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ABSTRACT This paper introduces a novel method for translating natural-language instructions into
executable robot actions using OpenAI’s ChatGPT in a few-shot setting. We propose customizable input
prompts for ChatGPT that can easily integrate with robot execution systems or visual recognition programs,
adapt to various environments, and create multi-step task plans while mitigating the impact of token limit
imposed on ChatGPT. In our approach, ChatGPT receives both instructions and textual environmental data,
and outputs a task plan and an updated environment. These environmental data are reused in subsequent
task planning, thus eliminating the extensive record-keeping of prior task plans within the prompts of
ChatGPT. Experimental results demonstrated the effectiveness of these prompts across various domestic
environments, such as manipulations in front of a shelf, a fridge, and a drawer. The conversational capability
of ChatGPT allows users to adjust the output via natural-language feedback. Additionally, a quantitative
evaluation using VirtualHome showed that our results are comparable to previous studies. Specifically, 36%
of task planning met both executability and correctness, and the rate approached 100% after several rounds
of feedback. Our experiments revealed that ChatGPT can reasonably plan tasks and estimate post-operation
environments without actual experience in object manipulation. Despite the allure of ChatGPT-based
task planning in robotics, a standardized methodology remains elusive, making our work a substantial
contribution. These prompts can serve as customizable templates, offering practical resources for the
robotics research community. Our prompts and source code are open source and publicly available at
https://github.com/microsoft/ChatGPT-Robot-Manipulation-Prompts.

INDEX TERMS Task planning, robot manipulation, large language models, ChatGPT.

I. INTRODUCTION
Recent advances in natural language processing have yielded
large language models (LLMs) with significantly improved
abilities to understand and generate language. As a result of
learning vast amounts of data, some LLMs can be fine-tuned
given a small set of sample data as instructions (i.e., few-shot
learning [1]). ChatGPT [2] is a representative example of such
an LLM. One exciting application of ChatGPT is in the field
of robotics, where it can be used for generating executable
robot programs (i.e., task planning).

Task planning from natural-language instructions is a
research topic in robotics, and there are many existing
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studies [3], [4], [5], some of which are built on top of
LLMs [6], [7], [8], [9], [10], [11], [12], [13], [14], [15],
[16], [17], [18] ([19] for review). However, most of them
were developed within a limited scope of operations, such as
pick-and-place [9], [15], [20], [21], are hardware-dependent,
or lack the functionality of human-in-the-loop [10], [14],
[16], [22], [23]. Additionally, most of these studies rely on
specific datasets [6], [7], [8], [12], [13], [24], [25], [26],
[27], [28], [29], which necessitate data recollection andmodel
retraining when transferring or extending these to other
robotic settings.

In contrast to these pioneering studies, a significant advan-
tage of utilizing most recent LLMs, such as ChatGPT, is their
adaptability to various operational settings. This adaptability
is facilitated by few-shot learning, which eliminates the
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need for extensive data collection or model retraining in
customizing the scope of operations. Additionally, the recent
LLMs’ superior ability to process language allows for safe
and robust task planning, as it can efficiently reflect user
feedback in a human-in-the-loop manner.

In this study, we aim to demonstrate a specific but
extensible use case of ChatGPT for task planning (Fig. 1),
employing ChatGPT as an example of the most recent
LLMs. Although interest has been growing in the potential of
ChatGPT in the field of robotics [30], its practical application
is still in its early stages, and no standardized methodology
has yet been proposed. We design customizable prompts to
meet the following requirements that are common to many
practical robotic applications:

1) Easy integration with robot execution systems or visual
recognition programs.

2) Applicability to various home environments.
3) The ability to provide multi-step instructions while

mitigating the impact of token limit imposed on
ChatGPT.

To meet these requirements, prompts are designed to have
ChatGPT accomplish the following:

1) Output a sequence of user-defined robot actions with
explanations in an easy-to-parse JSON format.

2) Explicitly handle the environmental information,
enabling task planning considering the spatial relation-
ships between objects.

3) Estimate the post-operation environment as a hint
for subsequent task planning, reducing the burden of
holding lengthy conversation histories for multi-step
instructions.

Through experiments, we demonstrate that ChatGPT
succeeds in estimating action sequences for multi-step
instructions in various environments. Additionally, we show
that the conversational capability of ChatGPT allows users to
adjust the output through natural-language feedback, which
is crucial for safe and robust task planning. Quantitative
tests using the VirtualHome environment [31] show that the
proposed prompts result in both executable and correct task
planning after a few rounds of feedback, suggesting the
effectiveness of our approach.

While previous research has validated the utility of
ChatGPT within specific environments and scenarios [30],
we explored whether ChatGPT can operate effectively
across diverse environments and scenarios. This attempt
expands the practical applicability of ChatGPT, paving
the way for broader and more flexible applications in
various real-world settings. Our proposed prompts can
serve as customizable templates and are open source and
available at https://github.com/microsoft/ChatGPT-Robot-
Manipulation-Prompts. Depending on the specifications of
robot actions, environmental representations, and object
names, users can easily modify them to meet their require-
ments. The contributions of this paper are threefold: we
demonstrate the applicability of ChatGPT to multi-step
task planning with a focus on robot action granularity,

propose a set of customizable prompts adaptable to various
environments, and make these prompts publicly accessible as
a practical resource for the robotics research community.

