
7)

where C is of appropriate dimension.

The optimization problem (16) can be solved by a dynamic
programming approach iterating backward in time [25]. Only
the first control input in the sequence of control inputs is
applied to the system. This sub-section presents the exper-
imental results of the LPV-MPC controllers in a simulated
and realistic environment. For validation, we consider a single
cloud machine with a single fog layer and multiple cloud
machines with multiple fog layers, where a layer refers to
a physical machine having multiple compute nodes. The
flowchart shown in Fig. 6 summarizes the proposed approach.

The MPC parameters for the experiments performed in
this section are shown in Table 6. In Table 7, we have sum-
marized the experimental results and provided reference to
corresponding figures.

To perform the controller validation experiments, we have
chosen one cloud layer (a cloud server with 10 VMs) and
one fog layer (with 8 fog computing nodes), refer Fig. |
for the fog-cloud architecture for MRVD processing. The
distribution of frames for processing is done in the following
way: if the frame rate is less than or equal to a given threshold,
then the image frames are sent to the fog, else the remaining
frames are sent to the cloud.

For the fog platform, Fig. 7 shows the MPC control action
with frame rates below the threshold, and the control action

VOLUME 11, 2023

Parameters Cloud Fog
System identification (LPV model)
Fit to estimation data 70.94% 87.57%
MPC controller design
Prediction horizon (N,) 20 20
Distribute across fog [Q’Q"R] . L ’0'%’0'5] [IZ’Q'S’)
and cloud layer for Reference service time 2 sec 2 sec
object detection Input constraints [0, 10] [0,8]
[
TABLE 7. Overview of experimental results.
for the cloud platform
Description Platform Layer Reference

Single fog layer and single cloud layer

Frame rate < threshold Fog Layer 1 Fig. 7
Frame rate > threshold Fog Layer 1 Fig. 8
Frame rate overhead from Fog Cloud Layer 1 Fig. 9
Load Sharing : Validation Fog-Cloud Layer 1 Fig. 10
Load Sharing : Actual Fog-Cloud Layer 1 Fig. 26

ion with multiple fog layers and multiple cloud layers

Fog Layer 1 Fig. 11

Fog Layer 2 Fig. 12

L . Fog Layer 3 Fig. 13

Load Sharing : Algorithm 1 Cloud Layer 1 Fig, 14

Cloud Layer 2 Fig. 15
Cloud Layer 3 Fig. 16

Fog Layer 1 Fig. 19
Fog Layer 2 Fig. 20
Fog Layer 3 Fig. 21

Load Sharing: Algorithm 2 Cloud Layer | Fig. 22

Cloud Layer 2 Fig. 23
Cloud Layer 3 Fig. 24

leads to a deviation of service time well below the threshold
of 2 sec. Whereas in Fig. 8, we present the case with the fog as
the only computing resource (without the cloud being used),
the control action obviously leads to deviation of service time,
much above the threshold of 2 sec. This necessitates the use
of the cloud nodes for higher frame rates. The MPC validation
for the cloud layer serving frame overheads from the fog layer
is shown in Fig. 9.

B. SINGLE FOG LAYER AND SINGLE CLOUD LAYER

C. LOAD BALANCING BETWEEN SINGLE FOG AND
SINGLE CLOUD LAYER

Before we present the working of the integrated system
consisting of the mobile robot and the fog-cloud computing
platform, we detail the working of a load balancing mecha-
nism. Distributing frame overheads from the fog to the cloud
is executed by a heuristic algorithm primarily based on the
frame rate. As seen in Fig. 10, the fog platform maintains the
service time mostly below the reference value 2 sec while the
frame rate is below 15 FPS. However, when the frame rate is
above 15 FPS, the cloud platform takes over the processing of
the additional frames with the aim to keep service time below
the threshold value of 2 sec.

D. MULTIPLE FOG LAYERS AND MULTIPLE CLOUD LAYERS
To show the applicability of the proposed approach in the
context of multiple fog and cloud layers, we choose three
cloud layers (each cloud layer with ten virtual machines as
nodes) and three fog layers (each layer consisting of eight
fog nodes). Such a situation can arise when there are multiple

99597

IEEE Access

D. Vinod et al.: Data-Driven MPC for a Fog-Cloud Platform

2
2
$1 5
1 ‘ ‘ : ‘ = mmniref actual
-~ 0 100 200 300 400 500 600
g T T T T T
‘202 1
1]
(=]
D 0 i i 1 N i
E 0 100 200 300 400 500 600
10 ! | ! ! !

(FPS)

Resolution
(Megapixel)

o

100 200 300 400 500 600

)

Frame Rate
(FPS)

#Nodes Frame Rate Resolution Service Time

0 100 200 300 400 500 600
Sample

FIGURE 7. MPC validation: Fog layer 1 with FPS < 15.

(2]

(sec)

(Megapn.éel)
o N

#Nodes Frame Rate Resolution Service Time

o
o
w
0 100 200 300 400 500 600
10 T T T
; ; L [eeeensrmax nodes ||
0 100 200 300 400 500 600

Sample

FIGURE 8. MPC validation: Fog layer 1 with FPS > 15 intermittently.

