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ABSTRACT Lightweight pose estimationmodels have beenwidely used in devices with different computing
powers, providing convenience for numerous downstream tasks, such as gait estimation, behavior analysis,
motion capture, etc. Although these lightweight methods can run on low-performance equipment, their
estimation accuracy is low, which seriously affects the actual experience. In order to improve the prediction
accuracy of the lightweight human pose estimation methods, we propose an Enhanced Dynamic Lightweight
High-Resolution Network (EDite-HRNet) for human pose estimation. Specifically, we propose an Enhanced
Dynamic Multi-scale Context (EDMC) block which enhances the features of the simple branch with
multi-level features of the complex branch to realize multi-level features fusion. Moreover, inspired by
GhostNet V2, we redesign the Enhanced Dynamic Global Context (EDGC) and the Enhanced Dynamic
Multi-scale Context (EDMC) block by adoptingGhostNet V2modulewithDFC attention to replace ConvBN
block in the original blocks. The experimental results on the two datasets (66.1% on the COCO2017 dataset
and 86.8% on theMPII dataset), demonstrate that our network achieves the state-of-the-art performance with
a slight increase in model complexity.

INDEX TERMS Human pose estimation, lightweight network, computational cost, cross-block feature
fusion, long-range dependencies.

I. INTRODUCTION
Lightweight human pose estimation methods has a good bal-
ance between the accuracy and calculation of the model, and
is more friendly to some edge devices with limited computing
power. Therefore, these lightweight pose estimation methods
have broader application scenarios, such as vehicle equip-
ment to capture pedestrian motion trajectory, mobile devices
to analyze human behavior, etc.

Traditional classical human pose estimation network mod-
els [1], [2], [3], [4], [5], [6], [7], [8], [9] have high predic-
tion accuracy, but their parameter and calculation amount
are often extremely large. The latest work [10] introduce a
self-correctable and adaptable inference (SCAI) method to
improve the accuracy on COCO test-dev to 80.6AP. However,
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it adds computational cost. These methods is difficult to
apply in edge devices, and even if it can, it will intro-
duce a huge computing load. Although lightweight pose
estimation methods have small calculations and parameters,
their accuracy is very low, and it is difficult to meet the
actual needs. Simple Baseline [2] uses deconvolution layers
to reduce the number of parameters and the computation
complexity. Lite-HRNet [11] introduce a lightweight unit,
conditional channel weighting, to replace costly pointwise
(1 × 1) convolutions in shuffle blocks. Dite-HRNet [12]
applies dynamic split convolution and adaptive context mod-
eling to model long-range spatial dependencies for human
pose estimation with low model complexity. The lightweight
pose estimation method requires less hardware resources
and small amount of computation, making it suitable for
deployment on different types of edge devices. Generally,
how to improve the prediction accuracy of lightweight
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pose estimation method has become the focus of current
research.

Existing lightweight networks are mainly inspired from
lightweight classification networks. Therefore, we need to
learn from the design ideas of lightweight network mod-
els to improve the prediction accuracy of lightweight pose
estimation models under the condition of small comput-
ing loads. MobileNet [13], [14] and ShuffleNet [15], [16]
apply separable convolution and group convolution to
replace conventional convolution operation. GhostNet
adopts cheap operation to maintain similar prediction accu-
racy, which greatly reduces the computational load of
the model. Inspired by these lightweight model methods,
our lightweight pose estimation method adopts similar
principles.

In order to improve the prediction accuracy of the
lightweight pose estimation model, we propose the method
(EDite-HRNet). Firstly, we redesign Dynamic Multi-scale
Context (DMC) block in Dite-HRNet and propose an
Enhanced Dynamic Multi-scale Context (EDMC) block. The
EDMC block firstly fuses the hierarchical features of differ-
ent depths in the complex branch and then aggregates the
multi-level features in the simple branch, which can fully
learn the abstract features at different layers and the complex
cross-block interactions. Compared with the original DMC
block, the EDMC block effectively enhances the capability
to extract channel information. Secondly, inspired by Ghost-
Net V2 [17], we introduce Ghostnet V2 module with DFC
attention to replace ConvBN block in the original Dynamic
Global Context (DGC) block and Dynamic Multi-scale Con-
text (DMC) block deployed in Dite-HRNet [12] and generate
the Enhanced Dynamic Global Context (EDGC) block. DFC
attention consists of horizontal fully connected (FC) layers
and vertical FC layers, which involve pixels in a long-range
along their respective directions, and produce a global atten-
tion map. As a result, the EDGC block and EDMC block are
able to capture long-range spatial information and represent
global features.