II. ChatGPT PROMPTS
The details of the designed prompts are explained in this
section. The prompts consist of 1) an explanation of the role
of ChatGPT, 2) a definition of robot actions, 3) an explanation
of how to represent the environment, 4) an explanation of how
to format the output, 5) examples of input and output, and
6) a specific instruction from the user.

In every instance of task planning with ChatGPT, the
prompts one to five are loaded from pre-prepared text
files, while the sixth prompt is dynamically generated based
on the user’s instructions and environmental information.
Notably, through preliminary experimentation, we found
that ChatGPT appears to operate more robustly when we
input the six prompts as a conversation consisting of six
turns (see Section II-F for details), rather than bundling
them into a single prompt. All prompts and their output
examples are available online https://github.com/microsoft/
ChatGPT-Robot-Manipulation-Prompts, and anyone can try
them out through OpenAI’s API or a web browser.

The prompts shown in this section assumed that the
robot has at least one arm, sufficient degrees of freedom,
and reachability to execute the desired task in the working
environment. Additionally, we assume that each instruction is
given at the granularity of grasp-manipulation-release, which
involves handling a single object from grasping to releasing.
Challenges and discussions on extending our approach
to more general-purpose robotic systems are discussed in
Section IV.

A. THE ROLE OF ChatGPT
In the first prompt, we provide ChatGPT with a context for
the specific activity of task planning by explaining the role
that ChatGPT should play (Fig. 2). To accommodate multiple
prompts, we include a sentence instructing ChatGPT to wait
for the next prompt until all the prompts are input.

B. THE DEFINITION OF ROBOT ACTIONS
In this prompt, we define a set of robot actions. Since an
appropriate set of robot actions depends on the application
and implementation of the robotic software, this prompt
should be customized by experimenters. In Fig. 3, we show
an example of robot actions based on our in-house learning-
from-observation application [32], [33], in which robot
actions are defined as functions that change the motion
constraints on manipulated objects based on the Kuhn-
Tucker theory [34]. This definition allows us to theoretically
establish a necessary and sufficient set of robot actions
for object manipulation. Experiments in Section III are
conducted using these robot actions, except for an experiment
in Section III-C, in which we defined a set of actions that were
prepared for VirtualHome.

VOLUME 11, 2023 95061



N. Wake et al.: ChatGPT Empowered Long-Step Robot Control in Various Environments

FIGURE 1. This paper presents practical prompts designed for various environments. The prompts enable ChatGPT to translate multi-step human
instructions into sequences of executable robot actions.

FIGURE 2. The prompt for explaining the role of ChatGPT.

FIGURE 3. The prompt explaining a set of robot actions. See Fig. 20 in
Appendix A for the full action list.

C. REPRESENTATION OF THE ENVIRONMENTS
This prompt defines the rule for representing working envi-
ronments (Fig. 4). In this specific prompt, all physical entities
are classified into non-manipulable obstacles, referred to as
assets, such as shelves and tables, and manipulable objects,
referred to as objects, such as cans and handles. These
two classes are defined to differentiate between the entities
that may be manipulated and those that cannot. As a hint
for task planning, the spatial relationships between entities

are described as states, which are chosen from a ‘‘STATE
LIST.’’ Through preliminary experimentation, items in the
STATE LIST were identified as providing sufficient hints for
ChatGPT to work effectively. Notably, the STATE LIST is
customizable, and in Section III-C, we define different states
to meet the specifications of VirtualHome.

D. THE FORMAT OF THE OUTPUT PRODUCED BY ChatGPT
This prompt defines the format of the output produced
by ChatGPT (Fig. 5). To facilitate easy integration with
other pipelines, such as robot control systems and visual
recognition programs, we encourage ChatGPT to out-
put a Python dictionary that can be saved as a JSON
file. Additionally, we encourage ChatGPT to include not
only the sequence of robot actions, but also explana-
tions of each action step and supplementary information
on the updated environment after executing the actions.
These additional pieces of information help the user
debug whether ChatGPT correctly processes the input
information.

E. EXAMPLES OF INPUT AND OUTPUT
This prompt provides examples of the expected inputs and
outputs (Fig. 6). We found that providing more examples
helps ChatGPT generate the desired sequence and thus
minimizes the effort users need to expend to correct the output
through conversations.
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FIGURE 4. The prompt for defining the rules for representing working
environments.

FIGURE 5. The prompt for defining the format of the output produced by
ChatGPT.

F. SPECIFIC INSTRUCTION FROM THE USER
While the previous five prompts are fixed, the sixth prompt is
dynamically generated in every instance of task planning by
editing a template prompt (Fig. 7). This prompt is generated
by replacing [INSTRUCTION] with the given instruction and
[ENVIRONMENT] with the corresponding environmental
information. Notably, the user is required to provide the
environmental information in the initial instance of task
planning using a separate process (e.g., manual preparation).
However, this effort is unnecessary for subsequent instances
because we can reuse an updated environment incorporated
in the last output of ChatGPT (orange parts in Fig. 8).
This approach facilitates task planning based on the most

FIGURE 6. The prompt providing examples of desired inputs and outputs.
The full information is available at the URL provided in the text.