}

o

Service Time
(sec)

Resolution

(Megapixel)
oo

o =N

B
=)
T

Frame Rate
(FPS)
o 8

#Nodes
(3]

0 100 200 300 400
Sample

FIGURE 9. MPC validation: Cloud platform (serving frame overheads from
the fog layer).

mobile robots performing a coordinated vision task to acquire
image frames.

99598

actual
---------- reference

0 50 100 150 200

Service Time
Fog (sec)

Service Time
Cloud (sec)
o -

0 50 100 150 200

e o

50 100 150 200

o

Sample

FIGURE 10. Validation of load sharing in fog-cloud platform.

Algorithm 1 Regular Scheme for Load Sharing

Input: Total Frame at instant k
Output: (Fog Layer, #Frame), (Cloud Layer, #Frame)
/'ns is no. of available fog layers and my is the limit of each fog
layer
/l n¢ is no. of available cloud layers and m, is the limit of each
cloud layer
for each Fr; € Frame do
if Fr; < ngmy then
for n = 1 to ceil(Fri/mys) do
for each fog, € Fog do
fogn < [(n — Dymy + 1] to [min(Fri, nmg)] > //
send these frames to fog,
end for
end for
else
for n =110 ny do
for each fog, € Fog do
fogn < [(n — D)mg + 1] to [nmg] > // send these
frames to fog,
end for
end for
for p = 1 to ceil (Fr; — ngmys)/mc) do
for each cloud,, € Cloud do
cloud, < [nrmy + (p — Dme + 1] to
[min(Fr;, npmg + pme)] > // send these frames to cloud,
end for
end for
end if
end for

Refer Fig. 1 for the fog-cloud architecture for MRVD
processing. A heuristic algorithm, based on frame rate, is used
to distribute the load either to fog or to a fog-cloud platform
as shown in Algorithm 1 and Algorithm 2. The flowcharts
corresponding to these Algorithms are shown respectively in
Fig. 17 and Fig. 18.

VOLUME 11, 2023

D. Vinod et al.: Data-Driven MPC for a Fog-Cloud Platform

IEEE Access

(sec)
N

o =

(=]
N
T

Resolution Service Time

(Megapixel)
o
o
o |
o
2
o

n
o

Frame Rate
(FPS)
s

o

0 50 100
w 10 : ;
S
£ s
S
0 . |
50 100
Sample

FIGURE 11. Alg. 1 for load sharing: Fog server 1.

Service Time
(sec)
o = N

o
N

Resolution
(Megapixel)

o

- N
o

:

Frame Rate
(FPS)

o

-
o
o

#Nodes
[3,]

50 100
Sample

FIGURE 12. Alg. 1 for load sharing: Fog server 2.

(sec)
o = N

Resolution Service Time

0 50 100
E, T T
202l

©

g

s 0 ;

=S 0 50 100

n
o

Frame Rate
(FPS)
s

o

0 50 100
10 T T
]
[
3 s5¢
3
0 | .
50 100
Sample

FIGURE 13. Alg. 1 for load sharing: Fog server 3.

Algorithm 1 presents a scheme for the distribution of image
frames among the fog and the cloud layers. If the total frames

VOLUME 11, 2023

[N

actual
reference | 1

(sec)
)
—

o
a
o
-
o
=3
-
a
o

200

o
N

(Megapixel)
o

o
o
o
o
-
o
=3
-
o
o

200

50 T T T

Frame Rate Resolution Service Time
(FPS)

0 50 100 150 200

#Nodes
o

0 50 100 150 200
Sample

FIGURE 14. Alg. 1 for load sharing: Cloud server 1.

(sec)
e
)

0 50 100 150 200

(Megapixel)
14

Frame Rate Resolution Service Time

0
0 50 100 150 200
50 T T T
7 L
o
L
0 . ‘ .
0 50 100 150 200
g 1° ‘ Y ‘
e 5f 1
g
0 . ‘ .
0 50 100 150 200
Sample

FIGURE 15. Alg. 1 for load sharing: Cloud server 2.

£
-5 2
g ﬁ 1l actual
g A A ------------- reference
@ 0 y :
3 ~ o s 100 150 200
5§02 ‘ ‘ ‘
=
H 30.1 r |
g [}
< o ‘ T ‘

o . 100 150 200
)
T @ 20 7
2 o]
s~ | ‘ . :
w

0 50 100 150 200
£ °l 7
2
Z 0 X | | -

0 50 100 150 200

Sample

FIGURE 16. Alg. 1 for load sharing: Cloud server 3.

received by the load balancer at any instant (F7;) is less than or
equal to the frame limit of the total fog layers, nymy, where ny
is the number of available fog layers and my is the frame limit
of each fog layer, the MRVD is sent to the fog platform, or else

99599

IEEE Access

D. Vinod et al.: Data-Driven MPC for a Fog-Cloud Platform

/ Total Frames (Fr,) /

No

Fr, <=mpn,

Fog layers = n,
Cloud layers required =
ceil((Fr, =n, m,)/m)

l

Distribute the frames

Yes

Fog Layers required = ceil(Fr/m,)

i

Distribute the frames

fon] [

Fog 1 Fog 2

[cell(Fr./m)lm,
+1to Fr,

Fog ceil(Fr/m,)

1 B m+1 (n 1 m+1 nfmf+1 to
f to 2m ton m nmg+m

/L.

