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ABSTRACT To better capture the spatio-temporal characteristics and reduce unbalanced errors in short-term
traffic prediction, an advanced Bayesian combination model with graph neural network (ABCM-GNN)
is proposed. A new ABCM framework involving an error correction mechanism is established, based on
the analysis of distance correlation between historical and current traffic volumes. Two sub-predictors
built, respectively, on the graph attention gated recurrent unit (GAGRU) network, which captures the
spatial correlation of road network, and autoregressive integrated moving average method (ARIMA), are
incorporated into the ABCM framework to enhance the strength and capability of the framework. The
effectiveness and superiority of the proposed model are demonstrated in various scenarios with experiments
conducted using real-time traffic data collected on the California freeway. The overall results show that the
ABCM-GNNwith ARIMAmethod is superior to state-of-the-art methods in terms of precision and stability.

INDEX TERMS Short-term traffic prediction, Bayesian combination, error correction mechanism, graph
attention gated recurrent units networks, ARIMA.

I. INTRODUCTION
Traffic flow forecasting is one of the core problems in
intelligent transportation systems. Accurate real-time traffic
prediction can help maximize the utilization of the road net-
work capacity, improve traffic efficiency and safety, optimize
traffic distribution, thereby alleviating congestion and reduc-
ing air pollution [1], [2], [3], [4]. There are various methods
for short-term traffic forecasting, e.g., statistical models,
machine learning methods and big data-driven deep learning
methods, or broadly classified into three types: parametric,
non-parametric and hybrid methods.

Typical statistical models for traffic prediction include
autoregressive integrated moving average (ARIMA)
approach [5] and its variants such as seasonal ARIMA and
space-time ARIMA [6]. Kalman filters are also a powerful
statistical method for traffic prediction. Machine learning
methods used for traffic forecasting include hybrid wavelet

The associate editor coordinating the review of this manuscript and

approving it for publication was Tao Huang .

analysis [7], support vector regression model [8], neural net-
work models [9], and others. Statistical models require prior
knowledges whereas traditional machine learning methods
cannot deal with complicated spatio-temporal dependencies
of road traffic networks.

In order to better extract traffic features from voluminous
data, deep learning models, as an advanced non-parametric
method, have been increasingly utilized for traffic predic-
tion [10]. Long-short term memories (LSTM) [11], [12]
and its variants gated recurrent units (GRU) [13], [14]
were used to capture sequential dynamics evolution in time
from the traffic data. Hybrid models combining convolu-
tional neural networks (CNNS) and recurrent neural networks
(RNNS) [15], [16], [17], [18] were utilized to explore the
spatial-temporal dependencies to improve traffic forecasting
performance.

The performance of deep learning models depends on a
large set of high-quality traffic data, and perturbed data may
produce inaccurate or even erroneous prediction [19], [20].
In recent years, fusion models were used to take advantages
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of all models involved to improve the prediction perfor-
mance and stability [21], [22], [23], [24]. To name some,
Zheng et al. [25] presented a Bayesian combination method
(BCM) for traffic forecasting based on two neural net-
work predictors. A BCM framework was given in [26],
using gray correlation analysis to integrate the outputs of
a back-propagation neural network, ARIMA, and Kalman
filter, to deal with the long operation period and insensitivity
to prediction error fluctuations. In particular, an improved
BCM method was associated with a deep learning model
GRU in [27] to address the error amplification phenomenon
and improve the prediction performance.

It is worth noting that the above state-of-art techniques
still leave much room for improvement. i). The deep learning
networks used cannot capture the spatial characteristics of
complex road networks satisfactorily, resulting in poor pre-
diction performance. ii). The existing Bayesian combination
models cannot deal with unbalanced sub-model errors with
non-identical sign (i.e., negative vs positive errors). iii). The
traffic data sequences are nonlinearly correlated and the cor-
relation is ignored in determining the key parameters of the
Bayesian combination method.