Our main contributions include:
We propose an Enhanced Dynamic Multi-scale Con-
text (EDMC) block. The proposed block fuses the
hierarchical features of different depths in the com-
plex branch and then aggregates the multi-level fea-
tures in the simple branch, which can fully learn the
abstract features at different layers and the complex
cross-block interactions. By introducing Ghostnet V2
module with DFC attention into DMC andDGCblock of
EDite-HRNet, we propose the EDGC and EDMC block
to expand the receptive field in a cost-effective fashion
and enhance the modeling performance for long-range
dependencies. By designing EDMC and EDGC blocks,
we propose a novel lightweight human pose estimation
method (EDite-HRNet), which achieves state-of-the-art
(SOTA) performance with a slight increase in model
complexity.

II. RELATED WORK
A. LIGHTWEIGHT HUMAN POSE ESTIMATION
Efficiencies of human pose estimation networks have drawn
wide attention recently. Small HRNet [11] reduces the width
and depth of the original HRNet [8]. Lite-HRNet [11]
replaces each residual block in the Small HRNet with a
conditional channel weighting block by adopting channel
attention mechanism [18]. Dite-HRNet [12] adapts dynamic
multi-scale context block and dynamic global context block
by using Dynamic Split Convolution and Adaptive Context
Modeling
mechanisms.

B. EFFICIENT CNN BLOCKS
Efficient CNN blocks are the core design of lightweight
architectures. MobileNet [13] adapts depth-wise separa-
ble convolutions to efficiently trades off between latency
and accuracy. MobileNet V2 [19] adapts inverted residu-
als and linear bottlenecks. The architecture of MobileNet
V3 [14] is built from a network architecture search algorithm
called NetAdpt. ShuffleNet [15] primarily adapts pointwise
group convolution operations and channel shuffle opera-
tions. ShuffleNet V2 [16] considers memory access cost
and platform characteristics additionally, and derives sev-
eral practical guidelines for efficient network design. Ghost-
Net [20] adapts a novel Ghost module with a series of
linear transformations. GhostNet V2 [17] enhances the Ghost
module with a novel decoupled fully connected attention
mechanism.

C. SPATIAL DEPENDENCY MODELING
Deeply stacked convolution layers capture long-range spatial
dependency, which riches the global understanding of spatial
information in a large field of view. However, they are not
computationally efficient. Non-local network [21] adopts a
self-attention mechanism to model pixel-wise spatial rela-
tions in a single layer. Global context network [22] simplifies
the non-local network to a lightweight structure, causing
almost no performance degradation.

D. DYNAMIC CNN ARCHITECTURES
Dynamic architectures exploit more efficient feature repre-
sentations. PP-LCNet [23] dynamically changes operation
branches based on the sizes and positions of model inputs.
Dynamic convolution [24] and CondConv [25] mix differ-
ent convolution kernels by generating weights through the
attention mechanism.

III. METHOD
A. DITE-HRNet NETWORK AND LIGHTWEIGHT BLOCKS
As shown in Figure 1, the EDite-HRNet network model
consists of four stages, starting from the first stage to
gradually add low-resolution branches, and finally adding
four parallel multi-resolution branches in the fourth stage.
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FIGURE 1. Overall architecture of EDite-HRNet. It adopts the EDite-HRNet network structure as the backbone and adds new EDGC and
EDMC blocks. The same color modules in the figure represent the same stage, and the feature maps of different sizes in the figure are
reduced by half from top to bottom.

