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ABSTRACT Ship detection and localizing its position are indispensable in maritime surveillance and
monitoring. Until early 2000, ship detection relied on human intelligence, but with the fast-processing speed,
artificial intelligence (AI), especially deep learning, has replaced manual intervention with automatic local-
ization in tracking naval activities. Taking advantage of the continuous and cloud-free ocean observations of
Synthetic Aperture Radar (SAR), recent studies have demonstrated some success in utilizing SAR data to
localize ships using deep-learning and other AI methods despite the accuracy of the models being lower
than the acceptable limit. However, the existing models are inherently complex and time consuming in
addition to demanding an extensive computational resource, which pose a significant challenge when applied
to satellite-based data. This study presents a computationally efficient deep-learning-based algorithm that
has a wider applicability and improves the accuracy over the existing models for ship localization in SAR
images. Training and testing of this algorithm were conducted using the SAR Ship Dataset, which contains
ship chips with complex backgrounds extracted from Gaofen-3 and Sentinel-1 satellite data. It produced
the localized ship’s position with bounding boxes in SAR images using the combined traditional computer
vision and deep neural network configuration, which comprises a novel backbone network called Ship-Net or
S-Net. The S-Net model has a thirteen-layer backbone feature extraction network and a four-layer regression
network concatenated. Further, this study proposes a modified combined loss function for optimizing the
model performance. A comparative analysis of the proposed S-Net model was done using the various pre-
build model architectures and loss function combinations. The results showed that the S-Net model with a
combined loss function yielded 94.88% precision and 79.68% recall, with 12.58% precision and 7.39% recall
higher than the state-of-the-art Faster RCNN baseline model. The proposed S-Net model has a relatively
higher performance than the existing state-of-the-art models for ship localization in SAR images and can
become an efficient tool for ship localization in optical images with suitable architectural and training scheme
modifications for better coastal surveillance and worldwide naval security.

INDEX TERMS Deep-learning, maritime surveillance, object detection, ship detection, SAR.

I. INTRODUCTION
Ship detection and localization on Synthetic Aperture Radar
(SAR) is vital in maritime applications, including fish-
ery monitoring and management, rescue operations, marine
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transit and traffic surveillance, and national and international
security. The International Maritime Organization (IMO)
requires all ships to carry Automatic Identification Sys-
tems (AIS) for security reasons and to avoid collisions with
other ships. However, a practice known as ‘‘going dark’’
(deactivating the AIS system) is a common phenomenon
done intentionally near the Exclusive Economic Zone (EEZ).
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These territorial and international waters affect levels of
maritime security. Due to the potentially promising capabil-
ities of high-resolution/wide swath remote sensing, and all-
day and all-weather imaging, ship detection in SAR images
has become one of the most effective means in maritime
surveillance and many valuable applications for civil and
military fields. In recent years, experimental results and
the developed methodologies based on the imaging sen-
sors like RADARSAT-2, TerraSAR-X, and Sentinel-1 have
demonstrated and promoted the utility of SAR images for
ship detection and localization applications [1]. Manual ship
localization in satellite images is very laborious and time-
consuming due to the comprehensive coverage of the ocean
and the requirement of expertise in subjective analysis for
labeling the coordinates of ships. The development of statis-
tical algorithm-based localization techniques reduced human
effort and improved efficiency. The most popular methods
are based on the constant false alarm rate (CFAR) [2], but
limitations include suppressing clutter and controlling near-
shore false alarms. In recent years, the modified CFAR-based
approaches have been proposed [3] along with a variety
of different methods, including the generalized likelihood
ratio test (GLRT) [4], visual saliency [5], super-pixel seg-
mentation [6], polarization decomposition [7] and some
auxiliary features (oil spill clues and ships wake) [8], [9]
based localization. Another popular method, template-based
detection [10], provides specific target templates accord-
ing to the different scenarios. However, establishing a tem-
plate library requires expertise and weak generalization abil-
ity [11]. The development of machine learning techniques
like AdaBoost [12], decision tree [13], and support vector
machine (SVM) [14] increased the efficacy with a consid-
erably reduced processing time, but their accuracy is lim-
ited. The recent deep learning techniques have obsoleted
the machine learning techniques by solving the localizing
problems with high accuracy and faster performance.

Since object detectors in deep learning can learn the tar-
get positions directly from the raw dataset with annotation,
it has been adopted for ship localization in SAR images.
Transfer learning and fine-tuning are extensively used in this
process. The traditional process of ship localization using
an object detector is to modify a pre-trained model like
RCNN [15], Fast RCNN [16], Faster RCNN [17], SSD [18],
and YOLO [19] and train them with SAR image chips.
These pre-trained state-of-the-art deep learning models can-
not maneuver the SAR characteristics because the pre-trained
object detectors are trained on datasets like ImageNet [20] or
MS COCO [21], which have very different feature character-
istics than SAR images. SAR is a coherent imaging process
with characteristics like foreshortening, layover, and shadow-
ing, which are not found in RGB images. The existing models
are very complex in nature and require a large computational
resource. Hence, there is a huge demand for a lightweight
model that overcomes the above issues.

Recently, a few lightweight models have been proposed
by various researchers to reduce the computational cost.
For instance, Xe et al. [22] proposed a Lite-YOLOv5 that
reduces the computational cost of the original YOLOv5 by
56.59%. Wang et al. [23] proposed a detection module from
the fisher vectors that suppress sea clutter and enhances ship
detection by introducing two new global and one improved
local cue. Geng et al. [24] proposed a lightweight CNN based
module that separates false alarms near the target object.
Miao et al. [25] proposed an improved lightweight RatinaNet
model by replacing the backbone with a ghost module, and
Xiong et al. [26] proposed a lightweight model by redesign-
ing and optimizing pyramid pooling in the YOLOv5n model.
Most of these models still are complex and computationally
expensive. Here, a new state-of-the-art algorithm has been
proposed with end-to-end training to localize ships in SAR
images. This algorithm is less complex and reduces the com-
putational cost and resources.

