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ABSTRACT Systems requiring terahertz transmission and high sampling capabilities can be supported by
sixth-generation (6G) technology with minimal latency and excellent service throughput. Regardless of
the distributions of data and services, High-Performance Computing (HPC) enhances speed and provides
diversified applications and functionality. The Confluence-Aided Process Organization Method (CAPOM)
is suggested in this article to take advantage of process allocations while using anHPC paradigm. The process
allocations and completions are scheduled based on prior and current system conditions to minimize waiting
time based on the 6G qualities. This implies that state requirements for process allocation, distribution,
and completion are carried out with the assistance of federated learning. The initial state allocations are
based on the user/application request; in other allocations, the application’s request for completion time
and capacity for processing are considered. Offloading and shared processing are, therefore combined to
maximize resource deliveries. The federated learning states are checked post-completion times to mitigate
the waiting duration of dense service demands. Indicators such as distribution ratios, latency, wait time, and
processing rate are considered for the effectiveness of the proofs. The suggested CAPOM achieves an 8.67%
higher processing rate, 9.09% reduced latency, 8.76% less wait time, and a 6.73% higher distribution ratio
for the various capacities.

INDEX TERMS 6G, federated learning, HPC, process allocation, service distribution.

I. INTRODUCTION
High-performance computing (HPC) is a progressive
approach that supports providing better services or per-
formance to users and systems by delivering high-quality
solutions for the problems in the system or computer. HPC,
or supercomputing, performs at high-quality computer per-
formance [1]. In an aggregated computing process, better
user performance is administered through precise allocations.
HPC is widely used in designing new products and producing
better products to avoid unwanted threats or errors [2]. HPC
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is also used in decision-making to test scenarios or problems
and to provide improved solutions for product development
on a computer. HPC systems often use clusters of networks
to build a complete HPC system [3]. The cluster monitors
and stores network data to process input and output from the
processing unit and facilitates performing a particular task.
HPC is most commonly used in a remote processing system
to provide better service to users without compromising the
quality of the service. HPC is more reliable, efficient, and
easier to manage than other systems or processes and offers
better scalability. HPC is used to solve large problems in engi-
neering or computer fields and provides better solutions for
the problems. HPC employs the graph-oriented programming
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(GOP) technique to understand the exact details used to solve
the problems [4], [5]. 6G refers to the sixth-generation wire-
less network, which provides a better communication process
among users using a cellular data network. As a successor to
5G, 6G is widely used in communication systems [6]. 6G
offers the fastest speed, which is vital for communication.
It is much faster than 5G in transferring data from one user
to another, providing a significantly improved user commu-
nication process [7]. Additionally, 6G enhances the quality of
service (QoS) in wireless communication systems. Reducing
the latency rate in the communication process and utilizing
a high-frequency ratio sustains the communication process’s
capacity [8]. HPC is utilized in 6G to enhance the system’s
performance by understanding the problems present in the
networks. Computing systems are mostly used in computers
and devices, which help to provide better service to users by
identifying threats or problems and solving them by offering
the best solutions. HPC resolves problems in the commu-
nication process and provides better service to the users by
understanding the exact details of the networks [9], [10].
High-performance computing (HPC) requires a large amount
of data motion processes and computational systems to pro-
vide better solutions to the problems present in the network.

Machine learning (ML) algorithms are used in HPC to
solve problems by providing a deep learning algorithm
to understand the volumes of data or threats [11]. The
ML approach utilizes more data to deliver better perfor-
mance to the network or users [12]. HPC is mostly used
in many fields, such as the Internet of Medical Things
(IoMT) and the Internet of Things (IoT), which aids in
enhancing the total performance of the system by providing
better QoS [13]. Within networks, HPC plays a signifi-
cant role in identifying and solving problems arising from
data management and unnecessary data transfer processes.
ML-assisted HPC is vital in many fields, including the com-
putational screening process [14]. The QoS metrics in HPC
include throughput, accessibility, security, reaction time, and
dependability. Computational screening is one of the main
processes in HPC, aiming to provide better service and
quality for the users. ML is also used in HPC to pre-
dict or identify the exact high performance while training
the data available in the model. Furthermore, ML-assisted
HPC is used to detect failures or failed processes, which
may affect the system’s overall performance. ML helps
to find out the exact cause of failure and provides better
solutions to the problems [15], [16]. However, existing sys-
tems achieve high latency and minimum throughput when
implementing 6G communication. The research difficulties
are overcome by applying High-Performance Computing
functionalities (HPC), which speed up the communica-
tion process. The Confluence-Aided Process Organization
Method (CAPOM) is motivated and suggested to improve
the overall allocation with minimum latency. Then, the over-
all contribution and motivation of the work are listed as
follows.

• Designing the Confluence-Aided Process Organization
model (CAPOM) to improve process allocation.

• Introducing High-Performance Computing (HPC) func-
tions for reduced latency and maximize throughput
values.