A low-resolution branch is added at each new stage, and the
image resolution of the new low-resolution branch is reduced
by half compared with the one of the previous branch, but
the number of channels is doubled. EDite-HRNet adopts the
Dite-HRNet network as the backbone network.

To obtain a more efficient lightweight pose estima-
tion network, DiteHRNet [12] designed two lightweight
blocks, Dynamic Global Context (DGC) block and Dynamic
Multi-scale Context (DMC) block. Although the two
lightweight blocks in Dite-HRNet can greatly reduce the
calculation load of the model, it also leads to a significant
reduction in the accuracy of the model. To improve the accu-
racy of lightweight blocks, we redesigned these lightweight
blocks.

B. ENHANCED DMC BLOCK AND DGC BLOCK
As a versatile backbone network, HRNet [8] has been
widely used in various types of vision tasks, such as
pose estimation, target detection and semantic segmenta-
tion. Therefore, there are many works followed HRNet
to improve performance, such as Small HRNet [6],
Lite-HRNet [11], Dite-HRNet [12], etc. Correspondingly,
considering the performance of HRNet, the same backbone
network structure is also adopted in our work. More pre-
cisely, we design an enhancement method (EDite-HRNet)
based on Dite-HRNet, which is a lightweight version of
HRNet.

When investigating the design of the Dite-HRNet network
structure, we have considered how to achieve a balance
between prediction accuracy and computing cost. Although
Dite-HRNet becomes the most lightweight model, its accu-
racy drops significantly. We mainly identifies two main
problems of Dite-HRNet. The first one is the lightweight

design of the DMC block. The DMC block splits the input
channel into two branches. One branch performs a series
of convolution operations, while the other keeps the other
branch unchanged. These two branches are connected to
each other at the end of the block. The two branches in
the same block have an asymmetric structure, that is, their
convolutional layer structures and numbers are different.
Although the model becomes lightweight by applying this
approach, the features in the branch without convolutional
operations are not extracted, resulting in a decrease in the
accuracy. The second one is that the group convolution is
performed directly after applying the DKA block, which
reduces the long-distance dependency of each group of
features.

To conquer the two limitations mentioned above, we pro-
pose an Enhanced DMC block and an Enhanced DGC block,
as shown in Figure 2. Different from the original asymmetric
structure, our novel asymmetric structure incorporates the
fusion ofmulti-scale features, enhancing the ability to capture
long-distance dependent features. We apply the design idea
of g-GhostNet [26] to the DMC block, which maintains the
features of each sub-block in the DMC block, fuses with the
features of the simple branch that did not perform a series
of convolutions, and finally concatenates the features of two
branches according to the dimension. This method can make
full use of the characteristics of the branches with and without
convolutional operations, and improve the overall accuracy
of the model. In addition, in order to learn the long-distance
dependency of each set of features, we apply the design
idea of GhostNet V2 [17] to the DMC and DGC blocks.
We replace the group convolution layer with the ghost module
in GhostNet V2, which effectively learns the key feature
information.
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FIGURE 2. The structure of enhanced dynamic multis-cale context (EDMC) block and enhanced dynamic global context (EDGC) block. In the EDMC block,
the feature information of different dimensions is stitched together through the Mix operation, and then the information is introduced into another
branch through the cheap operation to experiment with the fusion of feature information.

In the next subsection, we will describe our design of two
blocks in detail: the EDMC formulaic representation and
the Enhanced ConvBN block in EDGC block and in EDMC
block.

C. EDMC FORMULAIC REPRESENTATION
To make the network structure more lightweight, a two-
branch structure is adopted in the DMC block. One branch
does not perform any convolutional operation at all, while the
other branch performs convolutional operations for multiple
times. Features from these two branches are concatenated and
shuffled along the channels. Although such design can reduce
the calculation cost of the model, since a branch does not per-
form convolution operations, the representation capacity of
the features is limited, which further limits the overall perfor-
mance of themodel. Inspired by g-GhostNet [26], we design a
multi-stage fusion operation, which can effectively improves
the overall accuracy of the model.