This study aims to design a network pipeline to reduce
computational complexity and increase ship localization
accuracy with SAR images. The proposed algorithm is a
single-stage object detector with a novel backbone feature
extraction network and a regression network concatenated
for localizing the ship chips in the SAR images. A modified
combined loss function has also been proposed to optimize
the learning process and improve accuracy. This study will
be very beneficial in coastal surveillance for automatically
monitoring accurate ship movements in the ocean without
human intervention. Accordingly, the main contribution of
this work is organized as follows: i) a comprehensive review
of popular ship localization techniques based on satellite
remote sensing data, ii) a detailed description of the proposed
state-of-the-art model and loss function developed for ship
localization, iii) a comparison of the experimental results for
the proposed state-of-the-art model with existing models, and
iv) a brief discussion on further challenges, failure cases, and
possible futuristic trends.

II. DATASET
The SAR dataset used in this study are those reported by
Wang et al. [27]. The dataset contains 39,716 ship chips (an
updated version reported by them in 2021 after correcting
the bounding box errors and removing the repeated clips)
from 102 Gaofen-3 satellite images and 108 Sentinel-1 satel-
lite images. For Gaofen-3 data, the image resolutions are 3 m,
5 m, 8 m, and 10 m with Ultrafine Strip-Map (UFS), Fine
Strip-Map 1 (FSI), Full Polarization 1 (QPSI), Full Polariza-
tion 2 (QPSII) and Fine Strip-Map 2 (FSII) imaging modes,
respectively. For Sentinel-1 data, S3 Strip-Map (SM), S6 SM,
and IW-mode were used. The ship chips are 256 × 256 pix-
els, with one or more ships in each chip with a multiscale
resolution. The annotation was done by SAR experts using a
LabelImg software. In the field of ship detection and recog-
nition in SAR imagery, several popular datasets have been
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used by the researchers, including SSDD [28], HRSID [29],
SRSDD-v1.0 [30] and LL-SSDD-v1.0 [31]. For this study,
SAR Ship Dataset was chosen due to its distinct advantages.
The SAR Ship Dataset offers a consistent resolution across
all images, providing a standardized testing environment.
Additionally, it contains a large number of images, allowing
for a comprehensive representation of real-world maritime
scenarios. The latest version released in 2021 has been used
for the proposed model with stronger augmentations.

FIGURE 1. Sample image extracted from the SAR ship dataset.

The dataset uses the PASCAL VOC format to explain the
annotations. The initial release (2019) adopted this format.
As shown in Fig. 1, each ship chip in an image has a bounding
box (BBox) around it, denoted by the letters X and Y coor-
dinates. Each BBox has a ship center denoted by X0 and Y0,
and the ship height and width (H & W) indicate the ship’s
location.

H = Ymax − Ymin (1)

W = Xmax − Xmin (2)

X0 = (Xmax + Xmin)/2 (3)

Y0 = (Ymax + Ymin)/2 (4)

here, Xmax and Xmin are the maximum and minimum range
of ship pixels in the X direction, and Ymax and Ymin are
the maximum and minimum range of ship pixels in the Y
direction. The number of channels in RGB images is three
by default, which are denoted by the letters R, G, and B
(Red, Green, and Blue). Since SAR images only have a gray-
level channel, it is copied twice to obtain RGB-3 channel
images. The entire dataset was randomly split into training
(70%), validation (20%), and test (10%) datasets. After a
careful analysis of the data, it was found that the dataset
contains mainly three types of ship chips (a) Small-sized
ships in the unenhanced and enhanced form in the open ocean,

(b) Large-sized ships in the unenhanced (non-contrast) and
enhanced forms in the open ocean, and (c) Ships without land
cover in the coastal area. This gives the benefit of detection
for multiscale ship images.

III. METHODOLOGY
This section presents the theoretical basis of the proposed
algorithm for ship localization. Generally, the ship localiza-
tion algorithms are based on the traditional computer vision
approaches and divided into two categories: (a) two-stage
detectors and (b) one-stage detectors. The two-stage detec-
tors are efficient, but it takes a long processing time. It has
two neural networks, one creating region proposals, and the
following selects the best suitable region proposal, localizing
the ships. One stage detector does not generate region pro-
posals but regresses bounding box coordinates for the target
ships for localization in the image. As mentioned earlier, the
single-stage algorithm adopted for this study as one-stage
detectors improves the speed and reduces the computational
redundancy compared to the two-stage detectors algorithms.

The single-stage algorithm and the detailed network archi-
tecture of the proposed model are shown in Fig. 2 and Fig. 3.
This model has two concatenated networks (Fig. 3) andworks
as a single model with the feature extraction and regression
networks (working together as S-Net). The feature extraction
network extracts high-level features from the image, and the
regression network predicts the bounding box coordinates
for the target position from the extracted features. The loss
function calculates the difference between the predicted and
annotated coordinates (Fig. 2) and feedbacks the information
to the networks to further update theweights. The architecture
and loss function are discussed in the following section.

A. MODEL ARCHITECTURE AND TRAINING
This section describes the architectural design of the pro-
posed model and training scheme used with optimization in
this study.

