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ABSTRACT Spectral unmixing in hyperspectral images involves determining endmembers and their
associated abundance maps. The endmember estimate is extremely important in the processing of high
resolution hyperspectral data. This study provides a unique automatic method for extracting endmembers
by integrating fuzzy clustering and a spectral-matching approach. The number of endmembers in an image
is estimated in the first stage using the Hysime algorithm. Data are subsequently classified using a fuzzy
c-means algorithm, which determines the grade of membership values for each data point. A threshold
operation on membership values is used to select a collection of pixels as target pixels. Spectral matching
aids in the selection of target pixels and searches for a specific endmember within a cluster. Endmember
bundles are extracted from target pixels and compared with ground truth data using a spectral angle mapper.
The performance of the proposed technique was evaluated in two ways: directly on full hyperspectral data
and on dimension-reduced data by employing one simulated and two real datasets. The mean spectral angle
and root mean square error were used as performance indicators. Furthermore, the accuracy of extracted
endmembers was validated by creating abundance maps using a fully constrained least square technique,
and the results were analyzed.

INDEX TERMS Hyperspectral image, spectral unmixing, endmember estimation, fuzzy clustering, spectral
matching, abundance maps.

I. INTRODUCTION
Imaging spectrometers, particularly those on the ground or
in the air, offer scene data in the form of a band of planes
known as a hyperspectral cube or hyperspectral images.
There are four forms of hyperspectral image data extraction:
categorization, endmember extraction, and spectral unmix-
ing, target detection, and change detection [1]. An image
includes the radiance value collected in one plane for all
pixels in a scene at a single wavelength [2]. Almost all
fields, agriculture [3], mining and geology [4], environmen-
tal monitoring [5], chemical detection [6], and astronomy,
employ hyperspectral image analysis [7]. In hyperspectral
photographs, the concept of unmixing is introduced by low
spatial and high spectral resolution. Estimating the number of
endmembers in a hyperspectral image is a crucial first step in
any unmixing chain. Numerous existing algorithms underes-
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timate this number due to the significant linkages observed in
spectroscopic data sets. Many popular endmember estimate
algorithms use connections to determine the dimension of the
linear subspace containing the data [8], [9]. One of the most
popular approaches [10] is the minimum error identification
of hyperspectral signals (HySime). The goal of unmixing is to
separate the endmembers (materials in a picture) from their
associated fractional abundances (area coverage) [11]. The
ratio of reflectance to emittance as a function of wavelength
is known as an endmember or spectral signature. There is no
such thing as an ideal spectral signature plot, and variations
occur due to atmospheric adjustments, sensor noise, location,
and material composition, among other reasons [12]. Mixed
pixels are created when the pixel size is sufficiently large to
cover more than one type of endmember. In spectral unmix-
ing, the mixing and light interaction characteristics lead to
two mathematical models, the linear mixing model (LMM)
and nonlinear mixing model (NLMM). The two models are
distinguished by the presence of pure pixels in an area and the
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effects of multiple scattering [13]. A majority of nonlinear
unmixing models are macroscopic, with the exception of
radiative transfer models (e.g., the Hapke Model). Compo-
nents are expected to be pure and distributed uniformly across
the field of vision in LMM. In NLMM, the components
are substantially intermingled [14]. Nonlinear unmixing is a
difficult algorithm, as it requires thorough previous knowl-
edge of the mixed materials and the nonlinear function of
the mixed environment. Numerous strategies for linear spec-
tral unmixing were developed due to this constraint, rather
than using nonlinear spectral unmixing [15]. In the guise
of a neural network, autoencoders are designed based on
deep learning for blind hyperspectral unmixing [16]. The
linear mixture model effectively achieves blind hyperspec-
tral unmixing by implicitly imposing certain architectural
limitations on the network. Research results proved that
a more advanced encoder does not always produce supe-
rior outcomes. Regarding nonlinear hyperspectral unmixing,
a unique unsupervised neural network based approach was
devised by Shahid and Schizas [17]. As customary in hyper-
spectral unmixing, the characteristics of hyperspectral image
components with increased distinction in the kernel space
have been efficiently used toward estimation of endmember
abundances, leading to higher precise endmember estimation.