In this paper, we present an advanced Bayesian
combination method (ABCM) in association with a graph
attention gated recurrent unit network (or graph neural net-
work, GNN) for traffic prediction. The model, denoted as
ABCM-GNN, adopts co-integration and error correction to
correct short-term unbalanced errors through long-term co-
integration in the Bayesian combination model. While in the
deep learning model, we use graph attention gated recurrent
unit networks to effectively capture the temporal and spatial
characteristics in the traffic network. The ABCM-GNN also
integrates sub-predictors GAGRU and ARIMA, the latter of
which deals with the nonlinear characteristics in short-term
traffic dynamics. The combined GAGRU, GAT and GRU
model can deal with massive data information and obtain
the spatial characteristics of complex traffic networks. Mean-
while, the time interval correlation parameters are obtained
by distance correlations.

The main contributions are as follows:
1) An advanced Bayesian combination method (ABCM)

is proposed based on co-integration and error correc-
tion, which can effectively combine the sub-predictors
and reduce short-term unbalanced errors.

2) By combining an ARIMAmodel and a GAGRU neural
networks using this ABCM, the nonlinear characteris-
tics and spatial correlations in the road network can be
effectively captured.

3) Distance correlation analysis is introduced to capture
the nonlinear temporal correlations in the time series
data, which can also reduce the computation time cost
of the algorithm.

The remaining parts of this article are organized as
follows. Section II gives a further detailed description
of ABCM-GNN model. Sub-predictors are introduced in
Section III. Section IV presents the validation data, evaluation

criterion, the processes of model implementation, and exper-
imental results, following the conclusion and future work
in Section V.

II. METHODOLOGY
This section presents the description of the ABCM-GNN
model. The structure of ABCM-GNN is shown in Fig. 1.
First, the correlation analysis is performed using the distance
correlation coefficient. Next, the cointegration analysis and
error correction model are presented. Then, we propose a new
combinatorial framework named ABCM. Finally, the process
of implementing the ABCM-GNN methods is presented in
detail.

FIGURE 1. The architecture of the ABCM-GNN model.

A. CORRELATION ANALYSIS
Short-term traffic volume forecasting is a typical time
sequences prediction question. The time interval is the unit
of time in which the sensor collects traffic flow data. Consid-
ering the set of time intervals in the NBCM model where the
traffic volume in the prediction traffic sequence intervals t is
determined strongly related to the historical traffic flow [26].
Let Z denote the time period collection and Z = {t −

1, t−2, . . . , t−z}. We present a distance correlation analysis
approach to obtian the correlation of present and historical
traffic volumes [28].

Assume that yt is the traffic flow in a time interval, which
is influenced by the J previous traffic flow for time period
(yt−1, yt−2, . . . , yt−J ), where J is set sufficiently large to
include most related time intervals. Let Yt = {yt (l)|l ∈ E}

denotes the traffic volumes target sequence to be predicted,
and Yt−z = {yt−z(l)|l ∈ E} is a traffic volume alternative
series whose data are the time interval z before the rele-
vant data in Yt . The collections of all period of the traffic
volume series are indicated as L, where E = {1, 2, . . . ,L}

and L are the lengths of the traffic volume series.Sequence
Yt ,Yt−1, . . . ,Yt−J is derived from the identical traffic data
series the relations between the alternative series Yt−z and the
target series Yt can be calculated by the distance correlation
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coefficient, denoted as (1), and r(t−z) denotes the correlation
between Yt and Yt−z.

r(t − z) =
d cov(Yt ,Yt−z)

√
d cov(Yt ,Yt )d cov(Yt−z,Yt−z)

(1)

where dcov2(Yt ,Yt−z) = A1 + A2 − 2A3.