1) FEATURE EXTRACTION NETWORK
The feature extraction network (as shown in Fig. 3) is a deep
learning-based convolutional neural network that has eleven
layers of feature extraction network with seven convolutional
layers with a filter size of 3× 3 and with channel numbers of
32, 64, 128, 256 and 512 and four max-pooling layers with
a filter size of 2 × 2 with stride = 1. It has an input layer of
256 × 256×3 on top of the first convolutional layer and a
flatten layer after the last max pooling layer. Thirteen layers in
total have been used to design the feature extraction network.
The convolutional layer applies a convolutional operation
with the pixel brightness values, and the max pooling layer
pools the maximum value among the filter size. A flattened
layer creates a new array with all sub-array elements concate-
nated to a single row as a high-level feature. The Sigmoid and
ReLU activation functions have been used for this network.
A skip connection has been established from third to flatten
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FIGURE 2. Schematic diagram of the proposed algorithm for ship
localization.

layer to focus on large features along with deep features for
better accuracy.

2) REGRESSION NETWORK
The regression network learns a relationship between the fea-
tures and the target. The network input includes the high-level
features from the flattened layer, and it predicts bounding box
coordinates through the relationship between the features and
the ground truth. The network has four fully connected convo-
lution layers with 128, 64, 32 & 4 neurons, respectively, and
the ReLU and sigmoid activation functions have been used
for threshold firing. The final layer predicts the bounding box
coordinates of the target ship position.

3) LOSS FUNCTION
The loss function is a mathematical function that computes
the difference between the model output and the ground
truth.

FIGURE 3. The detailed architecture of the proposed S-Net model.

The model calculates and updates its weights based on
errors. Different loss functions are used for general object
detection, but the two most popular loss functions are used
in these experiments, along with a modified loss function,
includeMean Square Error loss andHuber loss functions. The
Mean Square Error (MSE) loss function takes the form

Lmse =
1
N

∑N

i=1

[(
yi − ỹi

)]2 (5)

where yi = actual value, ỹi = predicted value, and N is
the number of images. The Modified Mean Square Error is a
Mean Square Error loss function with an added optimization
parameter (λ) to optimize the model performance.

L′
mse =

1
N

∑N

i=1

[
λ

(
yi − ỹi

)]2 (6)

where λ = loss coefficient (empirical value), and
0.01< λ < 1, with 0.05 interval for model testing, yi = actual
value, and ỹi = predicted value. The Huber loss function is
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given by

Lδ =

{
1
2

(y − f (x))2
}

for |y − f (x)| < 0

= δ |y − f (x)| −
1
2
δ2 otherwise (7)

where y = predicted value, f(x) = actual value, and δ is the
hyperparameter whose value is taken as 1 for this model.
It limits the influence of poorly fitting data points in the
model.

The final loss function is a combined loss function is based
on the Modified Mean Square Error and Huber loss functions
and works as a regression loss

Lfinal = L′
mse + Lδ (8)

The combined loss function produces better results for
all the experiments conducted with S-Net, which makes the
model more efficient.

B. PERFORMANCE ASSESSMENT
The model’s efficiency was calculated based on the Intersec-
tion Over Union (IOU) value – a ratio between the overlap
and union of two bounding boxes (i.e., predicted and ground
truth boxes (as shown in Fig. 4) and five statistical metrics
(1) Precision, (2) Recall, (3) F1 score, (4) Accuracy, and
(5) Accuracy boost. These matrices were obtained on metric
threshold calculations based on the IOU values. The thresh-
olds are True Positive (TP), True Negative (TN), and False
Positive (FP), as shown in table 1. If the IOU is equal to or
greater than 0.5, it is called a True Positive, and it means good
localization. If the IOU is between 0 and 0.5, it is called a
True negative and means partial localization that cannot be
considered a ship. The output target is shifted from the actual
ship. If the IOU is 0, it is called a False Positive, which means
the model predicts a target that is entirely not a ship.

Based on the threshold, the matrices are evaluated as:
1) Precision: It is a measure of correct prediction. A frac-

tion of predictions conveys the percentage of correct
predictions among true predictions. The precision met-
ric is calculated as

Precision =
TP

TP + TN

2) Recall: It is a measure of correct predictions among all
positive predictions. It is calculated as

Recall =
TP

TP + FP

3) F1 score: F1 score is a harmonic mean of both precision
and recall. It is used to compare and evaluate the model
performance. The F1 score is calculated as

F1 Score = 2x
Precision × Recall
Precision + Recall

4) Accuracy: It refers to correct predictions among all the
prophecies. It’s a measure of the model’s efficiency and

FIGURE 4. Intersection over union (base for accuracy metrics).

TABLE 1. Metric threshold calculations based on the IOU data.

can be calculated as

Accuracy =
TP

TP + TN + FP

5) Accuracy boost: It is a relative measurement of the
accuracy of the models against the baseline model. It is
used to compare the effectiveness of models with a
baseline model. It can be calculated as:

Accuracy boost =
Accuracy

Accuracy (Baseline model)

This metric is used to compare the performance of the pro-
posed model with the baseline data. The proposed model
boosts its performance by 124% compared to the baseline
model (table 2).

IV. EXPERIMENTAL DETAILS
Several experiments were conducted with the combination of
pre-trained models that contain different backbone architec-
tures and different loss functions, such as Faster RCNN with
its own loss function, SSDwith its own loss function, VGG16
with the MSE, Huber and combined loss functions for
both ImageNet pre-trained and end-to-end trained weights,
Resnet50 with the MSE, Huber and combined loss functions
with ImageNet and end-to-end trained weights, ResNet152
with the MSE, Huber combined loss functions with end-to-
end trained weights, Inception with the MSE loss function,
and proposed S-Net with the MSE, Huber and combined
loss functions (modified MSE with Huber) with end-to-end
trainingweights. The Faster RCNNwas considered a baseline
model due to its popularity as an object detection benchmark
algorithm in computer vision. The existing models, such
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TABLE 2. Experimental results of the proposed and baseline model.