Fog 1 Fog 2 Fog n, Cloud 1

FIGURE 17. Flowchart corresponding to Algorithm 1.

nm, +m +1 [cell ((Fr, =nm,
ym)m, +nm+1 to
n m+2m

Cloud 2

Cloud ceil((Fr -n;m,)/m_)

/ Total Frames (Fr,) /

No A Yes

(m+Am)n,

No Yes

Fog layers = n, | # Fog layers = n, |
Cloud layers required = l

ceil((Fr, -n, m;)/m)

Distribute the frames ‘

l

Fog Layers required =
ceil(Fr/(m+Am,))

l

‘ Distribute the frames ‘

Distribute the frames ‘

Fog 1 Fog 2

!
i (Fr/n)+1 (Fr/n (n 1) Fog 1 Fog2
(Fr/n;) to 2(Fr/n ’

Fog nf

!
a6 (m+Am)+ [cell Fr/ m+A
0 o 1(m +Am
(mc+Am,) 2(m+Am) 1 0 Fr,

Fog ceil(Fr/(mf+Amf))

(n-1)m
1to m+1 [nm+1 to nm+m+
M o 2m ngm; g m +m nm +2m

[ce||((Fr -nm;)
/m)lm, +nm+1 to

Fog 1 Fog 2 Fog n; Cloud 1 Cloud 2

FIGURE 18. Flowchart corresponding to Algorithm 2.

it is sent to cloud platform in addition. The MRVD is sent to
one computing layer (fog/cloud) only once the previous layer
reaches the maximum limit (my for fog and m, for cloud).
In this experiment, ny=3, my=15 FPS, and m.=50 FPS. The
fog platform maintains the service time below 2 sec for the
processing of MRVD when Fr; is less than ngmy as shown in

99600

Cloud ceil(Fr -n;m,)im_)

Fig. 11, Fig. 12, and Fig. 13. But with Fr; above nymy cloud
platform takes over the processing of MRVD (serving frame
overhead from the fog layer) with service time less than 2 sec
as shown in Fig. 14, Fig. 15, and Fig. 16.

Algorithm 2 details the modified scheme for the distribu-
tion of frames. The objective of this algorithm is to minimize

VOLUME 11, 2023

D. Vinod et al.: Data-Driven MPC for a Fog-Cloud Platform

IEEE Access

w

[

E

-~

e

@ 0

* (] 50 100 150 200

5802t

= [L— [

§8 0 : \

= 0 50 100 150 200

g 2 11 | 1| |]

©

Co10) il
w

E" 0 ‘ ‘ ‘

Iy 0 50 100 150 200

10

#Nodes
(3]

#Nodes
o (3]

50 100 150 200
Sample

FIGURE 19. Alg. 2 for load sharing: Fog server 1.

- ref actual
T

(sec)

Service Time
(=]

Resolution
(Megapixel)

Frame Rate
(FPS)
>

10
%3
5
2 5
3*

0 . .
50 100 150 200
Sample

FIGURE 20. Alg. 2 for load sharing: Fog server 2.

the usage of the cloud layers at the cost of increased service
time. This happens when only the fog nodes are used with
the number of frames exceeding the capacity of the fog layer
by a certain threshold. The modification has been presented
in Algorithm 2, in which if Fr; is less than or equal to
(mg+Ap)ny, where Ay, is the extra frames that a fog layer can
handle with a small increase in the service time, the MRVD
is sent to the fog platform. Or else, the average of Fr; for
the last five samples is calculated, and if it is less than or
equal to (my+Ap)ns, the MRVD is again sent to the fog
platform to save the cloud resources. The MRVD is sent to
the cloud in addition to fog only if the average of Fr; for
the last five samples is greater than or equal to (my+A,,)ny.
For the MRVD distributed to the fog nodes, the fog platform
maintains the service time for the processing of MRVD below
2s as shown in Fig. 19, Fig. 20, and Fig. 21. Otherwise, the
cloud platform takes over the processing of MRVD (over and

VOLUME 11, 2023

(sec)

Service Time

Resolution
(Megapixel)
o
o N

Frame Rate
(FPS)
- N

o o o

0 50 100 150 200

50 100 150 200
Sample

FIGURE 21. Alg. 2 for load sharing: Fog server 3.

£
o 2
_8 g’i . actual
s= 0 e reference
[} 0 :
& % 50 100 150 200
5go2 ‘ ‘ ‘
Sg
5 501
g (1)
rE o0

: = 700 150 200
£ 50 [‘
a7y
gL
©
£ 0 ‘ ‘ ‘

o 50 100 150 200

10 ‘

3
§ 5
H*

0 ‘ : ‘

o 50 100 150 200

Sample

FIGURE 22. Alg. 2 for load sharing: Cloud server 1.

above fog platform) with service time less than 2 sec as shown
in Fig. 22, Fig. 23, and Fig. 24.

E. CONTROLLER VALIDATION IN THE APPLICATION
ENVIRONMENT

The controller validation results presented so far were consid-
ered individually for the fog and the cloud layer with varying
MRVD. We now present the controller validation results in
the context of a realistic application environment such as a
warehouse.