The DMC block mainly consists of three blocks and two
operations, which are the DCM block, the DSC block and
the GCM block, as well as the concatenation and the channel
shuffle operation. The DCM block is mainly for modeling

spatial context relations of the branches with different reso-
lutions densely in a single stage. TheDSC block is for extract-
ing spatial information through multiple convolution kernels
of different sizes, and integrating them together through a sin-
gle convolution layer. The GCMblock is mainly for modeling
the global spatial dependencies of each branch in the network
separately. Finally, the features of the two branches are fused
by concatenation and channel shuffle operations as the output
of the DMC block.

The process of the original DMC module can be
formulated as:

Y1,Y2 = Ls(X )

Y2 = B3(B2(B1(Y2)))

Output = Ls(Lc(Y1 + Y2)) (1)

where Y1 and Y2 denote the feature of the two branches after
dividing the original input tensor Y . B1, B2, and B3 denotes
DCM, DSC, and GCM, respectively. Output denotes the
output of the DMC block.

Although the DMC block achieves better accuracy and
efficiency, we argues that the feature extraction is incomplete
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based on the structure, resulting in relatively low accuracy of
the model. In g-GhostNet [26], these features are divided into
two types, namely complex features and ghost features. Com-
plex features need to be extracted through a series of blocks,
while simple features are obtained from shallow features.
Inspired by g-GhostNet, we consider features of two branches
in the DMC block as complex features and ghost features,
respectively. Complex features need to be obtained through
a series of convolution blocks. Simple features need to be
obtained through the integration of intrinsic features, rather
than simply identity mapping.

In the Enhanced DMC (EDMC) block (as shown in
figure 3), the input features are denoted as X ∈ Rc×h×w,
where c, h,w denotes the number of channnels, the height and
the width of the features, respectively. Complex features are
denoted as Y cn ∈ Rλ×c×h×w, and simple features are denoted
as Y sn ∈ R(1−λ)×c×h×w, where λ denotes the ratio of simple
features.

Firstly, AEDMC block divides the input features according
to the number of channels:

Y1,Y2 = Ls(X ) (2)

Complex features are processed by three blocks:

Y ′

2 = B′

3(B
′

2(B
′

1(Y2))) (3)

By concatenating the feature dimensions of the complex
feature branches, EDMC block obtains the concatenated
output features of the complex branches:

Y2 = [Y 1
2 + Y 2

2 + Y 3
2 ] (4)

where the subscript denotes the branch index and the
superscript denotes the block index.

The simple features of the other branch are obtained by
cheap operation:

Y ′

1 = C(Y1) (5)

where the cheap operation C can be simply a 1 × 1
convolution.

We get a simple feature and a complex feature from
two branches. However, the simple feature is not extracted
enough. Therefore, to improve the representation capacity,
the simple feature is process through a mix operation. From
the complex branch, we get the intermediate features Y2 ∈

Rc
′
×h×w

= [Y 1
2 +Y 2

2 +Y 3
2 ] where c

′ denotes the total number
of channels. The intermediate feature Y2 obtained from mul-
tiple convolution blocks provides sufficient semantic infor-
mation supplementation for the simple branch. As shown in
Figure 3, we first concatenate the outputs of multiple blocks
in the channel dimension, and then perform a mix operation
on the concatenated features:

Y ′

1 = Y ′

1 + Bmix(Y2) (6)

where Bmix denotes the transformation function.
Different from the g-GhostNet method, we removed the

average pooling layer, and used a 3×3 convolution kernel
instead of a 1×1 convolution kernel, effectively extracting the
features of each stage.