• The experimental outcomes have been implemented and
the suggested CAPOM model achieves high perfor-
mance, low latency and high service rate

The remainder of this paper shall be arranged in the
following manner: Section II will introduce the related
research. Section III describes the proposed confluence-aided
process organization method. Processing capacity alloca-
tion and service distribution using federated learning for
Low-Latency and High-Service-Rate applications are moti-
vated and described in Section IV, followed by related
analysis and discussion in Section V. Finally, we summarize
our conclusions in Section VI.

II. RELATED WORKS
Mavromoustakis et al. [17] proposed a new offload-aware
recommendation scheme for the Internet of Things (IoT).
This offload scheme enables every available service for
users and improves performance by enhancing Qualities of
Experience (QoE) and Quality of Service (QoS). It also
provides a machine communication process by enabling the
resources available in the recommendation scheme. Numeri-
cal outcomes demonstrate that the suggested scheme reduces
the energy consumption rate of the system and provides a
better user experience. Lin et al. [18] presented a machine
communication process by enabling the resources avail-
able in the recommendation scheme. Numerical outcomes
demonstrate that the suggested scheme decreases the energy
consumption rate of the system and provides a better user
experience. Yoon et al. [19] implemented a deep neural net-
work (DNN)–based object detection offloading framework
for mobile edge devices. The proposedmethod is mainly used
to decide whether to issue offload or not to the particular
process and create a proper data set for further process-
ing. The proposed framework is used to identify the exact
objects under process and increases the accuracy ratio in the
detection process. Simulation outcomes illustrate that the rec-
ommended framework enhances the efficacy and efficiency
of the object detection process. Xu et al. [20] suggested a
blockchain-enabled resource management process for the 6G
communication process. The blockchain approach is widely
used in many Internet of Everything (IoE) based systems and
devices to enhance the total efficiency and performance of
the device. The blockchain method provides a better inte-
gration process, which helps improve the monitoring and
management process by utilizing the resources available
in the database. The proposed blockchain-enabled method
improves the overall effectiveness of the system.

Yan and Choudhury [21] discussed a deep Q-learning-
based joint optimization approach to perform offloading tasks
for mobile edge computing (MEC) systems. The proposed

VOLUME 11, 2023 99427



J. A. J. Alsayaydeh et al.: Improving Application Support in 6G Networks With CAPOM

Q-learning approach reduces the complexity of the device
and provides optimal solutions for the optimization pro-
cess. It also reduces the latency rate while performing
offloading tasks, which helps to improve the Quality of
Service (QoS). Numerical outcomes demonstrate that the
suggested technique improves the overall performance and
system effectiveness and decreases the energy consump-
tion ratio in the computation procedure. Khan et al. [22]
proposed an efficient hybrid deep learning-enabled model
for the congestion control process in 5 G-based networks.
Congestion control plays an important role in the 5G net-
work, which provides better Quality of Service (QoS) to
the users. The long short-term memory (LSTM) algorithm
is used in the proposed deep learning-enabled approach to
improving the network’s offloading process. Compared with
other existing approaches, the suggested technique enhances
the accuracy ratio and decreases the time consumption ratio,
enhancing the network’s efficiency. Zhang and Fu [23] delib-
erated an energy-efficient computation offloading scheme
named Dynamic programming-based energy-saving offload-
ing (DPESO) for task scheduling processes in an edge-
computing system. The proposed method is based on the
time-division multiple access methods mainly used in the
scheduling process. DPESO is primarily utilized to decrease
the latency rate in the computation process. Simulation out-
comes demonstrate that the recommended DPESO technique
increases the system’s efficiency by decreasing the energy
consumption rate. Mukherjee et al. [24] proposed a layered
message transfer framework for the social Internet of Things
(IoT) utilizing a software-defined network (SDN). The pro-
posed framework is widely used in IoT-based devices to
transfer messages from one user to another without lagging
or failure. SDN is used to improve the slices available in the
optimization process. It is also used to manage user messages
and generate a proper dataset for further use. Numerical
outcomes illustrate that the suggested technique improves the
Quality of Service (QoS) in social scenarios and increases
the coverage area using the SDN approach. Naouri et al. [25]
introduced a three-layered task offloading framework named
DCC for mobile edge computing (MEC) systems. DCC
stands for cloudlet layer, device layer, and cloud layer. DCC
is used to perform offloading low-quality tasks and produce a
proper communication process for the users by improving the
efficiency of the computation process. A greedy task graph
partition offloading algorithm is used in DCC to perform
scheduling tasks for the optimization process. Simulation out-
comes display that the suggested DCC framework enhances
the total performance of the system by when compared with
other techniques. Alqahtani et al. [26] proposed a proactive
caching technique with offloading (PCTO) approach for
mobile edge computing (MEC) systems by using theMachine
learning approach. The deep recurrent learning algorithm
is used in PCTO to improve the interval that occurs while
providing user services. To perform offloading instances,
certain data are trained using the PCTO scheme. Compared