FIGURE 5. Training loss vs epoch graph for the convergence of S-Net
model.

as VGG16, ResNet50, ResNet152, and Inception V3, were
modified in their last layer, replacing the last layer with
four fully connecting layers for localization operation. The
present study used the Google Colab platform with Python
3.8 support under the Colab environment to train the models.
The Nvidia Tesla P100 GPU with tensor- flow 2.8 as the
backend and CUDA 11.0 and cuDNN 7.0.5 were used for
training purposes. The programing language CUDAwas used
for GPU training, and the parallel computing architecture
cuDNN was used for faster training. The max iteration epoch
was 4000, which was found suitable for the convergence of
the propose model (Fig. 5) with a batch size of 32 and a
learning rate of 0.001 with the Adam optimizer with Train,
Validation and Test ratio as 7:2:1. The training automatically
stops if the training loss converges below 0.001.

V. RESULTS AND DISCUSSION
This section presents the performance evaluation results
based on several statistical matrices calculated between the
model predictions and ground truth data and a rigorous com-
parative analysis to verify the model’s capability. The model
results are evaluated quantitatively and qualitatively using
the dataset. The proposed algorithm is based on convolu-
tional neural network (CNN) architectures where the con-
volutional network actively extracts more complex features
with increasing network depth due to the added nonlinearities

in activation functions like ReLU and Sigmoid. To evalu-
ate the proposed model, seven CNN models were chosen
with different loss functions (referred in section V) because
of their wide performance variability and a state-of-the-art
Faster RCNN model was considered the benchmark baseline
model. The results of the proposed models on ship local-
ization in SAR images are shown in table 2. It is observed
that the proposed S-Net model exceeds the baseline Faster
RCNN model in all the accuracy matrices. The values of
Precision, Recall, and F1-Score especially prove that the S-
net model can improve the ship localization performance
with different scales simultaneously. The Precision, Recall,
and F1 Score metrics are 12.58, 7.39, and 9.64 points which
are higher than those of the baseline Faster RCNN model.
It indicates that the S-Net model can predict more precise
ship locations than the baseline model. The S-Net boosts
the accuracy by 1.24 times higher than the baseline model,
which indicates a significantly increased overall performance
compared to the Faster RCNN baseline model. Table 4 com-
pares the performance of the proposed S-Net model with
existing models on the dataset. The proposed S-Net model
with the combined loss function has the best results of
94.88 precision points and shows a better capability than
other existingmodels. The benchmark state-of-the-art models
like Faster RCNN and SSD have poorer performance than
the latest models like ResNet50, VGG 16, ResNet152, and
Inception, because of a significant mislocalization of ships
on SAR images. In this comparison, the S-Net, VGG16, and
ResNet152 models yielded substantially more than 90 points
in precision, indicating a high-performance ability for ship
localizations in SAR images. However, the performance of
these models varies depending on the loss function, as shown
in table 4. In general, models with the combined loss func-
tion performed better than other loss functions. The S-Net
model with the combined loss function produced the best
results on the dataset. Our results demonstrate that this
model can efficiently handle the localization of ships in SAR
images, and its performance surpasses other best-performing
models.

The second-best model, ResNet152, with the combined
loss function, performed slightly low by 0.96 precision
points. Yet its computational complexity is very high due
to a very deep network architecture, where VGG16 with
combined loss function has a close computational cost but
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TABLE 3. Comparison of the models’ computation speed based on the
test image.

shows a less performance of 2.08 precision points. The S-
Net has the lowest computational cost comprising the lowest
network depth and parameter (table. 3) and producing the
best performance, which makes the model more affordable
for ship localization in SAR images. Faster RCNN produced
a precision score of 82.3 points and an overall accuracy of
0.62 with many false positive cases. Our analysis shows that
most false positive cases occurred with ships near the harbor
or coastal area (or land cover near the ships). It indicates that
the model poorly differentiated ships from the land features
in the coastal regions. The SSD model yielded an overall
accuracy of 0.53 and a precision of 72.4 points, with
9.9 points lower than the Faster RCNN model. The false
positive cases produced by this model increased in compar-
ison to those produced by the Faster RCNN model, which
indicates the least performing model (table 4). The mod-
ified Inception model produced precision points 73.6 and
75.68 with the MSE and combined loss function, which
are 8.7 and 6.62 points lower than the baseline model and
1.2 and 3.28 points higher than the SSD model. Moreover,
it is computationally complex due to a very deep network
architecture and yields increasingly lower accuracy with the
increasing network depth. The qualitative results showed
that most of the true negative and false positive cases have
occurred in noisy images (Fig. 6). Thus, themodel was unable
to differentiate between ships and noise features. In contrast,
the ResNet152 model (end-to-end trained) with MSE, Huber
and combined loss functions produced precision scores of
92.92 and 93.88 and 93.92, which are 10.62 points and
11.58 and 11.62 points higher than those of the baseline
model. The ResNet50 model produced 84.95, 85.9, 89.42,
and 90.25 precision scores, respectively, when implemented
with i) ImageNet weights and MSE loss function ii) End-to
End trained weights and MSE loss function, iii) End-to-
End trained weights and Huber loss function, and iv) End-
End weight with combined loss function with the precision
score of 2.65, 3.6, 7.12, and 7.95 points higher than those
of the baseline model and 8.93, 7.98, and 4.46 points lower
than the ResNet152 model with Huber loss function and
3.67 difference has been observed between these two mod-
els with the combined loss function. The VGG16 model

produced 80.2, 93.36, and 92.5, and 92.8 precision scores
respectively when implemented with i) ImageNet weights
and MSE loss function, ii) End-to-End trained weights and
MSE loss function, iii) End-to-End trainedweights andHuber
loss function, iv) End-to-End trained weights and combined
loss function with the precision scores of 2.1 points lower and
11.06, 10.2 and 10.5 points higher than the baseline model.
The YOLOv5n model yields 87.80 and 79.00 precision and
recall points that are 5.5 and 6.71 higher than baseline model
and 7.08 and 0.68 lower than those of the proposed model
with the combined loss function. The proposed S-Net model
with only thirteen layers in its feature extraction network
and the lowest computational complexity compared to other
models produced the precision scores of 92.01, 90.56, 94.04,
and 94.88 points respectively when implemented with the
MSE loss function, Huber loss function, Modified MSE loss
function λ = 0.1) and combined loss function. It achieved
9.71, 8.26, and 12.58 precision points higher than the baseline
model. In general, it is observed that the combined loss
function yields better results than both MSE and Huber loss
functions. The model performance was further assessed with
the FPS metric, which can be estimated as