Fig. 25 corresponds to the environment map of the ware-
house considered. The black rectangular boxes in Fig. 25
resemble the warehouse racks, where items are stacked
together. The red cross marks show the way points that
determine the reference path, and the black circles represent
obstacles in the path of the mobile robot. The aim is to nav-
igate the mobile robot from the start point to the destination
(the green line shows the actual path of the robot). To improve
the readability of the validations, we have provided additional

99601

IE E E ACCGSS D. Vinod et al.: Data-Driven MPC for a Fog-Cloud Platform

Algorithm 2 Relaxed Scheme for Load Sharing 2 ‘ ‘ ‘
Input: Total Frame at instant k e 9 2
Output: (Fog Layer, #Frame), (Cloud Layer, #Frame) $2 e e
I/ ns is no: of available fog layers and my is the limit of each fog & 9% 0 100 150 200
layer 5802 ; ; :
/I n¢ is no: of available cloud layers and m is the limit of each E T4l i
cloud layer 2 g)))
for each Fr; € Frame do =< 0 50 100 150 200
if Fr; < (my + Ap)ny then é 20 ‘ ‘ ‘
/IA,;, is the extra frames that can be handled by fog nodes ° E 10 Wﬁ i
by compromising service time § T ‘ ‘ ‘
for n = 1 to ceil(Fri/(ms + Ap)) do * 0 50 100 150 200
for each fog, € Fog do o ; ; ;
fogn < [(n—1)(mf + Ap)+1] to [min(Fri, n(ms + § F‘I‘l"“‘[rh'l'l
Ap))] > // send these frames to fog, g ‘ ‘ ‘
end for 0 50 100 150 200
end for Sample
else FIGURE 24. Alg. 2 for load sharing: Cloud server 3.
Calculate average of Fr; for last t samples >//tis
threshold samples chosen ‘ ‘
if average of Fr; for last t samples < (my + Ay,)ns then s Path ing and

for n = 1to ny do
for each fog, € Fog do
fogn < [ceil(Fri — (n — 1))/nf)] > // send
these frames to fog,

o

w4
end for g
end for Es
>
else .
for n = 11tony do
for each fog, € Fog do 1
Jogn < [(n — Dmy + 1] to [nmy] > // send ol
these frames to fog, ‘ ‘ ‘ ‘
end for 0 2 4 6 8 10
X [meters]
end for t !
for p = 1 to ceil (Fr; — ngmy)/m.) do FIGURE 25. DDMR in application environment.
for each cloud, € Cloud do
cloud, <« [ngmy + (p — Dme + 1] to P _ _ . ‘ ‘
[min(Fr;, npmg + pme)) > // send these frames to cloud,, £ g " A W
end for 8 2 1h g
2 actual
end for $ 2 o) . L e reference
end if 0 50 100 150 200 250 300 350 400
end if g 9 2
=
end for P
3 7]
30
o ‘
0 50 100 150 200 250 300 350 400
(]
E_ 2
Ny 530
E o 1F actual 2 X
......... ER-
5 0 L | L L | L reference] s 0.
® 0o 20 40 60 80 100 120 140 160 180 200 g2
5T 02 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ : <
= X
B
S S04 1 P
32 &
o« E 0 Al . Al . . . * a 10
0 20 40 60 80 100 120 140 160 180 200 go
% 50 - - - - - T [
o {n; w
Q
E L 10
£, ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 20 40 60 80 100 120 140 160 180 200 @
10 ‘ ‘ ‘ ‘ ‘ 3
2 i
3 st]
=z
* o L il i A Il il i i "
0 20 40 60 80 100 120 140 160 180 200 Sample
Sample
FIGURE 23. Alg. 2 for load sharing: Cloud server 2. FIGURE 26. Load sharing: fog-cloud platform.

information related to the kinematic modeling of the mobile igation algorithm comprises localization and path planning
robot and navigation algorithms in Appendix A-A. The nav- with obstacle avoidance (summarized in Table 1).

99602 VOLUME 11, 2023

D. Vinod et al.: Data-Driven MPC for a Fog-Cloud Platform

IEEE Access

FIGURE 27. DDMR kinematics.

The objective of this work is to meet the service
time requirement for object detection with time-varying
MRVD while the robot navigates through the applica-
tion environment. Hence, it has two independent algo-
rithms, the auto-scaling algorithm and the navigation
algorithm.

MRVD is generated while the robot navigates and captures
the images of the items stacked in the racks.

Later, the image frames are sent to a load balancer to be
distributed across the fog or an integrated fog-cloud platform
for object detection. The distribution among fog and cloud
is based on a heuristic algorithm, which is primarily based
on frame rate as mentioned in Table 7. The auto-scaling
controller decides the number of computing nodes needed to
satisfy the service time requirements considering the MRVD
characteristics.