with other approaches, the suggested PCTO enhances the
system’s total performance by decreasing the failures in
caching and offloading process. Chakrabarti. [27] presented
a new offloading approach using a deep learning method for
mobile augmented reality (MAR) applications. The proposed
offloading approach uses a deep reinforcement algorithm
(DRL) to improve energy constraints and offloading tasks
and transfer data for further services. The proposed method is
used to divide certain phases to perform offloading tasks with
the help of the DRL approach. Computer vision algorithm
is also used in MAR applications to perform computa-
tion processes without any energy consumption rate. Guo
and Zhang [28] proposed a fairness-oriented computation
offloading process for the cloud-assisted edge computing
system. The suggested technique improves the offloading
approach by performing certain data transmission strategies.
The optimal cloud-edge strategy is used here to analyze the
data to recognize the optimal offloading strategy available
in the system. Numerical outcomes demonstrate that the
suggested technique enhances the system’s performance by
decreasing the latency ratio of response time for mobile users.
Shahidinejad et al. [29] introduced a context-aware multi-
user offloading approach for mobile edge computing (MEC)
systems. It is used in a multi-user system to collect contexts.
The Federated learning (FL) algorithm uses the offloading
approach to use distributed capabilities to enhance the sys-
tem’s total performance. Compared with other approaches,
the recommended technique increases the efficiency and effi-
cacy of the system by enhancing the accuracy ratio in the
offloading progression and reducing the energy consumption
ratio in the computation procedure. Chen and Wang [30]
introduced a decentralized computation offloading approach
for multi-user mobile edge computing (MEC) systems by
using deep deterministic policy gradient (DDPG). The pro-
posed DDPG is used to identify the offloading strategies and
produce a proper dataset to improve the efficiency of the
MEC users. Numerical outcomes display that the suggested
DDPG approach enhances the users’ total performance and
quality of services. In their work, Ali et al. [31] proposed a
new multi-task computation offloading approach using an
allocation memory algorithm for device-to-device commu-
nication. A fit algorithm is also used to design tasks on
multiple devices. The proposed method improves perfor-
mance by performing proper offloading tasks. Compared
with other techniques, the recommended approach enhances
the Quality of Service (QoS) in cell scenarios and decreases
the latency ratio in the computation progression. Simi-
larly, Kathole et al. [32] applied an energy-aware blockchain
model in 6G network IoE applications. This study uses the
cyber twin-related UAV 6G network structure to respond to
the user request by managing the communication resources.
During this process, blockchain is applied to improve security
while sharing resources in a cloud environment. Addition-
ally, Chen et al. [33] recommended a User-Centric Resource
Allocation in 6G from an economic perspective. This study

99428 VOLUME 11, 2023



J. A. J. Alsayaydeh et al.: Improving Application Support in 6G Networks With CAPOM

provides the economic perspective of quality solutions for
every user request. The quality of experience is provided
according to the user’s subjective values, and the users are
prioritized to allocate the resources. Market rule and auc-
tion theory are integrated to improve resource allocation
efficiency during the evaluation. Lastly, Alsulami et al. [34]
introduced a federated deep learning approach to manage the
resources and optimize the quality of services in 6G.Machine
learning and cutting-edge technologies are widely applied for
the resource allocation process in 5G, and the federated rein-
forcement learning approaches are incorporated with vehicle
communication to improve the quality of services in 6G.
Dong et al. [35] applied the United Framework of Integrated
Sensing andCommunications (ISAC) to improve the resource
allocation process in 6G. Every request’s probability value is
computed with the help of the Cramer-Rao Bound approach
that identifies the resourcesQoS, location, and tracking is per-
formed. The effective identification of resources maximizes
resource allocation flexibility and efficiency. Guo et al. [36]
introduced a federated reinforcement learning approach for
allocating resources in device-to-device communication in
6G. The main intention of this study used to minimize power
consumption and maximize the sum capacity by providing
quality services to the user request. Sheng et al. [37] rec-
ommended a coverage enhancement process to allocate the
resource by considering the resource configuration and con-
stellation. This study uses the satellite-terrestrial integrated
network to analyze the user request and configurations to
improve the overall resource allocation efficiency. In their
work, Ashwin et al. [38] applied a hybrid quantum deep
learning model to manage resources in 6G. The hybridized
approach uses recurrent and convolutional neural networks
to estimate resource distribution, configuration, and slice col-
lection. From the estimated information, load balancing and
error are computed using recurrent networks. This process
helps to manage the QoS in resource allocation. In another
study, Thantharate et al. [39] introduced an adaptive network
slicing structure for resource management in 6G systems.
This study employs transfer learning with a network slicing
structure to predict the load, resulting in a 30% lower error
rate and a maximizing the correlation coefficient by 6%.
Moreover, Han et al. [40] recommended an equity, diversity,
and inclusion (EDI)-based resource management process in
6G applications. The EDI-based approach analyzes the user
request regarding communication requirements and quality
of services to improve communication by reducing the dis-
tribution variance. According to various research studies,
6G networks use different frameworks and machine learning
techniques to maximize resource allocation. However, a high-
performance computing procedure is required to support
the user’s high demands. The existing methods lack high
throughput and reduced latency. This research objective and
novelty is addressed by applying the Confluence-Aided Pro-
cess Organization Method (CAPOM) for process allocation.
The proposed system reduces the latency and maximizes

FIGURE 1. The proposed method is in 6G.

throughput values by utilizing High-Performance Computing
(HPC) functions.