A1 =
1
J2

J∑
i=1

J∑
n=1

∥yt−i(j) − yt−n(j)∥yt (j)

∥yt−z−i(j) − yt−z−n(j)∥yt−z(j) (2)

A2 =
1
J2

J∑
i=1

J∑
n=1

∥yt−i(j) − yt−n(j)∥yt (j)

1
J2

J∑
i=1

J∑
n=1

∥yt−z−i(j) − yt−z−i(j)∥yt−i(j) (3)

A3 =
1
J3

J∑
i=1

J∑
n=1

J∑
l=1

∥yt−i(j) − yt−n(j)∥yt (j)

∥yt−z−i(j) − yt−k−i(j)∥yt−z(j) (4)

The size of the set Z is formulated as:

R(Z ) = argmin{r(t − Z )|k ≥ δ, ∀k ∈ {1, 2, . . . J}} (5)

where δ is a measurement that determines the dimensionality
of the set Z and the set δ ∈ [0, 1].

B. ERROR CORRECTION MECHANISM
Traffic flow series are typical time series. Regression analysis
of a non-stationary time series as a stable one can lead to
pseudo-regressions, where there is no correlation between
the variables, but erroneous conclusions are drawn that the
regression results are given indeed correlated. According
to the cointegration theory, a number of stable variable
sequences, if their single integration order is the same, some
of their linear combinations are stable, it demonstrates the
existence of long-term equilibrium relations between these
variable series cointegration relationship.

Let the sequence of two variables xi and yi be a first-order
integral process, where yt ∼ I (1) and xt ∼ I (1)., and if the
following formula is true.

yt = βxt + ut ut ∼ I (0) (6)

The linear combination of the two nonstationary time series
is called cointegration. According to Granger and Siklos [29]
theorem, if there is a cointegration relationship between two
non-stationary time series, then these variables have error
correction expressions. When the stable relationship between
these variable series will have some imbalance in the short
term, i.e., the variables deviate from the cointegration rela-
tionship, the error correction model introduces the cointegrat-
ing variables reflecting the long-term equilibrium relations
into the dynamic equation and uses the long-term equilibrium
error as the correction term for short-term fluctuations, which
compensates for the shortcomings of traditional statistical

analysis models. The error correction model incorporates the
long-term equilibrium nexus with the short-term disequilib-
rium state to improve the stability of the forecasting model.

Due to the time variable xt and yt there is a long-term
equilibrium relationship as:

yt = k0 + k1xt + εt (7)

The short-term disequilibrium relationship is:

1yt = β11xt − λ(yt−1 − α0 − α1xt−1) (8)

The error correction expression is:

1yt = β11xt − λ(yt−1 − α0 − α1xt−1) + µt (9)

where yt−1 − k0 − k1xt−1 refers to nonequilibrium error term
of period time t−1; λ(yt−1−α0−α1xt−1) represents the error
correction term; α0, α1 are the long-term reaction parameters;
β1, λ are the short-term reaction parameters; εt is the residual
value.

C. ADVANCED BAYESIAN COMBINATION MODEL
For a certain time interval t , usually only the nth sub-model
with the highest prediction accuracy is selected as the best
model. We obtain posterior probability as:

pnt = P(U = n|yt , yt−1, . . . , y1)

=
P(yt ,U = n|yt , yt−1, . . . , y1)∑N
m P(yt ,U = m|yt−1, . . . , y1)

(10)

where pnt is considered as the weight of the nth predictor
at time period t; And N denotes the count of component
predictors.

Based on Bayes’ rule, the following recursion can be
obtained:

P(yt ,U = n|yt−1, . . . , y1)

=
P(yt ,U = n, yt−1, . . . , y1)

P(yt−1, . . . , y1)

=
P(yt ,U = n, yt−1, . . . , y1)
P(U = n, yt−1, . . . , y1)

�
P(U = n, yt−1, . . . , y1)∑N

m=1 P(yt−1,U = m|yt−1, . . . , y1)
= P(yt |U = n, yt−1, . . . , y1) · pnt−1 (11)

Assume that the sub-predictor error obeys aGaussianwhite
noise ent = (yt − ynt ) ∼ N (0, σn), then we have:

P(yt |U = n, yt−1, . . . , y1)