D. ENHANCED ConvBN BLOCK IN EDGC BLOCK AND IN
EDMC BLOCK
To capture long-distance dependency information, we replace
the original convolutional layers with the ghost module from
GhostNet v2 [17]. Compared with GhostNet V1 [20], Ghost-
Net V2 uses Decoupled Fully Connected (DFC) attention to
enhance the long-distance dependence information of the out-
put of ghost module in different spatial pixels. We replace the
convolutional layer in the ConvBN block with the module in
GhostNet V2 as shown in Figure 4. Considering the memory
limitation of the model and the estimation accuracy, we keep
the convolutional layers in other blocks unchanged. Both the
ConvBN block in the EDMC and EDGC blocks have been
improved, as shown in the red box in Figure 2.

Compared with other self-attention mechanisms, the FC
layer with fixed weights has a simple structure, is easy to
deploy, and can generate an attention map of the global recep-
tive field. For CNN, feature maps are usually of low rank,
so it is unnecessary to densely connect inputs to outputs at
different spatial locations. In the DFC attention mechanism,
the attention map is decomposed into two FC layers along the
vertical and horizontal directions.

The DFC attention mechanism can be formulated as:

a′
hw=

H∑
h′=1

FHh,h′w

⊙
Xh′w, h=1, 2, . . . ,H , w=1, 2, . . . ,W ,

ahw=

W∑
w′=1

FWw,hw′

⊙
a′

hw′ , h=1, 2, . . . ,H , w=1, 2, . . . ,W ,

(7)

where FH and FW are transformation weights.
Given the input features X ∈ RH×W×C , it can be consid-

ered as HW tokens xi ∈ RC , i = 1, . . . ,HW . We adopt the
DFC attention mechanism to capture long-distance depen-
dency from horizontal and vertical directions. At the same
time, due to the transformation in these two directions, the
computational complexity of the attention mechanism is also
reduced to a certain extent.
In the ghost module from GhostNet V2 [17], the input fea-

ture map X ∈ RH×W×C are sent to two branches. One branch
is the ghost module for generating the output feature maps,
and the other is the DFC module for generating the attention
map A. In the typical self-attention, linear transformation
are used to transform input feature into query and key for
calculating attention maps. The final output O ∈ RH×W×C in
the ghost module is the integrated output of the two branches:

O = Sigmoid(A) ⊙ ν(X ) (8)

where ⊙ denotes the element-wise multiplication. Sigmoid
is a scaling function to normalize the attention map A into
range (0, 1).

The structure of DFC is shown in the figure 5. In the sub-
attention mechanism branch, DFC downsamples the input
feature, performs horizontal FC and vertical FC, and upsam-
ples the output in the end. Since directly applying of the DFC
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FIGURE 3. The calculation process of the Mix operation. The Mix operation mainly performs
feature concatenating and fusion of an original input information and information of three
different scales, and can obtain richer multi-scale information.

FIGURE 4. The structure of ConvBN. We introduced the Ghostnet v2 module in the ConvBN module, which can model
long-distance dependency information.

attentionmechanismwill increase calculation complexity, the
feature map is firstly downsampled horizontally and verti-
cally. The final upsampling is for matching the scale of the
input feature map. In the ghost module branch, the intrinsic
feature map and the ghost feature map are mainly generated,
and finally these two types of feature maps are concatenated.
These two parallel branches extract feature maps frommainly
two different perspectives.

IV. EXPERIMENTS
A. IMPLEMENTATION DETAILS
1) DATASETS AND EVALUATION METRICS
The COCO2017 dataset contains over 200K images and
250K human instances with a label of 17 keypoints.
We experimentally train on train2017 (consists of 57K images
and 150K person instances) and evaluate on val2017 (consists
of 5K images) and test-dev2017 (consists of 20K images).
We adopte the Average Precision (AP) and Average Recall
(AR) based on the Object Keypoint Similarity (OKS) as the

evaluation criteria of the model. We also conduct experimen-
tal tests on the MPII dataset, which contains 25K images and
40K human instances, and also adopt the head-normalized
Probability of Correct Keypoint (PCKh) score to evalu-
ate the model accuracy. The crowdpose dataset is a dense
human pose estimation dataset containing 20k images and
80k pedestrians. It designs different categories according to
different population densities, which improves the general-
ization ability of the model. It labels every image, every
inference point in the box, and the number of key points for
each human body is 14. It uses the Average IOU to represent
the average IOU of the pedestrian boxes.