The MPC validation plots are shown in Fig. 26. Image
resolution is calculated based on the distance between the
robot’s center of gravity and the boundary of the applica-
tion environment. (refer V-A) as in Fig. 26 c. Frame rate
is chosen as in Fig. 26 d. Fig. 26 e shows the auto-scaling
of the computing nodes to satisfy the service time require-
ments. The fog platform maintains the service time almost
below the reference value of 2 sec (Fig. 26 a) when the
frame rate is below 15 FPS. However, above the frame
rate of 15 FPS, the cloud platform (serving frame over-
head from the fog layer) takes over the processing of the
MRVD with service time below the reference value of
2 sec (Fig. 26 b).

Note: Frame rate and image resolution are zero at certain
time instants, which shows no image to detect at these instants
(one such area is indicated by an arrow in Fig. 25), and
consequently, the corresponding number of computing nodes
and service time are zero.

VIl. CONCLUSION AND FUTURE WORK

This paper presents a control-theoretic approach for develop-
ing an autonomic fog-cloud integrated computing platform
for vision-based mobile robot applications. To accelerate the
process of object detection in the application environment, the

VOLUME 11, 2023

time-varying MRVD acquired during navigation is offloaded
to an on-premise fog-cloud platform for hosting DL algo-
rithms. The scalability feature of fog and cloud platforms is
leveraged in this work.

The objective of the proposed research is to process the
MRVD within the service time deadline by auto-scaling ini-
tially the fog computing nodes and later the cloud nodes
on demand. To enforce this requirement, decentralized con-
trollers using the LPV-MPC framework have been developed
for the fog and the cloud platforms. Furthermore, a heuristic
algorithm performs the distribution of MRVD between the
fog and the cloud platforms. We conclude the paper by pro-
viding validation results for object detection during mobile
robot navigation in the actual environment. Also, simulation
results for scenarios assuming multiple fog and cloud layers
have been provided.

For future work, we aim to enhance the current research
further by incorporating the proposed approach in a
multi-robot scenario for coordination control tasks. Multi-
robot systems find essential applications in surveillance,
underwater robotics, and space exploration. In this setting,
the robot’s sensing bandwidth might be constrained by the
network bandwidth limiting the design of coordination strate-
gies. From our perspective, an event-triggered control [29]
can offer an acceptable solution and is a good starting point
for future work.

APPENDIX A
DDMR NAVIGATION
A. MODELING A DDMR
A differential drive mobile robot, commonly known as a
DDMR, features two independently driven wheels mounted
on a common axis. By varying the relative velocity of the
wheels, DDMR can navigate back and forth and also it can
rotate about an axis. Different trajectories can be generated
by altering the relative speed of the wheels, thus shifting
the point of rotation, as demonstrated in [30]. The point
about which the DDMR rotates is referred to as the ICC
(Instantaneous Center of Curvature) (see Fig. 27). It is a point
on the common axis of both wheels.

Both the wheels should have same angular velocity, w
about the ICC, at every instant of time. The resulting linear
velocities are as follows:

R A R by _ 18
OR+) =vi oR=3)=w (18)

where v, is the velocity of the right wheel, v; is the veloc-
ity of the left wheel along the ground, b is the distance
between the centers of the two wheels along the axle, and
R is the distance between ICC and the midpoint of two
wheels.

Solving for R and w using (18) gives the following
equation.

. Q(Vr +Vl)_ _ (vr — 1)
“ew T W

99603

IEEE Access

D. Vinod et al.: Data-Driven MPC for a Fog-Cloud Platform

1) FORWARD KINEMATIC MODEL

Forward kinematics is the study of the robot’s location (x,y,0)
in reference to its control inputs (v, v,-). Consider the mobile
robot positioned at (x,y) and at an angle 6 to the x axis.
The velocities v; and v,, as well as R and w, are functions
of time [30]. ICC can be obtained from (19) given control
parameters as below:

ICC = [x — Rsin(0), y + Rcos(9)] (20)

Let s, and s; be the distance traveled and §6 be the change
in orientation angle over a small period of time, &t. §6 =
wdt; s = vi8t; s, = vt As a result, R can be expressed in
terms of s, and s; as shown below:

_ b (sr + 1)

2(sr — 1)

The robot should be rotated around ICC by wét to estimate

its pose at ¢ 4 6¢. To do this, translate the ICC to the origin,

rotate the robot around the origin by wét, and then translate

back to the ICC [9]. The robot’s pose at time ¢ + §¢ is given

by:

Xt+5t cos(wdt) —sin(wdt) 0 || x — ICCy ICC,
Yeast |=| sin(wdt) cos(wdt) 0|y —ICCy |+|ICCy
O+t 0 0 1 0 wét

2

The state-space model of the DDMR as it rotates at a
distance R from its ICC with an angular velocity of @ is shown
in (22).

The system vector can be found from (20)-(22) given by:

bs+s1 . .
— (sin(0 + 60) — sin(0))
Xt+5t X b2 Sp — 81
Yegst | = | Y | + _m(—cos(O + 680) + cos(9))
9t+8t et 2 Sy — 81
80
Zf(xtaytvelasr’sl) (23)

The non-linear model given by (23) can be linearised by
the Jacobian linearization. By using the Jacobian of system
vector, f, the state transition matrix, A} and input matrix By
can be obtained. Cj is an identity matrix since all states are
measurable [31].