= P(ent = yt − ynt |U = n, yt−1, . . . , y1)

=
1

√
2πσn

exp(−[ent /
√
2σn]

2
)

(12)

where ent denotes the forecasting error of the predictor over
the time interval; ynt is the traffic forecasting of the nth pre-
dictor at the time interval t .
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We combine (5) and (10)-(12) to obtain:

pnt =

1
√
2πσn

pnt−1 exp(−[ent /
√
2σn]

2
)∑N

m=1
1

√
2πσm

pmt−1 exp(−[emt /
√
2σm]

2
)

(13)

Altering pnt−1, p
n
t−2, p

n
t−3, . . . , p

n
1 in (13), then:

pnt =

( 1
√
2πσn

)
t−1

exp(
∑t−1

i=0 −[ent /
√
2σn]

2
)∑N

m=1 (
1

√
2πσm

)
t−1

exp(
∑t−1

i=0 −[emt /
√
2σm]

2
)

(14)

Eq. (14) denotes an unrealistic assumption that the traffic
volumes in the forecast interval are relevant with past traffic
volumes. As referred to in a few previous research stud-
ies [15], [16], traffic volumes are susceptible to disturbances
from the external environment, especially during peak hours.
Usually only the traffic volumes of the last few periods are
strongly correlatedwith the traffic volumes of a given forecast
period. The smaller the interval, the greater the influence of
the traffic on the current flow.

Therefore, we have the weight pnt of the n
th predictor as:

pnt =

( 1
√
2πσn

)
R(Z )

exp(
∑

t∈K −[ent−i/
√
2σn]

2
)∑N

m=1 (
1

√
2πσm

)
R(Z )

exp(
∑

t∈K −[emt−i/
√
2σm]

2
)

(15)

The prediction results can be obtained as a linear combina-
tion of the output of each predictor with the weights of each
sub-predictor over the time interval. [26]], denoted as:

ŷt+1 =

∑N

m=1
pmt y

m
t+1 (16)

For the condition of non-stationary time series combined
prediction modeling, to establish an integrated prediction
model of non-stationary time series, the effectiveness of com-
bined prediction modeling must be judged first. Since the
traffic flow series are non-stationary, the cointegration theory
is adopted into the fused traffic volumes forecasting and the
cointegration is verified for the single forecasting series and
the forecasting series. Test whether the predicted sequence
ŷt+1 corresponds to m single item.

The traffic flow sequence ymt+1, y
m−1
t+1 , . . . , y1t+1is predicted

to have a cointegration relationship, and the Engle-Granger
two-step test [29] is used here.
Step one, the least square method is used to estimate the

regression formula as follow:

ŷt+1 = α + βiyit+1 + εit+1(i = 1, 2, . . . ,m) (17)

α̂ and β̂i are used to denote the estimated value of the
regression coefficients, so that the estimated value of the
model residuals as:

εit+1 = ŷt+1 − α̂ − β̂iyit+1(i = 1, 2, . . . ,m) (18)

Step two, check the stationarity of εit+1.
If εit+1 ∼ I (0), there is cointegration relationship between

the predicted sequences ŷt+1 and the m output sequences in

the sub-prediction period. If it is found that there is a cointe-
gration relationship between each single traffic flow predic-
tion series and the predicted series, and there is a long-term
equilibrium relation between them, it can be proved that these
single traffic flow prediction series can be used to establish an
effective combined traffic flow prediction model.

êt+1 = yt+1 − ŷt+1 = yt+1 −

∑N

m=1
pmt y

m
t+1 ∼ I (0) (19)

According to Granger representation theorem, error cor-
rection model can be obtained in the form of:

1yt+1 =

∑m

i=1
βi1yit+1

− λ(yt−1 − α0 −

∑m

i=1
αi1yit ) + µt+1

=

∑m

i=1
βi1yit+1 − λεt + µt+1 (20)

The first order hysteresis yt is used as error correction
model. At last, combined equation (16) takes the form:

ŷt+1 =

∑N

m=1
pmt y

m
t+1 + pm+1yt + êt+1 (21)

Through the cointegration of the sub-model and the pre-
diction model, combined with the long-term equilibrium cor-
relation of the prediction time series, combined with the idea
of error correction, the error correction of the final prediction
model is carried out to improve the prediction accuracy.