FIGURE 7. The user input template and examples of the actual input
used. The user is assumed to provide environmental information.
Multi-step task planning can be realized by reusing the environmental
information that ChatGPT outputs in the following task planning.

recent environment, eliminating the need for extensive
historical records that exceed ChatGPT’s token limit. In our
experiments, we practically included asmuch of the historical
record as the token limit of ChatGPT allowed, ranging
from the most recent to the oldest conversation history
(Fig. 8).

As a specific usage of this task planner within a robot
system, we assume that the output of ChatGPT is checked
by the user in every instance of task planning. If the user
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FIGURE 8. The entire structure of the conversation with ChatGPT in task planning.

confirms that there is no further need for adjustment, the
output is then saved as a JSON file. In Appendix C, we have
provided more details regarding how the proposed task
planner is integrated and operated within a robot system.

III. EXPERIMENTS
We tested the prompts to verify whether ChatGPT behaves
in accordance with the specified requirements. We used
a fixed GPT model provided by Azure OpenAI (gpt-
3.5-turbo) in our experiments. Some experimental results
are not fully presented in order to save space, but
all results, including parameters for ChatGPT inference,
instructions, and environment definitions, can be found here:
https://github.com/microsoft/ChatGPT-Robot-Manipulation-
Prompts.

A. MULTI-STEP MANIPULATION OF THE ENVIRONMENT
We tested the applicability of the proposed prompts to
multi-step instructions in various environments. As examples
of household tasks, we conducted role-plays instructing the
rearrangement and disposal of objects placed on tables and
shelves, retrieving objects from refrigerators and drawers,
and cleaning tables and windows with a sponge. The
instructions and feedback texts were prepared in a style that
resembles the way humans communicate with each other.
The environmental information in the initial instance of
task planning was prepared manually for each scenario. The
output of ChatGPT was manually checked by the authors at
every instruction step. Specifically, we conducted a visual
inspection to qualitatively confirm whether the generated
action sequences were executable and whether they accom-
panied reasonable environment estimations. In summary, the
results shown below suggest that ChatGPT can translate
multi-step human instructions into adequate sequences of
executable robot actions.

1) RELOCATION OF OBJECTS ON A TABLE
The task involves manipulating a can of juice situated on
the bottom shelf of a two-shelf structure and a can of spam
positioned on a table (refer to the top panel in Fig. 1 for the
scene). First, the juice is relocated from the bottom to the
top shelf. Subsequently, the spam is discarded into a trash
bin. Thereafter, the juice is moved from the top shelf to the
table. Finally, the juice, too, is discarded into the trash bin.
The output of ChatGPT, which demonstrates successful task
planning, is shown in Fig. 9.

2) OPEN A FRIDGE/DRAWER DOOR
Next, we tested the scenario of opening a refrigerator door,
opening the door slightly wider, removing a juice from the
refrigerator and placing it on the floor, and finally closing the
refrigerator (see the middle panel in Fig. 1 for the scene).
The output of ChatGPT is shown in Fig. 10, indicating a
successful task planning. Similar results were obtained for the
scenario of sliding a drawer open (data not shown).

3) WIPE A WINDOW WITH A SPONGE, AND THROW IT AWAY
Next, we tested the scenario of taking a sponge from the
desk, wiping the window with the sponge, and returning it to
the table. Following the operation, a user throws the sponge
into a trash bin. The output of ChatGPT is shown in Fig. 11,
indicating a successful task planning. Similar results were
obtained for the scenario of wiping the table with a sponge
(data not shown).

B. ADJUSTMENT OF THE OUTPUT PRODUCED BY
CHAtGPT THROUGH USER FEEDBACK
Since ChatGPT does not always generate complete action
sequences, it is important for users to review and correct
errors to ensure safe and robust operation. With this in mind,
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FIGURE 9. An example of the output produced by ChatGPT for the task of relocating objects. (Left panel) Robot actions broken down for each natural
language. (Right panel) The state of the environment that is output by ChatGPT. A part of the JSON output is shown for each file. All the results, including
the representation of the environment can be found here: https://github.com/microsoft/ChatGPT-Robot-Manipulation-Prompts.

we tested the ability of ChatGPT to adjust the output through
natural-language feedback.

Fig. 12 shows the result when a user asked ChatGPT
to add/remove a task in the output sequence. ChatGPT
changed the output following the semantic content of
the feedback, suggesting the functionality for making the
necessary adjustments.

C. QUANTITATIVE EVALUATION OF TASK DECOMPOSITION
PERFORMANCE OF ChatGPT
The previous sections qualitatively demonstrated that the
proposed prompts achieve successful task planning using
an action set from our in-house learning-from-observation
system. In this section, we quantitatively evaluate the
performance of task planning using a general-use simulation
environment called VirtualHome [31]. Specifically, we made
ChatGPT generate task plans from a single instruction for
several household operation scenarios, and tested whether
the resulting action sequences were valid in terms of
executability in simulation and correctness upon visual
inspection. All the source codes and prompts used for the
experiment can be found here: https://github.com/microsoft/
ChatGPT-Robot-Manipulation-Prompts.

1) EXPERIMENTAL SETUP
VirtualHome is software that simulates interactions between
an agent and various home environments. The agent can
navigate and interact within these environments by executing
sequences of commands using a Python-based API. This API
provides a set of pre-defined atomic actions (see Table 4 in
Appendix B for the action list), which represent the smallest
units of action in VirtualHome. The environment consists of
typical household objects (e.g., a plate, a microwave, and a
table), each associated with unique IDs. The relationships
between objects are represented as a graph that can be
accessed through the API.