FPS =
1
T

where T is the localization time for the test images. Based on
the results from table 3, it can be seen that S-Net can localize
ships in test images∼ 14 times faster than the baseline model
and nearly three times more quickly than the acceptable limit
of 30 FPS, which is followed by the VGG16 model. The
computational speed depends on a model’s computational
cost which is dependent of model’s network depth, that gives
the proposed model a vast advantage in processing the SAR
images faster than the existing models as it has lowest net-
work depth (shown in table 3). Fig. 6 shows the typical
ship localization results from some representative images for
various scenarios: (A) ships in noisy images, (B) small-sized
ships in clear images, (C) large ships, (D) ships in coastal
areas, and (E) ships with non-ship objects (model outputs
shown from column A to E).

For each sample, every row is the respective model output,
and most below is the ground truth. The model-predicted
location of the ship is marked by a blue bounding box and
its ground truth location by a green bounding box (each
box representing a single ship). In most cases, ships in clear
images (open ocean scenarios) are detected by the models
in close agreement with ground truth data, except the faster
RCNN, SSD, and Inception models produce false alarms due
to poor discrimination of ships from the non-ship objects.
The model performance could be easily affected by certain
linear or non-linear or polygon or other object forms or
features other than the ships, which would make the models
inefficient in the presence of these features. Large ships are
easily localized by all models due to their distinct spatial
feature information. The images in column A represent the
models’ critical capability to distinguish between the noise
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TABLE 4. Quantitative comparison of the models based on the accuracy metric.
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FIGURE 6. The qualitative results for the implemented models. (A-E)-1 represents the outputs of the
Faster-RCNN model; (A-E)-2 represents the outputs of the SSD model; (A-E)-3 represents the outputs of the
Inception model with combined loss function; (A-E)-4 represents the outputs of the ResNet50 model with
End-to-End weights and combined loss function; (A-E)-5 represents the outputs of VGG16 model
with End-to End weights and combined loss function; (A-E)-6 represents the outputs of ResNet152 model
with End-to End weights and combined loss function; (A-E)-7 represents the outputs of YOLOv5n model;
(A-E)-8; represents the outputs of S-NET model with End-to-End weights and combined loss function and
(A-E)-9 represents the Ground truth.
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FIGURE 7. Precision/Recall vs. Test images for (a) Faster RCNN; (b) SSD; (c),(d) and (e) VGG16 with MSE (ImageNet), MSE (E-2-E), combined loss function
(E-2-E); (f),(g) and (h) ResNet50 with MSE (ImageNet), MSE (E-2-E), and combined loss function(E-2-E); (i) Inception with combined loss function;
(j) and (k) ResNet152 with MSE (E-2-E) and combined loss function (E-2-E); and (l) YOLOv5n; (m), (n) and (o) Huber loss function, MMSE, and combined
loss function model.

and ship features due to the less indistinguishable spatial
information of the foreground and background features in
the noisy images. In all these cases, the S-Net model is most
efficient in localizing the ships, followed by the ResNet152
model. The results showed a critical failure of the Faster
RCNN, SSD, Inception, and ResNet50 models due to the
mislocalization of ships in these noise images. Both the
VGG16 and S-net models produced nearly identical results
closely consistentwith ground truth data. These two models
are robust because of their less mislocalization of ships or
false alarms, compelling performance in a noisy environment,

and prediction of bounding boxes closest to the ground truth
data. However, the S-Net model is most efficient for ship
localization in SAR images due to its higher performance
(in terms of accuracy and processing speed) bounding boxes
closest to the ground truth data. However, the S-Net model
is most efficient for ship localization in SAR images due to
its higher performance (in terms of accuracy and processing
speed) and lower computational complexity. Fig. 7 shows
the variation of precision and recall metrics of the differ-
ent models tested on several SAR images. Blue and brown
lines indicate the precision and recall curves respectively.
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TABLE 5. False positive rate or sensitivity of the model.

The Faster RCNN (Fig. 7(a)) model shows a variation in
both precision and recall curves for a number of test images,
indicating the abrupt misclassification of false alarms gener-
ated by the model. Similar results were obtained for the SSD
model (Fig. 7(b)), with a lesser amplitude showing a lower
performance than the baseline Faster RCNN model. A spike
in precision and fall in recall at the beginning of the curve
indicates a decrease in mislocalization and a sudden increase
in false alarms bymostmodels except Faster RCNN and SSD.
The Inception model shows a wide variation in both precision
and recall curves, similar to the VGG16 model (Fig. 7(c)).
The ResNet152 model with an MSE loss function has a
very stable constant and a higher precision curve. Noticeably,
the recall curve for the S-Net model with a combined loss
function falls initially (like VGG16 and ResNet50 models)
and spikes up subsequently, which reduces the false alarm.
The nano YOLOv5 model (YOLOv5n) has a similar charac-
teristic to VGG16 (Fig. 7(l)), containing a wide peak in the
beginning and a sharp fall in recall. In contrast, the S-Net
with a combined loss function improved the results with the
highest amplitude and a more stable recall curve compared to
other models (Fig. 7(o)).