D. STEPS OF ABCM-GNN MODEL IMPLEMENTATION
This part summarizes the steps of ABCM-GNN
implementation:

Step1: The raw traffic volume data are normalized using
the Min-Max method so that the traffic data take values
between zero and one.

Step2: Introduce the distance correlation analysis coef-
ficients to derive the historical time series that are highly
correlated with the traffic volume within the target time
interval.

Step3: Each sub-predictor is calibrated using the past traf-
fic volume data to select the best settings of the predictors.
Then the trained sub-predictors are used to forecast the test
traffic flow.

Step4: The traffic volume is predicted by the ABCMmodel
using the weights and error correction model.

III. TWO COMPONENT PREDICTORS
A. GRAPH ATTENTION GATED RECURRENT NETWORK
1) GRAPH ATTENTION MECHANISM
Attention mechanism in time series task can extract more
valuable information accurately and efficiently [17]. The
attention mechanism is employed to capture the propagation
characteristics and spatial correlation of traffic volume data
seen in complex traffic road networks.

The input data to this part is A group of node characteris-
tics, H = {h1, h2, . . . , hn}, hi ∈ RF where N is the number
of nodes characteristics in the traffic road networks graph.
Masked attention is usually used to deal with real-world
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graphs. In adjacency matrix, Aij=1means the road nodes and
in the range are connected, others mean disconnected.

eij =

{
a(T (hi),T (hj)) Aij = 1

0 otherwise
(22)

In equation (22), adjacency matrix is obtained through
threshold Gaussian core.

We employ active the function normalizes the attention
coefficients so that they are comparable between first-order
neighborhoods. The normalization function is shown below.

êij = soft max(eij)=
exp(eij)∑

k∈Ni exp(eik )
(23)

where soft max(�) refers to a nonlinearity function. The atten-
tion coefficient can be acquired by

hi = σ (
∑
j∈i

êijWhj) (24)

whereW is the weight matric of node characteristics.
In order to further extract spatial features of traffic

networks efficiently, a multi-head attention mechanism is
designed. The number of independent attention heads param-
eter is denoted by K .The node collects information at the
same time through multiple parallel channels from adjacent
nodes.

hi = ||
K
k=1σ (

∑
j∈i

êkijW
khj) (25)

where, ∥ denotes concatenate operation, êij is a learnable
weight vector.

2) GRAPH ATTENTION GATED RECURRENT NETWORK
Based on spatio-temporal information aggregation,
GRU [13], [14] unit is taken as themain body. Gated recurrent
Unit (GRU) is a popular recurrent neural network that can
effectively capture long-term and short-term time series in
recent years. We replace the original linear connection layer
of GRU units with graphical note operations functions. The
architecture of GAGRUmemory block is illustrated in Fig. 2.
The GAGRU element is established and its internal tensor
calculation conforms to the principle of information process-
ing of spatio-temporal graph nodes. The architecture of the
GAGRU model is shown in Fig. 3.

rt = σ (GA(xt ) + GA(ht−1) + br ) (26)

zt = σ (GA(xt ) + GA(h(t−1)) + bz) (27)

nt = tanh(GA(xt ) + (GA(rt ∗ h(t−1)))+bn) (28)

hi = σ (
∑
j∈i

êijWhj) (29)

where xt and yt . denote the input and output at time step t , and
ht is hidden state of model. zt and rt denote the update and
reset gate, σ is the activate function, and * is the Hadamard
product. GA(·) is a graph attention mechanism function.

FIGURE 2. The architecture of GAGRU memory block.

FIGURE 3. The architecture of the GARNN model.