In the experiments, we selected a kitchen as a repre-
sentative home environment and defined test scenarios for
household chores that could be implemented in VirtualHome.
To mitigate bias in the process of scenario preparation,
we utilized ChatGPT to generate scenario candidates.1 We
then manually selected the test scenarios that satisfied the
following criteria:

• The scenario can be realized by executing multiple
actions in sequence.

1ChatGPT was provided with the list of the kitchen objects and the
pre-defined atomic actions to generate the candidates.
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FIGURE 10. An example of the output produced by ChatGPT for the task of opening a refrigerator and retrieving juice. (Left panel) Robot actions
broken down for each natural language. (Right panel) The state of the environment that is output by ChatGPT. A part of the JSON output is shown for
each file. All the results, including the representation of the environment can be found here:
https://github.com/microsoft/ChatGPT-Robot-Manipulation-Prompts.

FIGURE 11. An example of the output produced by ChatGPT for the task of wiping a window with a sponge (Left panel) Robot actions broken down for
each natural language. (Right panel) The state of the environment that is output by ChatGPT. A part of the JSON output is shown for each file. All the
results, including the representation of the environment can be found here: https://github.com/microsoft/ChatGPT-Robot-Manipulation-Prompts.

• The scenario involves at least one instance of
object manipulation, i.e., grasping or releasing an
object.

• The tasks in the scenario are relevant to everyday
activities.

Fourteen scenarios were prepared as test scenarios
(Table 1). For these scenarios, we manually identified action
sequences to achieve the scenarios along with the list
of objects involved with their IDs. The action sequences
identified are provided in Table 5 in Appendix B.
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FIGURE 12. An example of adjusting an output sequence through
natural-language feedback. The initial instruction was to move a juice
from the bottom shelf to the top shelf. (Top panel) After the feedback of
‘‘Insert another move_object() to move the juice upward.,’’ an action of
move_object() was added to the sequence. (Bottom panel) After the
feedback of ‘‘In this case, you can omit one move_object() that moves the
juice upward.,’’ an action of move_object() was deleted from
the sequence.

ChatGPT generated an action sequence intended to
complete the scenario, given the proposed prompts, envi-
ronmental information, and an instruction provided in the
right column of Table 1. The environmental information,
which corresponds to each scenario, was derived from the
graph. Because of redundancy in representing all kitchen
objects, only those objects involved in each scenario were
considered. The action sequence generated by ChatGPT was
then converted into a format that VirtualHome could interpret
and executed in a step-by-step manner through the API.
An action sequence was considered successful when the
following two conditions were met:

• Executability: The simulator was able to execute all
steps without encountering any errors.

• Correctness: Upon visual inspection, it was determined
that the proposed action steps could successfully com-
plete the scenario.

We incorporated visual inspections in our criteria because
a successful execution in the simulator does not necessarily
guarantee that the final goal is achieved [23].

2) RESULTS
We first tested whether the generated action sequences
were successful without feedback. Since we conducted
multiple trials, we set the temperature parameter to its
maximum to ensure trial-to-trial variations in the output of
ChatGPT. Table 2 shows the results, with a success rate

TABLE 1. The list of scenarios used in the experiment.

of approximately 36% (5 out of 14 scenarios), with only a
minimal variation observed between trials.

Upon investigating the unsuccessful cases, we identified
two failure patterns in ChatGPT:

• Incorrect verb selection: In VirtualHome, the simulator
raises errors when it fails to select an action applicable to
an object. For example, when the task involves ‘‘placing
an object,’’ the action ‘‘PutIn’’ should be selected when
placing the object inside a container, while the action
‘‘Put’’ should be selected when placing it on a flat
surface. Despite these verb selection rules being part of
the prompts, ChatGPT sometimes confused the actions.

• Omission of necessary steps: Some outputs skipped
essential steps necessary for successfully completing a
scenario, such as opening a container before placing an
object inside it.

Following this analysis, we investigated whether adjust-
ments could be made with a reasonable amount of effort,
given appropriate feedback from a user who is familiar
with task planning. To this end, we prepared an automatic
feedback system as an objective method that detects these
types of errors. This system was designed to simulate a user
who is knowledgeable in task planning, instead of relying
on manual feedback. The output of ChatGPT was checked
by the system in every instance of task planning, and if
an error was detected, an error message was automatically
generated and fed back to ChatGPT. Using this feedback
system, we examined the number of rounds of feedback
needed to reach a successful sequence, or whether it was
possible at all, across 14 scenarios. We set the temperature
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TABLE 2. Executability of the output action sequence across trials. ‘‘1’’ indicates success, and ‘‘0’’ indicates failure.

TABLE 3. The number of rounds of feedback needed to reach a successful sequence.

FIGURE 13. Example of adjusting an output sequence through auto-generated feedback. The output for the scenario 10 is
shown (i.e., Take the pie on the table and warm it using the stove.) All the results, including the representation of the
environment, can be found here: https://github.com/microsoft/ChatGPT-Robot-Manipulation-Prompts.

parameter to its minimum to ensure the reproducibility of the
results.

Table 3 shows the results. ChatGPT was able to produce
successful action sequences in all scenarios after receiving
several rounds of feedback. Fig. 13 shows an example
where auto-generated feedback texts guide ChatGPT towards
a successful action sequence, suggesting that ChatGPT is
capable of reflecting the semantic content of the feedback in
its output and making the necessary adjustments.