A. FAILURE CASES
Figure 8 demonstrates the failure cases of the proposed S-Net
model, whereas Figure 8 (a) and (b) represents false alarm
predictions of the ships in the coastal area; Figure 8(c) rep-
resents mislocalization of the small ships in noisy images,
and Figure 8(d), (e), and (f) represents ground truth data. The
model failed to discriminate between ship and land pixels in
the first two cases. In the third case (Fig. 8(c)), the model

failed to distinguish between noise points and ship intensity
points on a noisy image, but it distinguished similar types
of small ships with no noise points (Fig. 6-B(8)). Though
the number of false alarms and misclassification are very
low, this failure still leads to the conclusion that the model
needs more sample images or strong augmentation in the
dataset to solve the failure scenarios. Large ships are easily
localized by all models due to their distinct spatial feature
information. The images in column A (Fig. 6) represent the
models’ critical capability to distinguish between the noise
and ship feature due to the less indistinguishable spatial infor-
mation of the foreground and background features in the noise
images. In all these cases, the S-Net model is most efficient in
localizing the ships, followed by the ResNet152 model. The
results showed a critical failure of the Faster RCNN, SSD,
Inception, and ResNet50 models due to the mislocalization
of ships in these noise images. Both the VGG16 and S-Net
models produced nearly identical results closely consistent
with ground truth data. These two models are robust because
of their less mislocalization of ships or false alarms, com-
pelling performance in a noisy environment, and prediction
of bounding boxes closest to the ground truth data. However,
the S-Net model is most efficient for ship localization in SAR
images due to its higher performance (in terms of accuracy
and processing speed) and lower computational complexity.

B. SENSITIVITY ANALYSIS
The sensitivity of a model, also known as the false positive
rate of a model, refers to how much a model is sensitive in
generating a false alarm. The lower the false alarm rate of the
model, the lesser the sensitivity and more stability. The false
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FIGURE 8. Predicted failure case false alarms for ships near the coastal
area with land cover (a and b), small ships in noisy images (c) and the
corresponding ground truth from the dataset (d-f).

FIGURE 9. Column chart for sensitivity analysis (The x axis labels are
models with serial number described in table 5).

positive rate is the ratio of true negatives divided by the sum
of true negatives and false positives.

Table 5 shows the sensitivity of various models, where
the S-Net model with a combined loss function is the least
sensitive, and SSD is most sensitive for this test dataset.
The VGG16 model with end-to-end training with MSE and
combined loss functions and the ResNet152 model with end-
to-end training with Huber and combined loss functions are
highly stable compared to the baseline model but more sensi-
tive (2.6%, 5.6% and 1.7%, 2.4%) as compared to the S-Net
model with the combined loss function. The lightweight nano
YOLO model is 1.3% less sensitive than the VGG16 model
with the MSE loss function (E-2-E) and 3.9% more sensitive
than the S-Net model with a combined loss function. It is
noticeable that the combined loss function increases stability
in all the models except ResNet152 and VGG 16 with MSE
(E-2-E). Fig. 9 show the bar chat comparing sensitivity of the
models according to table 5. These results indicate that the

S-Net model with a combined loss function can be considered
the robust model for ship localization in SAR images.

VI. CONCLUSION
Ship localization is critical for maritime surveillance and
other applications. The present study reported a state-of-the-
art architecture and a deep learning-based algorithm for ship
localization in SAR images to balance the accuracy, speed,
and computational cost. The proposed model reduces the
computational complexity without compromising the accu-
racy. It follows a single-stage object detector algorithm hav-
ing a novel backbone called S-Net, which is computationally
less expensive and more accurate than the existing popular
models. This demonstrates the practicality and robustness of
the model. A combined loss function was also introduced
for optimizing the model performance. An in-depth analysis
of the quantitative and qualitative results of the proposed
model was conducted in comparison with the existing state-
of-the-art models. The results showed an improvement of
12.58 points in precision and 7.39 points in recall metrics
for the proposed model with the proposed combined loss
function over the Faster RCNN baseline model. A failure
case scenario was also analyzed to examine the model’s vul-
nerability. Furthermore, a sensitivity analysis was conducted
for the dataset with various state-of-the-art models (including
the proposed model) based on false alarm rate. It shows that
the proposed model is the least sensitive for this dataset,
indicating the model’s robustness. The proposed algorithm
can be applied to SAR images and optical remote sensing
images (RGB) with a modification in the CNN architecture.
This will significantly help improve maritime monitoring and
detect other visual phenomena (like wakes) in the ocean.

ACKNOWLEDGMENT
The authors would like to thank Y. Wang et al., for providing
the dataset. They also thank the anonymous reviewers for
their valuable comments.

REFERENCES
[1] J. Li, C. Xu, H. Su, L. Gao, and T. Wang, ‘‘Deep learning for SAR ship

detection: Past, present and future,’’ Remote Sens., vol. 14, no. 11, p. 2712,
Jun. 2022, doi: 10.3390/rs14112712.

[2] F. C. Robey, D. R. Fuhrmann, E. J. Kelly, and R. Nitzberg, ‘‘A CFAR
adaptive matched filter detector,’’ IEEE Trans. Aerosp. Electron. Syst.,
vol. 28, no. 1, pp. 208–216, Jan. 1992.

[3] Y. Xu, W. Xiong, Y. Lv, and H. Liu, ‘‘A new method based on two-stage
detection mechanism for detecting ships in high-resolution SAR images,’’
in Proc. MATEC Web Conf., vol. 128, 2017, p. 01014, doi: 10.1051/mate-
cconf/201712801014.