B. ARIMA METHOD
ARIMA [5] model is one of the most widely applied time
sequence prediction methods for traditional parametric meth-
ods. It can perform an arithmetic fit to past moment time
data to predict the present. The ARIMA model usually
refers to ARIMA(p, d, q)model, where AR is autoregressive,
MA is sliding average, p is the number of autoregressive
terms, d is the count of differences made to make it a smooth
series, and q is the count of sliding average terms The model
is expressed as follows:

ϕ(B)(1 − B)d ŷt = θ (B)εn (30)

Bŷt = ŷt−1 (31)

ϕ(B) = 1 − ϕ1(B) − ϕ2(B2) − . . . ϕp(Bp) (32)

θ (B) = 1 − θ1(B) − θ2(B2) − . . . θq(Bq) (33)

where ϕ(B) denotes the autoregressive process of order p;
εn is random error that follows a normal distribution and
has a mean value of 0, variance σ 2, and cov(εn, εn−d ) = 0,
∀d ̸= 0; θ (B) denotes the moving average process of order q.

IV. EXPERIMENTS AND DISCUSSIONS
A. DATA DESCRIPTION
To verify the proposed short-term traffic volume prediction
model, we validated our model on California Highway traffic
data set PeMS. The traffic data set was captured by the
positioned remote flow microwave sensor (RTMS). These
data sets were collected in real-ime every 30 seconds by
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the Caltrans Performance Measurement System (PeMS) [30]
is shown in Fig. 4. Traffic volume data is assembled from
real-time information every fiveminutes. The system deploys
outstrip 39,000 sensors on the freeways of California’s major
metropolitan areas. Geographic information about the sensor
station is recorded in the dataset. The PeMS data is SAN
Bernardino traffic data for June 1st to August 31st 2022 and
includes 1,979 detectors on eight roads. We used the data of
the first 50 days as the training set and the data of the last
12 days as the test set. We aggregated the traffic speed every
5 minutes. We trained this architecture on a server with a
NVIDIA 2080Ti and an Interi9-9980XE CPU. The GAGRU
and GRU model were implemented on Pytorch. And we use
pyramid function for ARIMA model. The predictors were
combined with NBCM or ABCM.

FIGURE 4. Weekly traffic volume data sampled at 5-minute intervals.

B. PREDICTIVE PERFORMANCE CRITERIA
In order to be able to estimate the accuracy of the forecast-
ing models, in this paper we adopt three error evaluation
metrics to measure the capabilities of different traffic pre-
diction methods, namely mean absolute error (MAE), mean
square root error (RMSE), and mean absolute percentage
error (MAPE). In addition, we also adopt three information
loss criteria indicators [31], [32] for optimal model selec-
tion, namely Akaike information criterion (AIC), Bayesian
information criterion (BIC), and Hannan-Quinn Information
Criterion (HQIC). The formulas for each evaluation metric
are expressed as below.

MAE(y, ŷ) =
1
|n|

n∑
i=1

∣∣ŷi − yi
∣∣ (34)

RMSE(y, ŷ) =

√√√√ 1
|n|

n∑
i=1

(ŷi − yi)
2 (35)

MAPE(y, ŷ) =
1
|n|

n∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣ (36)

AIC = ln(

n∑
i=1

(ŷi − yi)
2

|n|
) +

2m
n

(37)

BIC = ln(

n∑
i=1

(ŷi − yi)
2

|n|
) +

ln(n)m
n

(38)

HQIC = ln(

n∑
i=1

(ŷi − yi)
2

|n|
) +

ln(ln(n))m
n

(39)

where n denotes the number of observed samples, m denotes
the number of model parameters, ŷi denotes the predicted
value, yi is the true value.