Some approaches extract only endmembers, whereas
others extract both endmembers and abundances simul-
taneously [18]. The suggested effort focuses entirely
on endmember extraction. Various endmember algorithms
include the pixel purity index (PPI) [19], vertex compo-
nent analysis (VCA) [20], simplex identification via split
augmented Lagrangian (SISAL) [21], successive projec-
tion algorithm [22], and simplex volume minimization
(SVM) [23]. Despite the fact that PPI is the simplest
algorithm among other geometrical approaches, it has one
fundamental flaw: it does not use successive nulling to detect
a pure pixel. VCA is based on decreasing or increasing the
volume subject to find the endmember.

NFINDR is a straight forward dynamic and prominent
algorithm that fails in the presence of noise [24]. When the
mixing among pixels is high, statistical approaches, in par-
ticular minimum volume transform non-negative matrix fac-
torization (MVC-NMF) [25], is the best iterative algorithm
to apply for the extraction of endmembers. Geometrical
approaches extract endmembers based on pure pixel assump-
tion and choose vertices of simplex or convex regions as
endmembers. In addition, there are chances of pure endmem-
bers being present inside the region. One way to overcome
this limitation is to denote simplex or convex regions as clus-
ters [12]. Statistical approaches-based endmember extraction
methods, such as independent component analysis (ICA) and
dependent component analysis (DECA), are good alterna-
tives to geometrical methods. However, their computational
complexity is high, which limits their application in unmix-
ing [12], [26]. Therefore, a clustering-based algorithm is
capable of providing better results compared to conventional

methods. Due to limited spatial resolution, it is difficult to
obtain pure pixels directly from hyperspectral images. Clus-
ter analysis can be used to identify pure pixels in a mixed
pixel environment [27] using fuzzy c-means (FCM) [28],
KP means [29], and weighted fuzzy c-means clustering [30]
approaches. These methods estimate endmembers and abun-
dances in a parallel manner. Clustering methods differ in
their initialization of parameters and minimization of the
objective function to yield optimal results [31]. Subspace
learning is the most important task toward the estimation of
endmembers in hyperspectral images. Recently, orthogonal
subspace projection combined with Gauss-Seidel alternating
learning direction of multipliers [32] has been developed to
find a more suitable subspace representation to extract end-
members. Another efficient method involves a non-convex
framework derived from alternating direction of multipli-
ers, designed to determine an optimal subset of spectral
signatures in a spectral library to address the nonlinear
unmixing problem [33]. In comparison to subspace learn-
ing methods, tensor-based methods are more appropriate to
solve the unmixing problem in hyperspectral images. Ten-
sors are highly effective in unmixing, as they represent the
multi-linear interaction among materials and multiple light
scattering effects in a more natural and structural manner. For
example, non-negative tensor factorization based nonlinear
unmixing [34] imposes a nuclear norm on abundance and
nonlinear interaction maps to improve the nonlinear unmix-
ing performance. Finally, a deep learning approach, which
currently attracts more attention, employs an autoencoder
in the network architecture to solve the unmixing prob-
lem in hyperspectral images. A cycle consistency algorithm
designed to address the unmixing problem by learning two
cascaded autoencoders in an end-to-end fashion with preser-
vation of high-level semantic information was shown to
perform better than existing approaches [35]. Multimodal
unmixing proposed in [36] uses hyperspectral images and
the attention map derived by LiDAR to aid the autoencoder
network to differentiate endmembers with similar materials.
A fully automatic network architecture [37] combines chan-
nel configuration obtained from hyperspectral images and the
evolutionary algorithm with additional computational con-
straints into networks to achieve flexible convolution kernel
search by evaluating unmixing results of different architec-
tures in the SuperNet. Deep learning algorithms must be
designed in parallel to estimate the number of endmembers,
spectral signatures, and abundance maps. A more intelligent
and automated approach for diverse hyperspectral remote
sensing applications is required [38]. Keeping in mind the
above-mentioned approaches, their various advantages, and
the challenges they face, a novel method has been proposed
by the authors for extracting endmembers by combining clus-
tering and spectral-matching criteria. This approach has also
been tested on a dimension-reduced dataset [39]. Because
hyperspectral images are rich in spectral information, highly
correlated and redundant bands must be removed to reduce
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the storage needed to store and transmit data, complexity,
and computation time. Dimensionality reduction, also known
as band selection, is an optional step, which when employed
speeds up the subsequent processing [11]. Principal compo-
nent analysis (PCA) and linear discriminant analysis (LDA)
techniques are applied on the higher-dimensional data to
reduce its dimension.