B. LOCALIZATION AND PATH PLANNING

For navigation of the mobile robot towards the goal point,
a pure pursuit controller is used in this paper. It can regulate
the linear velocity of the wheels (left and right) and helps to
estimate the angular velocity at which the mobile robot should
move from the current pose to the final position through look-
ahead points.

Simultaneous localization and mapping (SLAM) is the
problem of updating the environmental map using sensors
and concurrently getting localized in the updated map. In this
work, this problem is addressed using an EKF based localiza-
tion, where an extended Kalman filter is used as the estimator.
The EKF algorithm [31] is executed based on the forward

99604

Obstacle

Obstacle

Mobile Robot

FIGURE 28. A situation for obstacle avoidance.

kinematic model of the robot to the estimate position of the
mobile robot. For obstacle avoidance, the algorithm men-
tioned in [10] has been implemented.

The mobile robot moves from the start point to the final
point based on a bug-based path planning algorithm [9],
alocal path planning approach. The local path planning meth-
ods have limited information about the environment, which
necessitates the robot to update its environment with the latest
information provided by the sensors before planning each
move toward the final position.

1) EKF BASED LOCALIZATION
In this paper, the position of the mobile robot is estimated
using an EKF based localization. The forward kinematic
model of the robot can be used with the prediction and cor-
rection equations of the EKF to precisely locate the robot [31]
and is given by (24)-(25).

Prediction Steps:

X = f(Xk—1, Sr, 51)
P = APiA +Q (24)
Correction Steps:
K =P ' oP ¢ +R)!
X =%, + Ki(yxr — Cix;)
Py =1 - K CHP, (25)

The measurement error covariance matrix, R and the pro-
cess error covariance matrix, Q can be considered as diagonal
matrices since the errors for each states are uncorrelated.

w2 0 0 v 0 0
Q:waO;R:OvﬁO
0 0 w3 0 0 v

where w,, wy, wy are process error covariance matrices and
Vx, Vy, Vg are measurement error covariance matrices for x, y
and 6 respectively [10].

VOLUME 11, 2023

D. Vinod et al.: Data-Driven MPC for a Fog-Cloud Platform

IEEE Access

2.5 25 e e —] maamaeee Reference Actual ® Waypoints
T
2 2
0.5
= } = 15
£ 1.5 E = 0¢
= > E
1 > .05
0.5 0.5 B
3} 0 1.5
1 -05 0 05 1 15 2 05 0 05 1 15 2 25 o 1 X(m? 3
0.1 xm 0.15 X(m) 0
i ; -
5 008 s | 5 o0 A ;
3] = 041 3 A
o, 0.06 Iy T H o, 0.06 A A '
2 i Aol oe] : oy g
= 0.04 = I/) X 0.04 1 kh' I
8 .’,.' 'i"‘“"'\'\'\"l‘ S 0.05 [y | I » S ' AI'I I § Y
E ooz YWV ", 2] L Al . = 0.02 Loyt 1 ¥ b/
2L Y F T A o S P ' W !
o 0
0 50 100 150 200 % 50 100 150 200 o 50 100 150 200
samples samples samples

(a) Path following: Elliptical Path

Actual Trajectory ® Waypoint ‘

(d) Obstacle avoidance: case 1

(b) Path following: Square Path

(c) Path following: Eight shaped path

L
L
L
il |

(e) Obstacle avoidance: case 2

® Waypoint |

1
=

Actual Trajectory

[

FIGURE 29. Path planning with obstacle avoidance of mobile robot.

2) PATH PLANNING WITH OBSTACLE AVOIDANCE

In this work, for collision-free navigation of the mobile robot,
the collision avoidance algorithm in [10] is used. The grey
blocks in Fig. 28 represent the obstacles in the path of the
mobile robot. and the black cross mark shows the local target,
r, measured by minimising the cost function [9]:

C(Pi) = d(P; — Py) + D(P)) (26)
where P, is the position vector of the robot, and P; is the
irp grid point on the line that passes across the gaps that
were identified (determined by using the gradient of distance
vector received from LIDAR and obstacles are indicated by
discontinuous points). D(P;) is the euclidean distance trans-
form (EDT) [32] for P;, and d(P;) is the euclidean distance
between the robot and P;. The objective of the work is to
locate P; such that the cost function, C(P;) is minimized. This
grid point is chosen as the local target. The process of creating
a continuous path from start to destination using these local
targets is known as local path planning.

The p-line in Fig. 28 is the line that connects the mobile
robot’s center of gravity to the local target, r. The obstacle
avoidance algorithm considers obstacle points received from
LIDAR data that are closer to the local target. The critical
collision point, G, is the point that is closest to the p-line. The
algorithm updates the goal, r as r*, if the distance between G

VOLUME 11, 2023

TABLE 8. Navigation algorithm parameters.

Pure Pursuit controller Parameters
Max angular velocity (rad/s) 1.3
Desired linear velocity (m/s) 0.74

Look ahead distance (m) 0.36

Obstacle avoidance Parameters
Minimum turning radius (m) 0.048
Distance limits (m) [0.048 3]
Thresholds (m) [5 10]
Number of angular sectors 35
Safety distance (m) 0.37

and the p-line, K, is smaller than the threshold value, K;yq;
(depends on the kinematic model and size of the robot). The
selection of the new target point, r*, ensures that it is Ky
from G and that the line connecting G and r* is perpendicular
to the p-line [10].