C. MODEL SETTINGS
1) GAGRU AND GRU
GAGRU and GRU [13] utilizes the data set of previous two
months for training process. In the GAGRU model, there are
few hyperparameters that require confirmation, such as the
number of attention heads in the graph attention mechanism.
Table 1 shows the effect of the number of attention heads
on the performance, and it can be seen from the table that
when the number of attention heads is 3, the metric of each
parameter metric is the smallest on the test dataset. The initial
learning rate is le-3 and the decay rate is 0.6 / 10 epochs.
We set the number of model training epochs to 100, the batch
size to 32, and set the number of hidden units to 64. Then,
the hidden sizes of GRU are set to 128, and we utilize Adam
optimizer and adaptive learning rate. The mean square error
of the predicted results with respect to the ground truth is
minimized to obtain the weight matrix.

TABLE 1. Effect of the GAGRU with different number of attention heads.

2) ARIMA
Model identification is performed for the selected eight road
segments using historical traffic volume data for the previous
two months. Fig. 5 describes the process of ARIMA model
prediction. First, the series smoothness test is performed
using MA and AR operators, and the unstable series are dif-
ferenced to obtain the smooth series. Secondly, the parameter
values of ARIMA are determined using the great likelihood
estimation, and the residual statistics of the model are calcu-
lated; then, the residuals of the ARIMA model are estimated
and tested to obtain the best traffic volume prediction model
parameters for the road target sections. In this experiment,
we adjusted auto.arima () function to automatically determine
the number of autoregressive terms, the number of moving
average terms, and other parameters to determine the optimal
model for traffic volume prediction.
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FIGURE 5. The process of setting up the ARIMA model.

3) CORRELATION ANALYSIS
In this paper, the target series Yt is obtained by calculating
the average traffic volume of eight roads in the dataset at each
time period. We suppose a potential correlation between cur-
rent traffic volume and traffic volume within the first 25 inter-
vals. Therefore, the total length of the correlation interval is
one hour. The distance correlation coefficient between the
alternative and the object sequence is increased from 0 to 25,
and the results are illustrated in Fig. 6. As depicted in Fig. 6,
R(Z ) and the set Z and are decided by parameters. For exam-
ple, set to 0.98, R(Z ) = 3 and Z = {t − 1, t − 2, t − 3}.

FIGURE 6. The result of the correlation analysis.

D. EXPERIMENTAL RESULTS
After the experiment, the model in Table 2 was vali-
dated. Table 2 demonstrates the detail description of testing
models. And we choose ARIMA and GAGRU models as
sub-predictors. The NBCM-GNN and IBCM-GNN incor-
porate the ARIMA and GAGRU models using the NBCM
model [26] and IBCM model [27]. And ABCM-GNN fuses
the same sub-predictor through our proposed traffic volume
model ABCM. Meanwhile ABCM-DL fuses ARIMA and
GRU model. FC-LSTM is a variant of LSTM, with input
and hidden states in vector form. The temporal correlation of
traffic data is captured through LSTM, but spatial correlation
is not fully considered [12]. The STGCN consists of graph
convolutional layers and time convolutional layers, which can
capture the spatial correlation between road network nodes

TABLE 2. The detail description of the testing models.

and the temporal characteristics of traffic data [18]. The
spatial correlation between them and the temporal character-
istics of traffic data.The forecasting results of the ARIMA
and GAGRU models on Friday and Sunday are shown
in Fig. 7 and Fig. 8.

All the results of the models with δ set as 0.98 is shown in
Table 3. It shows the superior prediction performance of our
proposed model under MAE, RMSE, MAPE criteria com-
pared to other models. Comparing the GAGRU model with
GRU and ARIMA, the MAE metrics improved by 2.63 and
5.53 in next 15 minutes, respectively, indicating that the
GAGRU fusion graph neural network is capable of higher
predictive performance compared to the traditional ARIMA
and deep learning method GRU.

FIGURE 7. Predicted and observed traffic volume of two sub-predictors in
the Next 15 Minutes on Friday.

Similarly, the MAE and MAPE criteria of ABCM-GNN
and ABCM-DL improved by 0.13 and 0.44% in next 15 min-
utes, implying that the joint model fusion graph neural
network can improve the prediction accuracy. For different
combination approaches, the MAE and MAPE metrics of
our proposed ABCM-GNN improve by 4.2% and 6.6% over
IBCM-GNN, and the surface-based error correction ABCM
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TABLE 3. Results comparison of the models in the next 15 minutes, 30 minutes and 45 minutes.