Our proposed prompts aim to estimate the post-operation
environment as a hint for subsequent task planning, which
enables multi-step task planning beyond the token limit
imposed on ChatGPT. Therefore, we visually inspected the
output of ChatGPT in Table 2 and examined whether the
post-operation environment was accurately estimated. As a
result, we found that for all 14 scenarios and five trials,
the estimation by ChatGPT was accurate, regardless of
the success or failure of the action sequence. This result
suggests that our proposed prompts can be adopted for
multi-step task planning beyond a single scenario. The
results can be found here: https://github.com/microsoft/
ChatGPT-Robot-Manipulation-Prompts.

IV. DISCUSSION: TOWARDS MORE GENERAL ROBOTIC
APPLICATIONS
In this study, we focused on task planning of robot actions
from multi-step instructions. We designed prompts for
ChatGPT to meet three requirements: 1) easy integration
with robot execution systems or visual recognition programs,

2) applicability to various environments, and 3) the ability to
provide multi-step instructions while mitigating the impact
of token limit imposed on ChatGPT. Through experiments,
we confirmed that the proposed prompts work for multi-step
instructions in various environments, and that ChatGPT
enables the user to adjust the output interactively. Based
on these results, we believe that the proposed prompts are
practical resources that can be widely used in the robotics
research community.

It is noteworthy that ChatGPT is capable of performing
task planning without any actual experience in object
manipulation, relying solely on few-shot data. This ability
may be attributed to the fact that the model acquires
knowledge of object manipulation and the temporal rela-
tionships between cohesively occurring actions during its
training on a vast amount of data. In fact, the ability
of ChatGPT to generate recipes from a menu suggests
that it implicitly learns procedural steps [30]. Nevertheless,
we cannot access the inner computations of ChatGPT,
thus the computation process for task planning, including
the estimation of the post-operation environment, remains
unclear.

The quantitative analysis using VirtualHome showed that
ChatGPT produced action sequences with a success rate of
36% without feedback, which approached 100% after several
rounds of feedback. Although we used a different task set, our
results align with those of previous studies that used LLMs
for task planning in VirtualHome. Huang et al. [23] reported
that 35.23% of an LLM’s outputs were both executable
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FIGURE 14. An example demonstrating the feasibility of using ChatGPT to
generate control programs that include conditional branching. A part of
the prompts is shown. Note that we encouraged ChatGPT to add
comments at every line to track the state of objects, as the final state may
vary according to the conditional branching. We also added a
non-manipulative function (i.e., check_best_by_date()) in the robot action
set. All the results, including the representation of the environment, can
be found here: https://github.com/microsoft/ChatGPT-Robot-
Manipulation-Prompts.

and correct from a human perspective. Raman et al. [17]
showed an improvement in both task execution and cor-
rectness through re-prompting based on precondition error
information. Thus, we emphasize that our findings attest
to the effectiveness of the proposed prompts, which aligns
with the existing research.

The prompts were designed under the assumption that
the robot has at least one arm, sufficient degrees of
freedom, and reachability to execute the desired task in
a given environment. Additionally, we assume that each
instruction is given at the granularity of grasp-manipulation-
release. However, these assumptions may be restrictive for
some scenarios in general robotic manipulations. In the
following sections, we discuss several strategies to effec-
tively integrate our task planner with practical robotic
applications.

FIGURE 15. An example of using separate ChatGPT process to generate
higher-level conditional branching control by reading out stored task
plans.

A. HANDLING OF CONDITIONAL BRANCHING
Some manipulations may require selecting actions based on
the recognition results (e.g., disposing of a food item if it
is recognized as out of date), or require repeating actions
until certain conditions are met (e.g., wiping a table until it is
spotless). It is known that LLMs can generate programs that
include conditional branching [35]. It has also been suggested
that ChatGPT can handle conditional branching for robotic
applications [30]. Consistent with these ideas, we confirmed
that small modifications to the prompts enabled ChatGPT to
generate a Python code that included conditional branching
(Fig. 14). Additionally, we verified that employing a separate
ChatGPT process enables higher-level conditional branching
by composing sets of task plans (Fig. 15). These results
suggest the feasibility of extending the proposed task planner
to handle conditional branching.

B. COLLABORATION OF MULTIPLE ARMS AND ROBOTS
A robot with multiple arms may need to coordinate its arms
to perform a task. We confirmed that small modifications to
the prompts enabled ChatGPT to generate an action sequence
involving the arms (Fig. 16). Additionally, we verified
that employing a separate ChatGPT process enables the
coordination of multiple arms by composing sets of task plans
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FIGURE 16. An example demonstrating the feasibility of ChatGPT in
generating control programs that involve multiple arms or robots
cooperating. Note that we included hand laterality in every function and
outputted all the objects to be manipulated, as multiple objects can be
handled during the grasp-manipulation-release operations of both hands.
All the results, including the representation of the environment, can be
found here: https://github.com/microsoft/ChatGPT-Robot-Manipulation-
Prompts.

(Fig. 17). These results suggest the feasibility of extending the
proposed task planner to handle multiple arms and robots.