The parameters related to mobile robot navigation are
summarized in Table 8. The results for path following and
obstacle avoidance for different cases are shown in Fig. 29.

REFERENCES

[1] M. B. Alatise and G. P. Hancke, “A review on challenges of autonomous
mobile robot and sensor fusion methods,” IEEE Access, vol. 8,
pp- 39830-39846, 2020, doi: 10.1109/ACCESS.2020.2975643.

[2] R.C. Gonzalez and R. E. Woods, Digital Image Processing. London, U.K.:
Pearson, 2002.

99605

http://dx.doi.org/10.1109/ACCESS.2020.2975643

IEEE Access

D. Vinod et al.: Data-Driven MPC for a Fog-Cloud Platform

[3]

[4]

[5]

[6]

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Z.-Q. Zhao, P. Zheng, S.-T. Xu, and X. Wu, “Object detection with deep
learning: A review,” IEEE Trans. Neural Netw. Learn. Syst., vol. 30, no. 11,
pp. 3212-3232, Nov. 2019.

A. Asaduzzaman, A. Martinez, and A. Sepehri, “A time-efficient image
processing algorithm for multicore/manycore parallel computing,” in
Proc. SoutheastCon, 2015, pp. 1-5, doi: 10.1109/SECON.2015.7132924.
H. M. B. Priyabhashana and K. P. N. Jayasena, “‘Data analytics with deep
neural networks in fog computing using TensorFlow and Google cloud
platform,” in Proc. 14th Conf. Ind. Inf. Syst. (ICIIS), Dec. 2019, pp. 34-39,
doi: 10.1109/ICIIS47346.2019.9063284.

Amazon. Deep Learning on AWS. Accessed: Aug. 5, 2023. [Online].
Available: https://aws.amazon.com/deep-learning

D. Vinod and P. S. SaiKrishna, “Development of an autonomous fog
computing platform using control-theoretic approach for robot-vision
applications,” Robot. Auto. Syst., vol. 155, Sep. 2022, Art. no. 104158, doi:
10.1016/JROBOT.2022.104158.

T. Bailey, J. Nieto, J. Guivant, M. Stevens, and E. Nebot, “Consistency of
the EKF-SLAM algorithm,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots
Syst., Oct. 2006, pp. 3562-3568.

S. Karakaya, H. Ocak, and G. Kucukyildiz, “A bug-based local path
planning method for static and dynamic environments,” in Proc. Int. Symp.
Innov. Technol. Eng. Sci., 2015, pp. 846-855.

S. Karakaya, G. Kucukyildiz, and H. Ocak, “A new mobile robot tool-
box for MATLAB,” J. Intell. Robot. Syst., vol. 87, no. 1, pp. 125-140,
Jul. 2017.

W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C. Y. Fu, and
A.C.Berg, “SSD: Single shot MultiBox detector,” in Proc. ECCV,
vol. 9905. Cham, Switzerland: Springer, Dec. 2016, pp. 21-37.

G. N. Desouza and A. C. Kak, “Vision for mobile robot navigation:
A survey,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 2,
pp. 237-267, Feb. 2002, doi: 10.1109/34.982903.

J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara, A. Fathi, I. Fischer,
Z. Wojna, Y. Song, S. Guadarrama, and K. Murphy, ““Speed/accuracy
trade-offs for modern convolutional object detectors,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 3296-3297, doi:
10.1109/CVPR.2017.351.

J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only
look once: Unified, real-time object detection,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 779-788, doi:
10.1109/CVPR.2016.91.

H. Ahn, “A function as a service based fog robotic system for cog-
nitive robots,” Appl. Sci., vol. 9, no. 21, p. 4555, Oct. 2019, doi:
10.3390/APP9214555.

L. Gherardi, D. Hunziker, and G. Mohanarajah, ‘A software product line
approach for configuring cloud robotics applications,” in Proc. IEEE 7th
Int. Conf. Cloud Comput., Jun. 2014, pp. 745-752.

A. K. Tanwani, N. Mor, J. Kubiatowicz, J. E. Gonzalez, and K. Goldberg,
“A fog robotics approach to deep robot learning: Application to object
recognition and grasp planning in surface decluttering,” in Proc. Int. Conf.
Robot. Autom. (ICRA), May 2019, pp. 4559-4566.

J. Ichnowski, J. Prins, and R. Alterovitz, ““Cloud-based motion plan com-
putation for power-constrained robots,” in Algorithmic Foundations of
Robotics XII, vol. 13. Cham, Switzerland: Springer, 2000, pp. 96-111.

K. Obayashi and S. Masuyama, “Pilot and feasibility study on elderly
support services using communicative robots and monitoring sensors
integrated with cloud robotics,” Clin. Therapeutics, vol. 42, no. 2,
pp. 364-371, Feb. 2020.

B. A. Erol, S. Vaishnav, J. D. Labrado, P. Benavidez, and M. Jamshidi,
“Cloud-based control and vSLAM through cooperative mapping and
localization,” in Proc. World Automat. Congr. (WAC), 2016, pp. 1-6, doi:
10.1109/WAC.2016.7582999.