2) TRAINING
Weconduct experiments on a singleGeForce RTX3080GPU.
The batch size of the experiment mainly depends on the
graphics card memory, and it should be as full as possible. All
experiments adopt the Adam optimizer with a basic learning
rate 2e−3. In terms of COCO2017 dataset preprocessing, the
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FIGURE 5. The structure of DFC block. The DFC block first down-samples the image to reduce computational complexity, then uses horizontal and
vertical convolution to extract features, and finally up-samples to restore image resolution.

TABLE 1. Comparasions of results on the COCO val 2017 set. Pretrain indicates that the backbone network is pre-trained on ImageNet classification task.
The image size of the experimental test adopts two commonly used 256×192 and 384×288. The basic unit of parameter quantity is M, and the calculation
quantity unit is G.

human detection box maintains a fixed ratio of 4:3. Then
the images are cropped according to the detection box and
adjusted to the size of 256×192 and 384×288. In terms
of MPII dataset preprocessing, the images are resized to
256×256 instead. All experiments employ data augmenta-
tion techniques including random rotation with factor 30,
random scaling with factor 25 and random flippings for
both COCO2017 and MPII datasets. The crowdpose dataset
experiments is basically consistent with the COCO dataset
experiments.

3) TESTING
In the COCO2017 dataset and crowdpose dataset, we use the
human bounding box obtained by the same human detec-
tor as SimpleBaseline. Meanwhile, in the MPII dataset,
a standard testing strategy is adopted for the provided
person boxes. Similar to other works, we utilize 2D
Gaussian heatmaps to estimate human keypoints, and use
the average of original image and inverted image as the
key point position. Due to the problem of quantization
error, we use a deviation of 1/4 from the highest value
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TABLE 2. Comparasions of results on the COCO test-dev 2017 set. The image size of the experimental test adopts two commonly used 256×192 and
384×288. The basic unit of parameter quantity is M, and the calculation quantity unit is G.

TABLE 3. Comparisons of results on the MPII val set. The compared models are all lightweight pose estimation models and their deformations.

position to the second highest position as the final keypoint
position.

B. RESULTS
1) RESULTS ON THE COCO val2017 SET
As shown in Table 1, according to the amount of parameters
and computation, our method is divided into two struc-
tures EDite-HRNet-L and EDite-HRNet-S, which adopt the
same network structure design. The EDite-HRNet-L structure
adopts a normal convolution operation, while the EDite-
HRNet-S structure uses a depth-wise convolution to further
reduce the amount of parameters and calculations.

Compared with models such as HRNet, UDP, DARK, etc.,
the prediction accuracy of our model EDite-HRNet-S is 5%
lower than them, but our calculation amount is 2.8% of theirs.
Compared with lightweight models such as Lite-HRNet and
Dite-HRNet, our model EDite-HRNet-S has improved the
calculation accuracy by 1.3% and 0.9% at 256×192 image
size. At 384×288 image size, our method is 0.3 better than
Dite-HRNet.

At the image size of 256×192, our large model
EDite-HRNet-L is basically the same as the SimpleBaseline
prediction accuracy, but our calculation amount is only half of
the original general average, and the number of parameters is
only 1/4 of the original. At 384×288 image size, the large
model EDite-HRNet-S surpasses all lightweight methods,
and the prediction accuracy is close to HRNet. Generally, Our

method achieves a better balance between model accuracy
and complexity.

2) RESULTS ON THE COCO TEST-DEV SET
The COCO test focused on the method comparison gener-
ally used 384×288 image size, so we also used the same
size to facilitate comparison. Compared to those large net-
works, our EDite-HRNet-L performance is basically similar
(72.8%), but the computational load is greatly reduced in
Table 2. Compared with the latest lightweight pose estimation
model Dite-HRNet, our EDite-HRNet-S is 0.8% higher than
the original under the same backbone network conditions
(Dite-HRNet-18).