[4] P. Iervolino and R. Guida, ‘‘A novel ship detector based on the generalized-
likelihood ratio test for SAR imagery,’’ IEEE J. Sel. Topics Appl. Earth
Observ. Remote Sens., vol. 10, no. 8, pp. 3616–3630, Aug. 2017, doi:
10.1109/JSTARS.2017.2692820.

[5] L. Xu, H. Zhang, C. Wang, B. Zhang, and S. Tian, ‘‘Compact polarimetric
SAR ship detection with m-δ decomposition using visual attentionmodel,’’
Remote Sens., vol. 8, no. 9, p. 751, Sep. 2016, doi: 10.3390/rs8090751.

[6] M.-D. Li, X.-C. Cui, and S.-W. Chen, ‘‘Adaptive superpixel-level CFAR
detector for SAR inshore dense ship detection,’’ IEEE Geosci. Remote
Sens. Lett., vol. 19, pp. 1–5, 2022, doi: 10.1109/LGRS.2021.3059253.

94426 VOLUME 11, 2023

http://dx.doi.org/10.3390/rs14112712
http://dx.doi.org/10.1051/matecconf/201712801014
http://dx.doi.org/10.1051/matecconf/201712801014
http://dx.doi.org/10.1109/JSTARS.2017.2692820
http://dx.doi.org/10.3390/rs8090751
http://dx.doi.org/10.1109/LGRS.2021.3059253


S. Bhattacharjee et al.: Deep-Learning-Based Lightweight Model for Ship Localizations in SAR Images

[7] G. Liu, X. Zhang, and J.Meng, ‘‘A small ship target detectionmethod based
on polarimetric SAR,’’ Remote Sens., vol. 11, no. 24, p. 2938, Dec. 2019,
doi: 10.3390/rs11242938.

[8] A. Lupidi, D. Staglianò, M. Martorella, and F. Berizzi, ‘‘Fast detection of
oil spills and ships using SAR images,’’ Remote Sens., vol. 9, no. 3, p. 230,
Mar. 2017, doi: 10.3390/rs9030230.

[9] O. Karakus, I. Rizaev, and A. Achim, ‘‘Ship wake detection in SAR images
via sparse regularization,’’ IEEE Trans. Geosci. Remote Sens., vol. 58,
no. 3, pp. 1665–1677, Mar. 2020, doi: 10.1109/TGRS.2019.2947360.

[10] J. Zhu, X. Qiu, Z. Pan, Y. Zhang, and B. Lei, ‘‘Projection shape
template-based ship target recognition in TerraSAR-X images,’’ IEEE
Geosci. Remote Sens. Lett., vol. 14, no. 2, pp. 222–226, Feb. 2017, doi:
10.1109/LGRS.2016.2635699.

[11] T. Zhang, X. Zhang, J. Shi, and S. Wei, ‘‘High-speed ship detection in
SAR images by improved YOLOv3,’’ in Proc. 16th Int. Comput. Conf.
Wavelet Act. Media Technol. Inf. Process., Dec. 2019, pp. 149–152, doi:
10.1109/ICCWAMTIP47768.2019.9067695.

[12] T. Chengsheng, L. Huacheng, and X. Bing, ‘‘AdaBoost typical algorithm
and its application research,’’ in Proc. MATEC Web Conf., vol. 139,
Jan. 2017, p. 00222, doi: 10.1051/matecconf/201713900222.

[13] L. Rokach and O. Maimon, ‘‘Decision trees,’’ in The Data Mining and
Knowledge Discovery Handbook. Boston, MA, USA: Springer, 2005,
ch. 9, pp. 165–192, doi: 10.1007/0-387-25465-X_9.

[14] T. Evgeniou and M. Pontil, Support Vector Machines: Theory and Appli-
cations, vol. 177. Berlin, Germany: Springer, 2005.

[15] R. Girshick, J. Donahue, T. Darrell, and J. Malik, ‘‘Rich feature hierar-
chies for accurate object detection and semantic segmentation,’’ in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2014, pp. 580–587, doi:
10.1109/CVPR.2014.81.

[16] R. Girshick, ‘‘Fast R-CNN,’’ in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
Santiago, Chile, Dec. 2015, pp. 1440–1448.

[17] S. Ren, K. He, R. Girshick, and J. Sun, ‘‘Faster R-CNN: Towards real-time
object detection with region proposal networks,’’ 2015, arXiv:1506.01497.

[18] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C. Y. Fu, and
A. C. Berg, ‘‘SSD: Single shot MultiBox detector,’’ in Computer Vision—
ECCV. Amsterdam, The Netherlands: Springer, Oct. 2016.

[19] J. Redmon and A. Farhadi, ‘‘YOLOv3: An incremental improvement,’’
2018, arXiv:1804.02767.

[20] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, ‘‘ImageNet:
A large-scale hierarchical image database,’’ in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Miami, FL, USA, Jun. 2009, pp. 248–255, doi:
10.1109/CVPR.2009.5206848.

[21] T. Y. Lin,M.Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár,
and C. L. Zitnick, ‘‘Microsoft COCO: Common objects in context,’’
in Proc. Eur. Conf. Comput. Vis. Cham, Switzerland: Springer, 2014,
pp. 740–755, doi: 10.1007/978-3-319-10602-1_48.

[22] X. Xu, X. Zhang, and T. Zhang, ‘‘Lite-YOLOv5: A lightweight deep
learning detector for on-board ship detection in large-scene Sentinel-1
SAR images,’’ Remote Sens., vol. 14, no. 4, p. 1018, Feb. 2022, doi:
10.3390/rs14041018.