III. PROPOSED CONFLUENCE-AIDED PROCESS
ORGANIZATION METHOD (CAPOM)
The Sixth-generation (6G) aids terahertz applications com-
munication with high-performance computing since becom-
ing unmanageable due to the high sampling support of users
with less latency and high service rates of the 6G-assisted
applications. The challenges in this proposed work are
increased rapidity and heterogeneous application support of
the user data and service distributions of different latencies.
The 6G applications spanning across various domains such
as UAV network (Unmanned Aerial Vehicle), eHealth remote
monitoring, smart city, UM-MIMO BS (Ultra Massive-
MIMO Base Station), VLC (Visible Light Communication),
sCell-UE (Small Cell User Equipment), BCI (Brain Com-
puter Interface), and AI (Artificial Intelligence), etc., require
diverse application services. Therefore, regardless of the
data and service distributions of the heterogeneous applica-
tions, high sampling support with high service rates and less
latency is an important consideration. The proposed frame-
work of CAPOM mainly focuses on this consideration by
leveraging the overall development of the process allocations
and completions through system state management. In this
manuscript, latency and service rates are administrable for the
applications, and their processing with the available system
states application. Fig. 1 illustrates the proposed method in a
6G platform.

The 6G platforms access their process and services through
requests and responses using the 6G applications. The
CAPOM model functions between the user and applica-
tions. In this method, process allocations and offloading/
completion for the available system states andHPC is ease for
succeeding service rate outcomes for the diverse applications
and users (Fig. 1). Furthermore, the design goal of this model
is to minimize the completion time to reduce the waiting
latency of dense applications and to maximize the available
system states. The proposed method functions in two forms:
process allocation and offloading/completion occur concur-
rently. The service allocation process varies for denser and
non-denser service distributions to handle the diverse density
of the users/applications. Then the notations utilized in this
work is illustrated in Table 1.
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TABLE 1. Notation description.

The initial functions of the 6G platform service manage-
ment technology is the main goal as stated in equation (1)’’

max
i∈t

θn∀SRq = SRs and min
j∈Rs

WTj ∀rq (1)

As per equation (1), the variables θi, SRq , SRs , t denotes the
process allocation of nth service t , request, and responses,
respectively. In the next consequence representation, the vari-
ables WTj,TRq , and TRs and CT represent waiting time,
request time, response time, and completion time, respec-
tively. Here, the waiting time is computed as WTj =

TRq − TRs;min
i∈t

ϕn∀i ∈ Rq. The next instance of minimiz-

ing the offloading/completion is denoted using the variable
ϕn∀i ∈ Rq. If A = {1, 2, . . . ,A} denotes the state of the
user/application, then the number of services in the process-
ing time (PT ) is Rq × t , whereas the 6G assisted application
request is A × Rq. In the following overall request of A ×

Rq, Rq × t are the acceptable services for waiting. Pro-
cess allocation and states offloading processes are reliable
using latency and density of the upcoming request of the
6G applications. In this sequence, the distribution of state
and remaining services is essential to identify the non-denser
application in additional services. The demanding application
is the capacity (Cm) of them state applications, the remaining
time needed for process completion/offloading is the using
metrics for increasing services rate and distribution ratio. The
process allocation of the states assigning for the existing m is
performable using federated learning. Then, depending upon
the service distribution, the process allocation states are the
increasing factor. For this implication, the process alloca-
tion, distribution, and completion is the prevailing sequence
for deriving various conditions. The process allocation of

FIGURE 2. Alternative allocation process.

services and the available states for allocation are necessary
for the following section.

CASE 1: Initial allocation of process
SOLUTION 1: In this process allocation, the service dis-

tribution of t×Rq for all m based on Cm is the considering
factor. The probability of allocating process

(
ρPs

)
in a con-

sequence, the manner is given in equation (2) as

ρp =
(
1 − ρf

)n−1
∀n ∈ t (2)

In equation (2), variable ρf represents the first instance of
process allocation, which is computed by using the request
Rq ∈ m and Rq ∈ t; ρf =

(
1−Rq∈m

Rq∈t

)
. The sequential

service distribution follows the stable probability of m such
that there is no remaining process, and it is estimated as in the
above equation (1). Hence, the allocation of processes (PA)
for ρPs is as follows

PA(m) =
1∣∣Rs − Rq + 1

∣∣ ·
(
ρPs
)
i , if ∀n ∈ t (3)

Although, the process allocation for m as in equation (3),
is valid for both

(
A× Rq

)
,
(
t × Rq

)
make certain waiting time

service distributions. The gathering services of assigning t to
decrease the impact of the functions

(
A× Rq

)
>
(
t × Rq

)
,

the process allocation is illustrative using the data and service
distributions. Hence, the planning-based conditions of A >

t and ρf is less to satisfy the above-derived equation (1).
The modified solution in this case 1 is the extending ρf and
therefore, the waiting time outputs in the waiting latency of
dense application demands.