C. MANAGING ENVIRONMENTAL CHANGES
One unique aspect of our approach is that we explicitly
handle changes in environmental information by incorpo-
rating it as part of the input to and output of ChatGPT,
respectively. In the context of Minsky’s frame theory [36],
environmental information can serve as ‘‘frames’’ that guide
ChatGPT in selecting the most appropriate plan among
a multitude of task planning options. Moreover, enabling
ChatGPT to be aware of environmental information may
enhance its ability to output consistent task plans [37].
However, a limitation of this approach is the necessity
to prepare environmental information, specifically for the
initial instance of task planning (Fig. 8). In future studies,
we aim to explore a separate ChatGPT process to prepare this
information based on a symbolic scene understanding given

FIGURE 17. An example demonstrating the feasibility of ChatGPT in
generating control programs that involve multiple arms or robots
coordinating. This type of planning is beyond the scope of this paper.

either by a vision encoder or through human explanation
(Fig. 18).

Additionally, our current approach assumes static envi-
ronments, where changes are attributed solely to the robot’s
actions, and the environment remains consistent from task
planning to execution. However, real-world scenarios fre-
quently involve dynamic changes, such as the movement,
introduction, or disappearance of objects, including people.
Addressing such dynamic environments in task planning is
an important direction for future research.

D. CONNECTION WITH VISION SYSTEMS AND ROBOT
CONTROLLERS
Among recent experimental attempts that used ChatGPT
for task planning, our work is unique in its focus on the
generation of robot action sequences, addressing the ‘‘what-
to-do’’ aspect, and we consciously avoid redundant language
instructions related to visual and physical parameters, such
as how to grab [39], [40], [41], where to focus [42], and
what posture to adopt [32], [43], which are part of the
‘‘how-to-do’’ aspect. Both types of information are vital for
robot operation [44], yet the ‘‘how-to-do’’ aspect is often
more effectively demonstrated visually. Therefore, our design
approach is such that the ‘‘what-to-do’’ is obtained by a vision
system or a robot system following task planning, which is
outside the scope of this paper.

As part of our efforts to develop a realistic robotic
operation system, we have integrated our proposed task
planner with a learning-from-observation system (Fig. 19)
incorporating a speech interface [45], [46], a visual teaching
interface [47], a reusable robot skill library [48], [49],
and a simulator [50]. The code for the teaching system
is available at: https://github.com/microsoft/cohesion-based-
robot-teaching-interface. For reference, details of the robotic
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FIGURE 18. An example of leveraging an image description model and
ChatGPT to obtain environmental information from a scene. (a) The
employment of a commercially-available image description model [38] to
gain symbolic comprehension of the environment. (b) Utilizing ChatGPT
to format the information derived from the image description.

system—including how the output of ChatGPT are specif-
ically translated into robot actions that are quantitatively
controlled, how the system handles errors or unanticipated
situations, and the timing for user feedback within the overall
system—are provided in Appendix C.

V. METHODOLOGICAL CONSIDERATIONS
A. TOKEN LIMIT
Our proposed prompts aim to estimate the post-operation
environment as a hint for subsequent task planning. This
approach can alleviate the impact of the token limit imposed
on ChatGPT, as it reduces the burden of maintaining lengthy
conversation histories for multi-step instructions. However,
the issue of the token limit is not completely eliminated, and
it might affect the scalability of the system.

FIGURE 19. An example of integrating the proposed ChatGPT-empowered
task planner into a robot teaching system. (a) A teaching system that
incorporates the task planner (indicated by the dashed box). Following
task planning, the system asks the user to visually demonstrate the tasks
in a step-by-step manner. ‘‘How-to-do’’ parameters are then extracted
from this visual demonstration. (b) (Top) The step-by-step demonstration
corresponding to the planned tasks. (Middle and Bottom) Execution of
the tasks by two different types of robot hardware.

For example, if many actions need to be explained in detail,
or if an environmental description becomes lengthy as the
result of including information about numerous objects, the
prompts may use a significant portion of the total available
tokens for the entire conversation. In such cases, one might
need to accept the system limitations imposed by the token
limit and adapt a strategy accordingly. This could involve
simplifying the environmental descriptions or reducing the
number of defined actions, in accordance with the specific
scenarios being addressed (e.g., kitchen tasks, bedroom tasks,
or factory assembly tasks).

Furthermore, if a long action step is anticipated from an
instruction, the need for user feedback in adjusting the output
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of ChatGPT may lead to increased consumption of available
tokens in the conversation. In such situations, truncation of
the conversation to accommodate the token limit could result
in the loss of human intent included in earlier feedback (see
Fig. 8). This means that the token limit imposes certain
restrictions on the length of actions that can be taught in a
single instruction. If an instruction is likely to result in a long
action sequence, the instruction may need to be broken down
into smaller segments. This could help the task planning of
ChatGPT, and thus reduce the amount of required feedback.

B. OPTIMAL PROMPTING STRATEGIES
Through our experiment with VirtualHome, we identified
two failure patterns in ChatGPT: incorrect verb selection and
omission of necessary steps.

Incorrect verb selection may be partially attributable to
the naming conventions used for actions. In the experiment,
we adhered to the original action names in VirtualHome,
such as ‘‘Put’’ (an action of placing an object on another
object) and ‘‘PutIn’’ (an action of placing an object inside
a container with a door, such as a microwave). While these
terms denote distinct actions, their similar names could
potentially lead to confusion. To verify this hypothesis,
we conducted a follow-up experiment where we renamed
the actions to ‘‘PutSurface’’ and ‘‘PutContainerWithDoor,’’
respectively, to reflect their definitions more accurately. This
modification led to a reduction in this type of error (data
not shown2), underscoring the importance of precise action
naming when instructing ChatGPT–a finding that aligns with
prior research [30].