S. Tuli, N. Basumatary, and R. Buyya, “EdgeLens: Deep learning based
object detection in integrated IoT, fog and cloud computing environments,”
in Proc. 4th Int. Conf. Inf. Syst. Comput. Netw. (ISCON), Nov. 2019,
pp. 496-502.

V. K. Sarker, J. Pefia Queralta, T. N. Gia, H. Tenhunen, and T. Westerlund,
“Offloading SLAM for indoor mobile robots with edge-fog-cloud com-
puting,” in Proc. Ist Int. Conf. Adv. Sci., Eng. Robot. Technol. (ICASERT),
May 2019, pp. 1-6.

P. S. Saikrishna, R. Pasumarthy, and N. P. Bhatt, “Identification and
multivariable gain-scheduling control for cloud computing systems,” IEEE
Trans. Control Syst. Technol., vol. 25, no. 3, pp. 792-807, May 2017, doi:
10.1109/TCST.2016.2580659.

99606

(24]

(25]

(26]

(27]

(28]

[29]

[30]

(31]

(32]

A. K. Tangirala, Principles of System Identification: Theory and Practice,
1st ed. Boca Raton, FL, USA: CRC Press, 2014.

T. Besselmann, J. Lofberg, and M. Morari, “Explicit MPC for LPV sys-
tems: Stability and optimality,” IEEE Trans. Autom. Control, vol. 57,n0. 9,
pp- 2322-2332, Sep. 2012, doi: 10.1109/TAC.2012.2187400.

R. Shanmugamani, Deep Learning for Computer Vision: Expert Tech-
niques to Train Advanced Neural Networks Using TensorFlow and Keras.
Birmingham, U.K.: Packt Publishing, 2018.

M. Berekmeri, D. Serrano, S. Bouchenak, N. Marchand, and B. Robu,
“A control approach for performance of big data systems,” in Proc. 19th
IFAC World Congr., Le Cap, South Africa, 2014, pp. 1-12.

E. Carlos Garcia, D. M. Prett, and M. Morari, “Model predictive control:
Theory and practice—A survey,” Automatica, vol. 25, no. 3, pp. 335-348,
May 1989.

P. Tabuada, “Event-triggered real-time scheduling of stabilizing con-
trol tasks,” IEEE Trans. Autom. Control, vol. 52, no. 9, pp. 1680-1685,
Sep. 2007.

G. Dudek and M. Jenkin, Computational Principles of Mobile
Robotics, 2nd ed. Cambridge, U.K.: Cambridge Univ. Press, doi:
10.1017/CB0O9780511780929.

S. Karakaya, H. Ocak, G. Kucukyildiz, and O. Kilinc, “A hybrid indoor
localization system based on infra-red imaging and odometry,” in Proc.
Int. Conf. Image Process., Comput. Vis., Pattern Recognit. (IPCV), 2015,
p. 224.

J. C. Elizondo-Leal, E. F. Parra-Gonzélez, and J. G. Ramirez-Torres,
“The exact Euclidean distance transform: A new algorithm for universal
path planning,” Int. J. Adv. Robot. Syst., vol. 10, no. 6, p. 266, Jun. 2013,
doi: 10.5772/56581.

DINSHA VINOD received the master’s degree in
control systems from the College of Engineering
Trivandrum, in 2017. She is currently pursuing the
Ph.D. degree with the Department of Electrical
Engineering, Indian Institute of Technology Tiru-
pati, Tirupati, India. Her research interests include
systems and control, robotics, computer vision,
and distributed computing systems.

DURGESH SINGH received the bachelor’s degree
in electrical engineering from the Birsa Institute of
Technology Sindri, India, in 2015, and the Ph.D.
degree in systems and control from the Indian
Institute of Technology Madras, Chennai, India.
His current research interests include system iden-
tification and performance control of computing
systems, design of predictive control, and stability
analysis of cyber-physical systems.

P. S. SAIKRISHNA received the Ph.D. degree
in systems and control from the Indian Insti-
tute of Technology Madras, Chennai, India. He is
currently an Assistant Professor with the Depart-
ment of Electrical Engineering, Indian Institute of
Technology Tirupati, Tirupati, India. His current
research interests include autonomic cloud com-
puting, distributed control of large-scale systems,
and the development of low-cost training simula-
tors for process plants.

VOLUME 11, 2023

http://dx.doi.org/10.1109/SECON.2015.7132924
http://dx.doi.org/10.1109/ICIIS47346.2019.9063284
http://dx.doi.org/10.1016/J.ROBOT.2022.104158
http://dx.doi.org/10.1109/34.982903
http://dx.doi.org/10.1109/CVPR.2017.351
http://dx.doi.org/10.1109/CVPR.2016.91
http://dx.doi.org/10.3390/APP9214555
http://dx.doi.org/10.1109/WAC.2016.7582999
http://dx.doi.org/10.1109/TCST.2016.2580659
http://dx.doi.org/10.1109/TAC.2012.2187400
http://dx.doi.org/10.1017/CBO9780511780929
http://dx.doi.org/10.5772/56581