[23] X. Wang, G. Li, A. Plaza, and Y. He, ‘‘Ship detection in SAR images by
aggregating densities of Fisher vectors: Extension to a global perspective,’’
IEEE Trans. Geosci. Remote Sens., vol. 60, 2022, Art. no. 5206613, doi:
10.1109/TGRS.2021.3073053.

[24] X. Geng, L. Shi, J. Yang, P. Li, L. Zhao, W. Sun, and J. Zhao, ‘‘Ship
detection and feature visualization analysis based on lightweight CNN in
VH and VV polarization images,’’ Remote Sens., vol. 13, no. 6, p. 1184,
Mar. 2021, doi: 10.3390/rs13061184.

[25] T. Miao, H. Zeng, W. Yang, B. Chu, F. Zou, W. Ren, and J. Chen,
‘‘An improved lightweight RetinaNet for ship detection in SAR images,’’
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 15,
pp. 4667–4679, 2022, doi: 10.1109/JSTARS.2022.3180159.

[26] B. Xiong, Z. Sun, J. Wang, X. Leng, and K. Ji, ‘‘A lightweight model for
ship detection and recognition in complex-scene SAR images,’’ Remote
Sens., vol. 14, no. 23, p. 6053, Nov. 2022, doi: 10.3390/rs14236053.

[27] Y.Wang, C.Wang, H. Zhang, Y. Dong, and S.Wei, ‘‘A SAR dataset of ship
detection for deep learning under complex backgrounds,’’ Remote Sens.,
vol. 11, no. 7, p. 765, Mar. 2019, doi: 10.3390/rs11070765.

[28] T. Zhang, X. Zhang, J. Li, X. Xu, B. Wang, X. Zhan, Y. Xu, X. Ke,
T. Zeng, H. Su, I. Ahmad, D. Pan, C. Liu, Y. Zhou, J. Shi, and S. Wei,
‘‘SAR ship detection dataset (SSDD): Official release and comprehensive
data analysis,’’ Remote Sens., vol. 13, no. 18, p. 3690, Sep. 2021, doi:
10.3390/rs13183690.

[29] S. Wei, X. Zeng, Q. Qu, M. Wang, H. Su, and J. Shi, ‘‘HRSID:
A high-resolution SAR images dataset for ship detection and instance
segmentation,’’ IEEE Access, vol. 8, pp. 120234–120254, 2020, doi:
10.1109/ACCESS.2020.3005861.

[30] S. Lei, D. Lu, X. Qiu, and C. Ding, ‘‘SRSDD-v1.0: A high-resolution SAR
rotation ship detection dataset,’’ Remote Sens., vol. 13, no. 24, p. 5104,
Dec. 2021, doi: 10.3390/rs13245104.

[31] T. Zhang, X. Zhang, X. Ke, X. Zhan, J. Shi, S. Wei, D. Pan, J. Li,
H. Su, Y. Zhou, and D. Kumar, ‘‘LS-SSDD-v1.0: A deep learning
dataset dedicated to small ship detection from large-scale Sentinel-1
SAR images,’’ Remote Sens., vol. 12, no. 18, p. 2997, Sep. 2020, doi:
10.3390/rs12182997.

SHOVAKAR BHATTACHARJEE received the
master’s degree from Jadavpur University,
Kolkata, West Bengal, India, in 2020. He is cur-
rently pursuing the Ph.D. degree with the Interdis-
ciplinary Department of Ocean Engineering and
the Department of Computer Science and Engi-
neering, Indian Institute of Technology Madras,
Chennai, India. He holds a prestigious Prime
Minister Research Fellowship (PMRF) for the
Ph.D. research work. His current research interests

include computer vision, microwave satellite image processing, and remote
sensing.

PALANISAMY SHANMUGAM received the
Ph.D. degree in optical/microwave remote sens-
ing techniques from Anna University, Chennai,
India, in 2002. He is currently a Professor with
the Department of Ocean Engineering, Indian
Institute of Technology Madras, Chennai. He has
been a principal investigator of several projects
funded by the Government of India. His current
research interests include ocean optics and imag-
ing, satellite oceanography, radiative transfer in

the ocean, algorithm/model development, and underwater wireless optical
communication.

SUKHENDU DAS (Senior Member, IEEE)
received the Ph.D. degree from IIT Kharagpur,
in 1993. Since 1989, he has been a Faculty
with IIT Madras, Chennai, India, where he is
currently a Professor with the Department of
Computer Science and Engineering. His current
research interests include visual perception, com-
puter vision: digital image processing and pattern
recognition, computer graphics, artificial neural
networks, computational science and engineering,

soft computing, deep learning, and computational brain modeling.

VOLUME 11, 2023 94427

http://dx.doi.org/10.3390/rs11242938
http://dx.doi.org/10.3390/rs9030230
http://dx.doi.org/10.1109/TGRS.2019.2947360
http://dx.doi.org/10.1109/LGRS.2016.2635699
http://dx.doi.org/10.1109/ICCWAMTIP47768.2019.9067695
http://dx.doi.org/10.1051/matecconf/201713900222
http://dx.doi.org/10.1007/0-387-25465-X_9
http://dx.doi.org/10.1109/CVPR.2014.81
http://dx.doi.org/10.1109/CVPR.2009.5206848
http://dx.doi.org/10.1007/978-3-319-10602-1_48
http://dx.doi.org/10.3390/rs14041018
http://dx.doi.org/10.1109/TGRS.2021.3073053
http://dx.doi.org/10.3390/rs13061184
http://dx.doi.org/10.1109/JSTARS.2022.3180159
http://dx.doi.org/10.3390/rs14236053
http://dx.doi.org/10.3390/rs11070765
http://dx.doi.org/10.3390/rs13183690
http://dx.doi.org/10.1109/ACCESS.2020.3005861
http://dx.doi.org/10.3390/rs13245104
http://dx.doi.org/10.3390/rs12182997