This study proposes a novel automatic endmember
extraction method combining fuzzy clustering and the
spectral-matching algorithm. Fuzzy c-means clustering
(FCM) is employed to identify target pixels, whereas the
spectral-matching algorithm is employed to extract pure
endmembers. This algorithm is applied on both the full
hyperspectral data and the dimensionality-reduced data. The
performances of both scenarios are assessed.

II. PROBLEM STATEMENT
Most existing endmember extraction algorithmswere devised
based on pure pixel assumption in remote sensing images.
This is not true for many datasets, as pixels in the hyper-
spectral image are highly mixed in general. An alternative
approach is to estimate the set of purified pixels from mixed
pixels in the hyperspectral image. Statistical approaches are
not based on pure pixel assumption, but the need of detailed
prior knowledge and the high computational cost limits the
usage of these approaches for large datasets. Few of the
algorithms in the literature assume that an endmember lies
on the vertices of simplex or convex regions. However, it is
important to consider that an endmember can also be present
inside the region. Classical methods extract endmembers
from single standard spectrum assigned to a particular pixel.
Consequently, these methods ignore the severe effects of
intra- and inter-class variability occurring due to variations in
the illumination, environment, and atmospheric and temporal
conditions in hyperspectral images. The resulting variation
in the endmember spectral signature is not accounted for,
such that unmixing can lead to poor accuracy of estimated
abundance fractions [11]. Therefore, the challenges in exist-
ing algorithms include estimating the set of purified pixels
frommixed pixels, representing simplex or convex regions as
clusters, and extracting endmembers from endmember bun-
dles to account for endmember variability in hyperspectral
images. To overcome these challenges, a novel method is
proposed combining fuzzy clustering and spectral matching.
The hyperspectral data is represented as different clusters,
with the assumption that each cluster denotes an endmember.
The grade of membership values of fuzzy clustering is used to
identify a set of pixels as target pixels, which are more likely
to represent a single endmember. Endmember bundles are
generated from these sets of pixels, and a single endmember
is extracted with the use of spectral matching. Endmember
bundles automatically accounts for the endmember variabil-
ity, and precise endmember estimation leads to more accurate
abundances.

In this study, we formulate a novel automatic endmem-
ber extraction method that combines fuzzy clustering and a

spectral-matching algorithm. The contributions of our work
are as follows.

• The proposed method automatically and efficiently
extracts endmembers from endmember bundles using
fuzzy clustering and spectral matching in hyperspectral
images. The endmember bundles automatically take
into account the spectral variability [40], resulting in
more accurate abundances [11].

• It works pixel-wise and converges iteratively to an
endmember with the help of the grade of membership
values.

• It avoids identification of a noisy pixel as a pure pixel in
two ways. (a) The grade of membership values assist in
finding a homogeneous region. ‘‘Homogeneous’’ here
means that there is no variance, indicating that all pixels
are same, and that there are no noisy pixels present.
(b) The spectral-matching parameter will be high when
the noisy spectra deviate more than the real, thus avoid-
ing making the noisy pixel an endmember [41].

• Finally, the performance of the proposed method has
been further investigated by generating abundance
maps from the extracted endmembers [42] and using
ablation studies.

III. PROPOSED METHOD
Spectral mixing of pixels in hyperspectral images induces
loss of important spectral features of the material needed
for efficient discrimination. Further, it results in poor
intra-class variability of different materials. This study pro-
poses a method to identify an endmember to account for the
intra-class variability and enable selection of spectrally pure
pixels by combining FCM and spectral matching. The block
diagram illustrating the methodology is shown in Figure 1.

Let Y = {Y1,Y2,Y3 . . . .YR} be the hyperspectral data with
′R′ pixel vectors and ′B′ number of spectral bands. Then, any
pixel ′y′ in the hyperspectral image can be modeled as a pixel
vector;

y =

∑e

i=1
AiEi + n (1)

where ′A′ is the abundance vector, ′E′ is the endmember
vector, ′e′ is the number of endmembers, ′n′ is the additive
Gaussian noise.

The spectral reflectance curves are strongly correlated,
resulting in a highly mixed matrix of endmembers. This
strong correlation poses a challenge in the estimation of
endmembers [43], [44]. As a first step prior to endmember
extraction the number of endmembers are determined by the
Hysime algorithm [45], [46] and used to initialize the number
of clusters in FCM.