CASE 2: Alternative process allocation
SOLUTION 2: In this Alternative process allocation, the

unstable condition of A > t is high, and therefore the service
distribution and allocation of the process is an unchangeable
time sequence. In Fig. 2, the alternative allocation process is
illustrated.

The allocation is performed for the overflow condition
identified using t/Td wherein the available processes are veri-
fied for their sequences. The process sustainability is verified
in the alternating sequence and first state allocation; hence,
the allocations are prevented from overflowing. However,
for the first allocation, if an overflow is experienced, the
allocations are alternating for precise resource distribution
(Fig. 2). Along with the stable time of m, the denser appli-
cation and remaining states are the considered processes. The
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probability of a sequential process of allocation
(
ρPn

)
is given

as in equation (4)

ρPn =

ρTs × PA(m) ×

[(
Rs − Rq

)
ρf −

(
Rs−Rq
m

)
WT
TRq

]
Ao(γ )

Ao(γ ) × m
(4)

In equation (4), Ao (γ ) factor represents the state alloca-
tion function for t , request, and response are represented
as the Rq,Rs and the waiting time is WT . The sequen-
tial process allocation is computed concerning the weight
time of the services, which is defined as the Ao (γ ) =
t∫
0
WT t−1 (1 −WT )t−1 dt(WT ). The allocated resources

belong to the process allocation that is defined as theAo (γ ) ∈

PA (m) =

Rq∫
1
WT t−1.

ρf
TRq

(
1 − ρPs

)t−1 dt
(
Rq
)
. In this state

allocation process, the unstable assigning services to the
m is a dense application issue. As mentioned above, the
process allocation requires more waiting time completion
time, thereby increasing the processing capacity. From the
above-determined cases 1 and 2, the process allocation and
completions of application demands based on A > t and
m dense application and waiting time are the identifiable
constraints. In particular, these constraints are noticed using
federated learning to alleviate the problems through the learn-
ing process. The following session illustrates the processing
capacity for the offloading/completion process to alleviate the
defining problems.

IV. OFFLOADING/COMPLETION USING PROCESS
CAPACITY
The definition of the processing capacity of the completion
process is based on federated learning. The federated learning
is one of the effective machine learning techniques used to
train the data to improve system efficiency. It aids application
support with less latency and high service rates. The above-
discussed case 1 and 2 allocation processes joint with the
resolving sequences using federated learning. The service
distribution process depends on various metrics for identify-
ing the dense application and waiting latencies during service
distribution. Therefore, the conditions for service distribution
differ, which follows the process through processing capacity.
The processing capacity is prescrisbed for both case 1 and
case 2 by computing the m available probability and alloca-
tion of states for planning time. The first state allocation (SA)
relies on maximum processing capacity (Pc) and Ao (γ ) is
estimated as

Ao (γ,Pc) =

[
Rs −

(
WT
TRq

)
×

1
m

]
− SA(m) + 1 (5)

In equation (5), CT denotes the completion time of
the allocation and the processing capacity depending allo-
cation of the states for case 1, as in ρPs and state
allocation (m). Here, the m is computed as the m =

FIGURE 3. Offloading process illustration.

∑
i∈t State Allocation (m)i −

(
ρPn

)
i. Now, the chances of

performing alternative allocations sequentially are

ρps

(
t
Td

)
=

1√
2mγ 2

experssion
[
−
Rq − ρf × Rs

γ

]
(6)

In equation (6), alternative resource allocation is computed
with waiting latency γ , response, and request concerning m.
Therefore, the waiting latency is estimated as γ = Rq −

ρf ∗ m. As per the above equation (6), the main goal is to
exploit offloading jointly and shared processing A and t to
increase the service distribution and reduce the waiting time
and hence, the actual Rs is computed as

Rs = max
[

ρPs × Rq
SA(m) − ρf ∗ Rq

]
(7)

In equation (7), the difference is
[
1 −

ρPs
SA(m)−ρf ∗Rq

]
and

this alternative allocation is the waiting time-dense applica-
tion instances of Rq. The sharing Rq is

[
Rq ∗ Ao (γ,Pc)

]
is

the ϕn requiring sequences, and therefore the waiting latency
is demandingly increased. The ranges for increasing waiting
latencies as per the above equation (6), the range is derived
as min possibleRs = γ = Rq − ρf ∗ m and max possible is
equating RHS of equations (2) and (6). the equating process
is defined in equation (8).(

1 − ρf
)n−1

=
−Rs+ρf Rq

√
2πγ 2 ∀n ∈ t

Rs = ρf Rq −
(
1 − ρf

)n−1 √
2πγ 2

}
(8)

In equation (8), the range of waiting latency denser appli-
cations is either of rs or γ , in both above-derived cases,
if ρf = 0, then γ = Rq = Rs is the maximum possible
that is defined as Rs =

√
2π
(
Rq
)2

(min). and if ρf = 1,
Rs = Rq − m

/
Rs = Rq that is defined as Rs = Rq (max).