Omission of necessary steps may partially stem from
ChatGPT’s difficulty in interpreting the granularity of defined
actions. The granularity of actions implied by language
is often ambiguous. For example, an instruction such as
‘‘Put food in the microwave’’ could be perceived either
as a single action or a sequence of more detailed actions,
such as ‘‘open the microwave, put food in it, close it.’’
Despite having provided action definitions in the prompt, the
inherent ambiguity in language may lead to the omission of
necessary actions in task planning. To address this failure
pattern, providing more examples could effectively guide
ChatGPT to decompose intended actions at the desired
level of granularity. Although our initial experiments with
VirtualHome included one pick-and-place example in the
prompt, a follow-up experiment confirmed that including
an example of placing food in a microwave reduced the
occurrence of step omission—specifically, the omission of
opening and closing actions (data not shown2).

C. VARIATIONS IN THE EXPRESSION OF INSTRUCTIONS
In our experiments, the instructions used were relatively
explicit expressions that directly specified the actions to
be performed. While the use of LLMs in processing such

2The results of the follow-up experiments can be found here:
https://github.com/microsoft/ChatGPT-Robot-Manipulation-Prompts

expressions might not yield significantly greater benefits
compared to conventional machine learning techniques
(e.g., [51]) for text processing, one advantage of LLMs is
suggested to lie in their ability to handle high-level texts [52],
[53]. Therefore, as a follow-up experiment, we adjusted our
instructions to focus on the desired outcomes and objectives
of the operation (e.g., ‘‘Let’s watch TV.’’ instead of ‘‘Turn on
the TV.,’’ see Table 5 in Appendix B for details). As a result,
we observed a performance level consistent with that of the
original instructions (Table 6 in Appendix B). Additionally,
we tested the task planner with various instructions that
contained similar intent but were worded differently for a
given scenario (e.g., ‘‘Take the book from the table and put
it on the bookshelf.’’ and ‘‘Grab the book from the table
and place it on the bookshelf.’’), and confirmed that the
performance level remained consistent across variations in
instruction (data not shown2).
These results do not imply that our task planner can

accommodate any forms of variation in expression, yet
suggest its effectiveness to a reasonable extent. Nevertheless,
we reiterate that the robustness and soundness of the proposed
task planning can be supported more by the functionality
allowing for necessary adjustments through user feedback,
rather than the performance of single-shot task planning.

D. DATA PRIVACY AND SECURITY
In response to emerging concerns regarding data privacy and
security, careful data handling is crucial for systems that
rely on LLMs. To address this issue, we operate ChatGPT
via Azure OpenAI, a service provided by Microsoft. This
service enables us to handle data in compliance with various
legal regulations and standards related to data security and
privacy, ensuring the proper protection of user instructions
and information [54]. Furthermore, Azure OpenAI includes
features for content filtering and abuse monitoring, which aid
in mitigating risks associated with misuse. Thus, we believe
that our task planning system can operate while meeting
industry standards for data privacy and security. However, it is
essential for future work to continually assess and improve
these protective measures as our understanding of potential
risks evolves.

E. FUTURE DIRECTIONS
Among the pioneering studies for task planning from natural
language, a significant advantage of utilizing the most recent
LLMs is their adaptability to various operational settings
through few-shot learning and user feedback. These function-
alities not only remove the need for extensive data collection
or model retraining but also enable user adjustments, thereby
facilitating safe and robust task planning.

While we use ChatGPT as an example of such an LLM,
these capabilities are not confined to any specific model.
The ability to perform few-shot learning is considered a
result of increased model sizes [1] and extended training on
large datasets [55]. Furthermore, the capacity to effectively
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TABLE 4. The action list defined for the experiment in Section III-C.

accommodate user feedback could be partially attributed to
learning methods that align model behavior with human
intent, known as reinforcement learning from human feed-
back [56]. In fact, other models that utilize similar training
techniques, such as GPT-4 [57] and Llama2-chat [58], have
been reported to possess these features. Future research will
explore whether other models can yield results comparable to
those found in this study when applied to task planning.

Regarding the adjustment capability, our experiments
suggested that the output of ChatGPT can be adjusted through
a reasonable amount of feedback. ChatGPT’s ability to reflect
the semantic content of user feedback provides a means
for users to convey their intentions to the system. Thus,
we consider that this aspect contributes to the foundation
of a user-friendly system. However, this study did not delve
into how this adjustment capability directly contributes to
user-friendliness of the system. Future research areas include
user studies focusing on usability and comparisons with other
adjustment methods, such as directly editing the output of
ChatGPT.

VI. CONCLUSION
This paper presented a practical application of OpenAI’s
ChatGPT for translating multi-step instructions into exe-
cutable robot actions. We designed input prompts to meet the
common requirements in practical applications, specifically
encouraging ChatGPT to output a sequence of robot actions
in a readable format and explicitly handle the environmental
information before and after executing the actions. Through
experiments, we tested the effectiveness of our proposed
prompts in various environments. Additionally, we observed
that the conversational capability of ChatGPT allows users to
adjust the output through natural-language feedback, which
is crucial for safe and robust task planning. Our prompts and
source code are open source and publicly available. We hope
that this study will provide practical resources to the robotics
research community and inspire further developments in this
research area.