The proposed method is tested by applying it on full
band, as well as dimension-reduced data. One way to reduce
its dimension is by selecting more informative bands and
using only those for further processing. Band selection
is the process of selecting highly dissimilar bands from
strongly correlated bands and representing the data in a lower
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FIGURE 1. Block diagram of the proposed methodology.

dimension [47]. Dimension-reduction methods, such as
PCA [48], LDA [49], graph-based methods [50], and
clustering-based methods [51] are more popular in the lit-
erature and are being used in classification tasks [52], [53],
data mining [54], and unmixing applications [55]. Two
well-known dimensionality reduction methods, PCA and
LDA, are employed in this study. The choice of methods
is done based on their performance and complexity com-
pared to other methods. In PCA, the maximum amount of
variance in high-dimensional space is preserved to the great-
est possible extent, whereas LDA considerably preserves
class discriminatory information in the dimension-reduction
process. Moreover, LDA is an unsupervised technique that
does not require any initialization [49]. Further, it is an
efficient technique in that it optimizes the Fisher score to pro-
duce low-dimensional representation and shows better per-
formance in real world remote sensing applications, mainly
in terms of dimension-reduction and hyperspectral image
classification [56].

After estimation of the number of endmembers, the pro-
posed endmember extraction method classifies the data and
matches the reflectance curves to extract endmembers. The
flowchart of the proposed endmember estimation is depicted
in Figure 2.

Existing endmember extraction methods assume that there
exists at least one pure endmember in the hyperspectral
data. The estimation is based on extreme pixels with a high
PPI score [19], the set of pixels corresponding to larger
volume NFINDR [24], convex regions covering the desired

FIGURE 2. Flowchart of proposed endmember estimation.

pixels SMACC [57], and minimum volume enclosing sim-
plex MVES [23].

Most of these algorithms find the vertices as their endmem-
bers, while failing to identify whether multiple endmembers
exist in the vertex, or identify an endmember when none
exists in the vertex. In the literature, the suggested approach
to solve this issue is to perform piecewise operation [11]
on linear models. Performing piecewise operation is similar
to representing the regions as clusters instead of simplex
or convex regions [27]. Clustering represents the region as
different classes, while spectral-matching searches for pure
pixels inside the cluster and removes the wrong identification
of vertex pixels as endmembers.

Crisp classification or k-means results in a binary classi-
fication and fails to identify endmembers in a mixed pixel
environment. The FCM has the advantage of providing soft
class membership values with high intra- and inter-cluster
similarity. FCM even works when a particular endmember
does not occupy amajor area in an image [58]. FCM is chosen
to classify hyperspectral data, as it is more flexible in assign-
ing themembership of each pixel to a cluster during clustering
iterations compared to classical clustering methods. FCM
assigns the ‘‘e’’ proportion of relevance to ‘‘e’’ classes for
each pixel in the image. This feature allows reconsideration
of pixel membership to image classes in further iterations of
the algorithm and illustrates more appropriately the natural
aspect of uncertainty existing in the data [59], [60]. This helps
identify the target pixels of endmembers to be extracted.
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TABLE 1. Complete algorithm.

TABLE 2. Real hyperspectral dataset.

FCM classifies the data cube (full hyperspectral and
dimension-reduced data) into a number of clusters similar to
the number of endmembers ′e′ with random initializations.
The fuzzy clustering allows pixels to havemembership values
denoting similarity with cluster centroids [61].

Mathematically, the LMM in Equation (1) is modified to
identify target pixels using fuzzy clustering as:

F =

∑C

i=1

(∑d

n=1
U2
in∥yn − AiEi ∥

2
2

)
(2)

Subject to
∑
n
Uin = 1 and Uin ∈ [0, 1] , 0 ≤Uin ≤ 1

Where
d number of data points
c number of clusters
yn nth data point
Uin Membership value of nth data point in ith cluster
m degree of fuzziness
Thus, a pixel may belong to more than one cluster with

varying membership values [58]. The membership values or
degree of similarity is used to find target pixels that have a
higher probability to be of a single material or an end member
in hyperspectral images. To identify the homogeneous region
(assumed to be the noise-free region) and to group more
similar pixels, a simple thresholding operation is performed
on the histogram of GOM values.

The histogram of GOM values is plotted for a cluster.

Hi = hist
(
Uij

)
Cn

(3)

Then, the threshold value is obtained from Hi using the
expression

Tmf =
Himin+Himax

2
(4)

The Tmf metric is used to sort pixels with in a cluster
Cn into target and non-target pixels. The reflectance curve
is obtained from the spatial location of all target pixels.