Hence, they take the place of Rq = Rs is a feasible solution,
and then, the waiting latency for all i ∈ t and j ∈ Rs in
the above equation. Fig. 3 presents the offloading process
illustration.

In the alternate allocation process, the A0 to A0 (γ )

Instances are used for identifying resource distribution. This
is based on the actual capacity and the available intervals
for preventing further waiting time. This is stabilized based
on the allocation time and the sequence required for m.
Contrarily, the allocations at t are offloaded if the capacity
exceeds the limit of the available resources (Fig. 3). The
service distribution in this framework is all the existing m,
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where the allocation requests and responses are shared pro-
cessing. Therefore, the waiting time is compact, as in the
above equation (1). The offloading/completion ranges are(
Rq − ρf ∗ m

)
and

√
2πγ

(
Rq
)2, which defines the process

allocation and waiting time, along with completion time, for
the sequence Rq. The completion process of

(
Rq − ρf ∗ m

)
and

√
2πγ

(
Rq
)2 from the existing t ∈ Rq is illustrated in the

following.
The offloading/completion-based processing capacity(
Rq,Rs

)
and

(
Rst−1 ,Rst

)
depend on the available t from

the responses. The probability of ρf and ρPs and ρPn is
the deciding factor for both offloading and response. The
offloading of process capacity takes place in

(
Rq,Rs

)
and(

Rst−1 ,Rst
)
is sharing based on Td for Ao (γ ) is given as

Allocation(m) =


m−

(
pf ∗ Rq

)
m+

(
ρPs
)
Rq

, ∀ Rs = Rq

m−
(
pf ∗ Rq

)
m+

(
ρPs + ρPn − ρf

)
Rq

, ∀ Rs < Rq

(9)

From equation (9), the offloading sequences of (ρPs+ρPn−

ρf ) is found using the allocation of states (m). Therefore,
the available m forces the rest of the responses for offload-
ing/completion, the remaining states until the next et . This
process is estimated as

m
m+Rq

=
1

(Rs−Rq+1)
m+ Rq = mRs − mRq + m

Rs =
(m+1)Rq

m

 (10a)

The remaining state Rs∀T ∈ Rq is as estimated using the
above equation (10a), and therefore, the alternative alloca-
tions are essential for allocating the remaining Rq.

m−
Rq

m+ Rq
=

1(
Rs − Rq + 1

) , as ρf = 0, ρps

= ρPn = 1 (10b)

In equation (10b), the alternative allocation process per-
formed by considering the request and response is defined as

RS =
2Rq+mRq+R2q

(m−Rq)
. It has been further defined as the mRs −

RqRs = Rq + Rq + R2q + mRq. In this offloading condition,

m or
(
m−

Rq
γ

)
is the service distribution irrespective of the

users and applications. In the alternative sequence of state
allocation, minimizing the response is discussed to reduce
dense application andwaiting latency. Fig. 4 presents the state
representative for the offloading and completion process.

The states are determined using the alternating and
resource distribution states estimated for A0 (γ ) and Rs. This
is validated for Alloc (m) and ρs such that the wait time
is not increased further. The wait time-induced processes
are offloaded for further allocation, whereas the response
time-induced requests are termed as completed. This process
is independently based on the federated stated for which the

FIGURE 4. State representation—completion/ offloading.

different states are assessed (Fig. 4). The service distribu-
tion is the process that follows either of the Rs as in the
above equation. It varies for both the Rs as the initial stage
and no more m whereas the alternative sequences of states
reallocation as

(
m− Rq

)
is the retaining process. From the

discussion mentioned above in the allocation of states for
ϕn ∈ Rs =

(m+1)Rq
m is reliable, and it does not require

waiting time. The completion time (CT ) of a t in this process
allocation is the considering metric, and it differs for each m
depending on the processing capacity (Pc). This completion
time (CT ) using equation (11) for Rs in equation (10b)

CT =



Pc
Alloc(m)

, ∀Rs = Rq or Rs =
(m+ 1)Rq

m
,

if rs < rq
Pc

Alloc(m)
+
Ao (γ,Td )

(
ρPs + ρPn − ρf

)
Alloc(N )

,

if ∀ Rs =
2Rq + mRq + R2q(

N − rq
)

(11)

As in equation (11), CT ∈
[
TRq ,TRs

]
and the final solution

of CT (i.e.)
(
CT ∗ Rq

)
is the maximum etn and service rate is

increased for handling
(
m− Rq

)
requests. Hence, the process

allocation of all t ∈ Rq increases both ϕn and etn∀i ∈ Rq. This
sequential process allocation reduces the waiting latencies
and completion time and increases the distribution ratio and
processing rate. The proposed model parameters are evalu-
ated using an experimental setup consisting of a computer
running MATLAB 2016 simulation software with an Intel i7
Quad-core 3.2 GHz CPU and 64 GB RAM. Fig. 5 presents
the analysis of allocation/ instance and its type for different
requests.