3) RESULTS ON THE MPII VAL SET
The experimental results on the MPII dataset are shown
in Table 3. Our method EDite-HRNet-S is 0.2 percentage
points higher than Dite-HRNet under the condition that the
computational costs are similar. In terms of the lightweight
design, our method surpasses other SOTA lightweight meth-
ods and achieves the best balance between accuracy and
computational cost. In terms of prediction accuracy, our
method EDite-HRNet-L utilizes the network structure of
Dite-HRNet-18 and surpasses the model performance of
Dite-HRNet-30. Since both of our methods adopt the same
structure design as Dite-HRNet-18, we can flexibly design
the number of group convolutions in the convolutional
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TABLE 4. Comparisons of results on the crowdpose test set.

TABLE 5. Ablation experiments on COCO val2017 and MPII dataset. The MFLOPs and Params are computed with the input size 256 × 192 ofr COCO
val2017set and 256 × 256 for MPII val set,respectively.

layer to achieve the best balance between performance and
computational cost.

4) RESULTS ON THE CROWDPOSE TEST SET
We add a comparison of experimental results of the crowd-
pose dataset to the Dite-HRNet basic method. The general
image size of 256×192 was used, and the trainval file was
used for training and the test file was used for testing. The
other settings are basically consistent with the COCO dataset.

Compared with those large networks, our EDite-HRNet-
L has achieved similar prediction accuracy, but there are
still gaps. Because the crowdpose treatment methods used
by those methods are different to a certain extent, the exper-
imental results are not completely fair. We compared the
DIte-HRNet method and the EDite-HRNet method under the
same environmental conditions, and their prediction accuracy
was the same. This situation is mainly because the method
in this paper is more suitable for single or small number of
people, and the effect is not obvious in the case of multiple
people.

C. ABLATION STUDY
To demonstrate the effectiveness of our proposed method
EDite-HRNet, we conduct ablation experiments on
COCO2017 and MPII datasets. We first use Dite-HRNet as
the baseline. The Enhanced ConvBN block and EDMC block
are then added individually or together to the baseline.

The final network model we obtained is EDite-HRNet-S.
The learning rate, data preprocessing and other elements are
consistent with the settings of Dite-HRNet method. In order
to ensure the accuracy of the experimental results, we conduct
training and testing on the same experimental platform, and
the experimental results of Dite-HRNet are 0.7 lower than the
experimental results in the paper.

As shown in all tables, * indicates that the same experi-
mental platform is used for experimental comparison. Com-
pared to the Dite-HRNet-18 network, our method increases
by 0.9 percentage points on the COCO2017 dataset and
increases by 0.2 percentage points on the MPII dataset. After

embedding the Enhanced ConvBN block, it increased by
0.4 percentage points on the MPII dataset, and after embed-
ding the EDMC block, it decreased by 0.2 percentage points.
We speculate that the problem is caused by the different
learning effects of these two blocks on the dataset. From
the experimental results, our EDMC block and Enhanced
ConvBN block facilitate EDite-HRNet to achieve a better
balance between prediction accuracy and computational cost.

V. CONCLUSION
To improve the prediction accuracy of lightweight pose esti-
mation, we propose the EDite-HRNet network.We redesigned
the EDMC and EDGC blocks to make full use of the
image features of different branch structures. Based on the
redesigned blocks, we propose the EDite-HRNet network
model. Under similar computational load conditions, our
EDite-HRNet-S outperforms the Dite-HRNet by 0.9 and
0.2 on COCO and MPII datasets, respectively. In addition,
our EDite-HRNet-L has a large increase in parameters, but
the corresponding accuracy is also greatly improved by
2.1 on COCO and 2.0 on MPII. Our model can adapt to
platforms with different computing capabilities according to
actual needs, and achieve a better balance between prediction
accuracy and computing load.

Although, our proposed method increases the prediction
accuracy of the lightweight pose estimation model with a
small computational load, but the training time and training
complexity of the model are increased. In future work, it is
necessary to design optimization strategies to accelerate the
training of lightweight models.
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