TABLE 4. Results comparison of the models in the next 15 minutes, 30 minutes and 45 minutes on friday and sunday.

FIGURE 8. Predicted and observed traffic volume of two sub-predictors in
the Next 15 Minutes on Sunday.

model effectively corrects the prediction error compared to
the IBCMmodel, which has better prediction results. In terms
of optimal model selection, the numbers of model param-
eter is a disciplinary term which means that a small AIC
value indicates a better model. The AIC and BIC criteria of
ABCM-GNN and IBCM-DL decreased by 0.12 and 0.11 in
next 15 minutes, implying the goodness of the ABCM-GNN
model. Due to the large number of parameters in the deep
learning model, ABCM-GNN did not demonstrate advan-
tages in information loss criteria compared to ABCM-DL.
However, in terms of error evaluation indicators, ABCM-
GNN has better performance and smaller error values.

FIGURE 9. Accumulative weight of each predictor by ABCM.

The comparison of the prediction effects of ABCM-GNN and
IBCM-GNN models with observations is shown in Fig. 11.
Fig. 9 represents the cumulativeweights calculated byABCM
for each predictor, indicating that ABCM assigns weights
among sub-models according to the error magnitude. The
amount of error correction in ABCM-GNN and NBCM-
GNN is shown in Fig. 10, and the surface error correction
mechanism is able to perform short-term equilibrium error
correction in the combined model prediction process. The
results of the different models on Friday and Sunday is shown
in Table 4. Meanwhile, the ABCM-GNN model superior
other models in the case of different traffic volume data.
In addition, another essential feature of ABCM-GNN is that
its prediction performed is not significantly affected by the
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FIGURE 10. The amount of error correction of ABCM-GNN.

FIGURE 11. The prediction results of the ABCM-GNN model in the next
15 minutes on friday and sunday.

length of the prediction period. The results indicate that the
predictive performance of our proposed ABCM-GNN model
outperforms other models in the measurement of MAE,
RMSE and MAPE.

V. CONCLUSION AND FUTURE WORK
This paper proposes a new short-term traffic volume fore-
casting model called advanced Bayesian combination model
with graph neural network (ABCM-GNN) model. Firstly,
an ABCM framework is established, and the cointegra-
tion analysis and error correction mechanism are intro-
duced. Through the long-term cointegration correlation, the
short-term forecasting quantity of the joint predictor is
corrected to enhance the prediction accuracy. Second, the
non-linear correlation between historical and current traffic
flows is analyzed using distance correlation coefficients to
determine the length of the previous time set sequences to
be used in the ABCM framework. Then, the graph attention
gating recurrent neural network model is combined with the
time domain prediction model based on the advantages of
graph attention mechanism in dealing with the spatial char-
acteristics of traffic flow, and the GAGRU method is used

as sub-model of the advanced Bayesian combination model.
Experimental performance on a real-time dataset shows that
both the proposed ABCM framework and the introduced
GAGRU sub-predictor enhance the prediction accuracy of
the combined model. And MAE and RMSE metrics of the
ABCM-GNNmodel improved by 0.25 and 0.31, respectively.
Meanwhile, ABCM-GNN model outperforms other models
in the case of different traffic volume data.

Since the performance of ABCM-GNN model is largely
dependent on sub-predictors, more high-level sub-predictors
should be considered in the future. Such as SVM and KNN
in ABCM framework. At the same time, more information
loss standard parameters (eg: AIC and its variants) will be
included in my work related to optimal model selection.
Meanwhile, the next step will focus on obtaining more kinds
of data information from various types of data such as climate
conditions, passenger travel demand distribution, and unex-
pected road conditions. Further, the method can be applied to
other time series predictions, such as arrival time estimation
and speech recognition.
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