Fig. 5 presents the analysis of allocation/ instance and
its type for different requests. The target is to achieve less
wait time for process alloc (m), wherein ρpn is required for
distinguishing RS . If the alloc (m) is interrupted by Rt as in
equation (10a), then Ao (γ,PC ) relies on the next sequence.
This results in offloading as required for t

Td
. Contrarily the

sequence is split as θi∀i ∈ t in ρPS and hence completion
is achieved. Therefore, the allocations (less) experience a
constant allocation regardless of the alternating sequences.
This is common for varying processes observed in SRq before(

t
Td

)
. An analysis for waiting, completion times, and states

are presented in Fig. 6 for different allocations/instances in
Fig. 6.
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FIGURE 5. Allocation/ instance and its type for different requests.

In Fig. 6, the waiting, completion time, and the states
observed for different allocations/instances are analyzed. The
ρPn is required to validate Ao (γ ) under alloc (m). This is
divided using γ and Rs states that retain t alternating allo-
cations without reducing Rs validations. In contrast to the
allocations, ρPs is required for ρf identification and hence, ρf
Induced allocations are completed with fewer time intervals.
Therefore, the change in allocations is performed without RS
hindrance and, therefore, ρPS

(
t
Td

)
is mandatory for reducing

WTj∀j ∈ CT . Hence the ρf is observed from the consecu-
tive sequences without increasing waiting allocations. Fig. 7
presents an analysis of completion time under different states.

An analysis of completion time for different states and
processes is represented in Fig. 7. As the processes are fewer,
ρf ∈ ρPS such that wait time is less and hence CT is less.

If Ao (γ ) is not satisfied under ρf , then ρPS

(
t
Td

)
is verified

for alloc (m) and hence (Rt) is estimated. If it does not meet
the R_s, then ρPn is validated where the wait time is high,
hence the completion time. By deciding A (γ ) or A (PC ),
the consecutive allocation is validated without an increase in
completion time.

V. DISCUSSION
The suggested technique’s performance is examined using
MATLAB experiments, considering 70 users sharing a

FIGURE 6. Waiting, completion times, and states for different allocation/
instances.

FIGURE 7. Completion time under different states.

common 6G resource. The service demands are processed
and met using 9 service providers capable of handling 20 pro-
cesses. A total of 140 processes are considered for validating
the performance. If an active process is offloaded after 240ms
of wait time; hence, a new allocation is preferred. This
setup considers the metrics of distribution ratio, latency,
waiting time, and processing rate for analysis. The methods
CAMUO [28], ACDRA [17], and PCTO [25] are considered
in this analysis.

A. DISTRIBUTION RATIO
The distribution ratio is high in the suggested technique is
great compared to the other factors (Refer to Fig. 8). In this
framework, θi, SRq and SRs are the allocation of the process
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FIGURE 8. Distribution ratio analysis.

for identifying CT . If case 1 occurs for improving Rs based
on ϕn∀i ∈ Rq [as in equation (1)], then A×Rq and Rq × t are
acceptable states is computed. Based on this implication, A is
determined. The Utmost ρf due to ρPs and ρPn dense applica-
tions are considered. This consideration requires high service
distributions, preventing multiple Ao (γ ) process allocation
and modifications. Hence, the offloading/completion to the
user or application is administered as derived in equation
(5) with WT consideration. The first state allocation is per-
formed; in the alternative allocations are estimated for which

the
[(
Rs − Rq

)
ρf −

(
Rs−Rq
m

)
WT
TRq

]
is alone validated. In this

condition, the change in processing capacity in −Rs+ρf Rq
√
2πγ 2 and

its existing sequence A > t are mutually shared processing.
This process helps in preventing additional waiting latency,
as mentioned above. Therefore, for the A > t , the θi valida-
tion, improving the existing state, the distribution ratio under
discrete sequences is high. Based on the multiple allocations,
m is estimated that combine t such that WTTRq is presented. In the

proposed framework, the processing relies on
(
Rs − Rq

)
ρf

and hence the γ change waiting latencies are considerably
less.