APPENDIX A
DETAILED PROMPT FOR DEFINING ROBOT ACTIONS
Fig. 20 provides the unabridged prompt that is exemplified
in Section II-B. It includes the list of robot actions and their
definitions.

FIGURE 20. The prompt explaining the robotic functions.

APPENDIX B
SUPPLEMENTARY INFORMATION FOR VIRTUAlHome
EXPERIMENT
This section provides supplementary information for the
VirtualHome experiment discussed in Section III-C. Table 4
displays a list of pre-defined atomic actions in VirtualHome,
which represent the smallest units of action. Table 5 illustrates
fourteen scenarios used for the experiment. The ‘‘Textual
instruction’’ column indicates instructions that were fed into
the task planner. The ‘‘Action sequence’’ column shows
the manually identified action sequences to achieve the
scenarios. The ‘‘Higher-level textual instruction’’ column
displays instructions that have been adjusted to emphasize
desired outcomes and objectives of the operation. These
instructions were used in a follow-up experiment that
tested ChatGPT’s ability to understand and respond to
higher-level texts (See Section V-C). Table 6 shows the
results.

APPENDIX C
AN EXAMPLE OF A ROBOT SYSTEM EXPANDING THE
PROPOSED TASK PLANNER
In this supplementary section, we present an overview of
our in-house robot teaching system, which serves as an
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TABLE 5. The list of scenarios and their action sequences used in the experiment.

illustrative example of the proposed task planner. Importantly,
our system is designed for use under the guidance of
experts familiar with robot operations and action definitions,

rather than being an automatic solution for non-experts.
The system’s main objective is to simplify the robot
teaching process, eliminating the need for complex coding
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TABLE 6. Executability of the output action sequence across trials (Higher-level textual instruction). ‘‘1’’ indicates success, and ‘‘0’’ indicates failure.

TABLE 7. Robot actions and the parameters obtained from visual demonstrations and during on-site robot execution.
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FIGURE 21. Overview of the robot teaching system that integrates the
proposed task planner. The process involves three main steps: Task
planning, where the user employs the task planner to create an action
sequence and adjusts the result through feedback as necessary;
Demonstration, where the user visually demonstrates the action
sequence to provide information needed for robot operation; and Robot
Execution, where the action sequence is first simulated and then tested.
If any step fails or shows deficiencies, the previous steps can be revisited
as necessary.

by incorporating a method of robot programming that uses
multimodal demonstrations and language feedback.

A. PREREQUISITE
The representation of the initial environment and the
sequence of instructions are assumed to have been prepared
manually.

The robot teaching system operates through the following
three steps (Fig. 21):

1) Task planning (the scope of this paper): The user
creates a task plan up to a desired instruction step using
the proposed task planner. If any deficiencies are found
in the output sequence, the user can provide feedback
to the task planner as necessary.

2) Demonstration: The user visually demonstrates the
action sequence to provide information needed for
robot operation. Specifically, the system asks the user
to demonstrate each task step-by-step in front of an
RGB-D camera. The vision system then analyzes
the visual demonstration and extracts the parameters
needed for the robot to perform each task.

3) Robot execution: The user first simulates the action
sequence and checks the results. The simulation
environment is designed to replicate the actual one [50].
If execution fails or leads to an unexpected result, the
task planning and demonstration steps are revisited as

necessary. Only when safe operation is confirmed in
the simulation does the user test the action sequence in
the real setup. For safety, the robot operation is tested
under a condition where the user can press the robot’s
emergency stop switch at any time.

Examples of the parameters required for the robot to
execute each task are provided in Table 7. In step 2, the vision
system identifies the parameters listed in the table’s second
column by utilizing third-party pose recognizers and object
recognizers. For example, parameters such as the center of
rotation, rotation axis, and rotation radius are estimated from
the hand’s trajectory. To represent arm postures, we have pre-
pared 26 unit vectors that indicate 3D directions. These vec-
tors are used to represent the discrete orientation of upper and
lower arms. Specifically, we choose the vector closest to the
direction in which each part of the arm is pointing, using it to
represent that part’s direction [32]. More detailed methods for
acquiring parameters are explained in other papers [32], [42].

In Step 3, besides the aforementioned parameters, the robot
system controls the robot using data from an RGB-D camera
and force sensors mounted on it (see the third column of
Table 7). It is assumed that the environment at the start
of the demonstration and execution will be identical to
the extent that neither the action sequence nor the discrete
representation of the posture would be affected. The robot’s
vision system looks for objects again during execution and
corrects slight misalignments. For some tasks, the value of
the force sensors attached to and near the end effector is used
as force feedback.

The robot system computes the robot’s physical move-
ments for tasks such as move_hand(), move_object(), and
release_object() by using inverse kinematics with postural
constraint [43], following the parameters recognized by the
vision system. For other tasks, the movements are computed
by pre-trained reinforcement learning policies [48], [49].
Notably, the post-operation environment output by ChatGPT
is used only as a hint for subsequent task planning but is not
used during robot execution in our robot system. It is worth
reiterating that task definitions and execution methods differ
depending on the design philosophy, and this table merely
illustrates one example of the implementation.
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