B. LATENCY
The proposed framework process waits for latency and
completion time as it does not provide sequential process
allocation for 6G-assisted applications. The alternative allo-
cations are the demands and high sampling support (m+1)Rq

m
performed for ϕn ∈ Rs in different ϕ. This impact is addressed

FIGURE 9. Latency analysis.

using the dense application Ao (γ ) demands, preventing com-
putation failures. The two different casesA×Rq and Rq×t are
analyzed without augmenting the service distributions. Sim-
ilarly, the (m+ 1) based state allocation requires ϕn and Rs
computation for occupying additional process allocation. The
processing capacity sequence from Rst to Rst−1 be performed
for different

(
Rs − Rq

)
ρf validations, preventing extra ser-

vice necessities. The γ performed service distributions, and
A > t described demands are detached for further alternative
process allocations, averting completion time and waiting
latency. This proposed framework performs further process
allocations and service distributions based on

(
Rq,Rs

)
for

which a processing capacity ρf Rq is given. This is common
for θi, SRq and SRs for which the framework attains less
latency, as offered in Fig. 9.

C. WAITING TIME
The proposed framework needs less waiting time compared
to the other factors. There are two prime cases for less waiting
time in the suggested framework. First, the process allocation
instance based on

(
Rq,Rs

)
and

(
Rst−1 ,Rst

)
is perceived as

determining additional process allocation θi. This service
distribution augments the waiting time regardless of discrete
(m+1)Rq

m preventing Ao (γ )waiting latencies. In the contradic-
tory process allocation, 2Rq+mRq+R2q being the next reason
identified for alternate process allocation. For the above-
discussed cases, the waiting time is great due to ϕn ∈ Rs
and prolonged m. To decrease this completion time factor,(
Rq,Rs

)
to
(
Rst−1 ,Rst

)
under discrete γ and A is repeatedly

processed for the accessible state’s allocation. The allocation
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FIGURE 10. Waiting time analysis.

FIGURE 11. Processing rate analysis.

of the process is modeled based on the discrete scenario.
The proposed framework distinguishes the process capacity

TABLE 2. Comparative analysis for processes.

TABLE 3. Comparative analysis of capacity.

equation (3) from equations (10) and (11) for a sequence of
allocations. The validation process limits the need for com-
pletion time, preventing extra time. Therefore, the waiting
time for various users/applications and service distributions
is reduced for high-performance computing, as illustrated in
Fig. 10.

D. PROCESSING RATE
This proposed framework achieves a high processing rate for
various process allocations and service distributions (Refer to
Fig. 11). The waiting latency is alleviated based on 1

|Rs−Rq+1|
conditions for leveraging process allocation through high-
performance computing. The TRs and CT based allocation
of the process using previous and current system states per-

formance m−(ρf ∗Rq)
m+(ρPs)Rq

in identifying the waiting latency in(
Rq,Rs

)
to
(
Rst−1 ,Rst

)
instances. Further, the

2Rq+mRq+R2q
(m−Rq)

is performed for increasing the processing rate beyond the
prolonged A > t and hence the Ao (γ ) is increased. In the
different allocation of states, theWT is performed for detect-
ing waiting time in A as in equation (8). Therefore,

(
Rq,Rs

)
to
(
Rst−1 ,Rst

)
be modified depending on A > t; this process

allocation has to satisfy two distinct cases for retaining the
processing rate. First state

(
Rq,Rs

)
in both SRq and SRs such

that Ao (γ ) is retained. As per the retained case m, Rq is
functioned based on

[
−Rs + ρf Rq

]
and therefore, the A > t

is satisfied. If this condition is satisfied, processing capacity
is increased to reduce the waiting latencies. In the alternative
process allocations,

(
Rst−1 ,Rst

)
The process allocation and

offloading based on service distributions are defined. In this
proposed scheme, the defined γ is aided for m and Rq valida-
tion for improving the process allocation. This leads to further
alternative process allocation in the assisted applications and
t . Tables 2 and 3 provide the comparative analysis summary
for the above discussion.

Inference: The proposed method maximizes the dis-
tribution ratio and processing rate by 6.5% and 7.36%,
respectively. In order, it reduce the latency and waits time by
8.34% and 9.55%
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Inference: The proposed CAPOM achieves a 6.73% high
distribution ratio, 9.09% less latency, 8.76% less wait time,
and 8.67% high processing rate.

VI. CONCLUSION
A confluence-aided process organization method using
high-performance computing in 6G service processing is
presented in this article. The service demand to resource
allocation process consists of completion and offloading to
identify backlogs. The admitted and offloaded processes
are independently classified based on first and alternating
sequences. Based on the waiting time and allocation prob-
ability, the states are updated to improve service distribution.
The resource capacity and its corresponding completion time
are accounted for for ease of processing and allocation,
which modifies the current state. Based on classified inde-
pendent states, the allocations and processing are performed,
reducing the latency for multi-process distributions. The pro-
posed CAPOM achieves a 6.73% higher distribution ratio for
various capacities, a 9.09% reduction in latency, an 8.76%
reduction in wait time, and an 8.67% higher processing rate.
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