TABLE 3. Performance measure.

The extracted endmembers are automatically matched with
library reflectance curves with the help of spectral-matching
algorithms [41].

Spectral-matching methods are the simplest and most effi-
cient for identifying a pure pixel in amixed pixel environment
compared to conventional methods [41]. Spectral-matching
measures aid in the selection of target pixels and searches
for a specific endmember within a cluster. A deterministic
spectral-matching parameter spectral angle mapper (SAM)
is used to identify the target endmember. SAM treats the
unknown spectra and ground truth spectra as pixel vectors
and measures angle between them. If the angle is small, the
two spectra are more similar. The spectrum of a material,
characterized by the presence of absorption features, is used
for accurate matching. SAM averages out the absorption
features for efficient discrimination. The SAM parameter
is chosen owing to its invariance to scale and illumination,
computational simplicity, speed, and availability in image
processing packages [62]. In this study, the SAM defined
in Equation (5) is utilized as spectral-matching parameter
to measure the similarity between target spectra and ground
truth (GT) spectra.

The SAM between target spectra St and GT spectra Sg is
expressed as

SAM = acos

∑
StSg√

S2t
√
S2g

(5)

A small SAM value indicates that the particular target
vector is closer to the GT vector or library vector. Initially,
with ′e′ number of clusters, the endmembers are identified
based on the SAM error value. Then, by increasing the
number of clusters, an endmember in a particular category
from multiple target pixels is decided as the final one if the
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FIGURE 3. Performance measure comparison results for clustering-based methods. M-SAD, S-RMSE metrics for endmembers and M-AAD, A-RMSE metrics
for abundances. The proposed methods’ metric values are lower than those of WFP, K-P methods. FGSM produced minimum SAD and AAD error values in
overall.

FIGURE 4. Experimental results of proposed methods for random inputs-FGSM, PFGSM, LFGSM (simulated data, SNR = 30 dB). Red indicates library
spectra, and blue indicates extracted endmember. Proposed methods FGSM, PFGSM, LFGSM endmembers are more similar to library spectra.
(X-axis-Wavelength, Y axis-Reflectance).

successive SAM error value is 10−2. This method aims at
estimating only endmembers, as good endmember estimation
helps obtain accurate abundances [11]. Abundance maps can
be generated with help of the fully constrained least square
(FCLS) algorithm [42].

A. ABUNDANCE MAP GENERATION
Clustering-based algorithms simultaneously compute end-
members and their corresponding fractional abundances.
These values may be negative and may lie on the boundary
of the region leading to inaccurate results. The direct estima-
tion of endmember and abundance from averaging of mixed

pixels leads to a biased estimation. Thus, both endmember
estimation and abundance map generation are interrelated to
produce finer results. Therefore, the proposed method aims
to extract only endmembers from the endmember bundles
obtained by increasing the number of clusters. Abundance
maps are generated by applying the more popular algorithm
FCLS using the estimated endmembers.

The unconstrained solution to generate fractional abun-
dance can be expressed as,

A ≈

(
ETE

)−1
ETY (6)
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TABLE 4. Performance measures SAD, S-RMSE-Jasper Ridge Image − SNR = 30.37 dB.

FIGURE 5. Performance measures (M-SAD, M-AAD, A-sRMSE, and A-aRMSE). Smaller value indicates better performance for all the parameters.
Clustering methods results are with minimum SAD and AAD error values compared to non-clustering methods. Proposed Methods FGSM, PFGSM, LFGSM
achieved minimum errors in overall.

where E is the estimated endmember, and Y is the original
hyperspectral data under two constraints.

Summing to one
e∑
i=1

Ai = 1,
{
(Y − AE)T (Y − AE)}

Positivity
p∑
i=1

Ai> 0,
{
(Y − AE)T (Y − AE)} (7)

The complete workflow of the framework is explained
through its algorithm presented in Table 1.

IV. RESULTS AND DISCUSSION
The proposed method has been implemented in MATLAB
R2020a S/W and experimented on simulated data and two
real hyperspectral datasets (refer Table 2).

To evaluate and estimate the performance of the pro-
posed method, it is compared with four non-clustering-based

approaches VCA [20], NMF [25], NFINDR [24], maxi-
mum distance analysis (MDA) [9] and two clustering-based
approaches WFP [30], KP means [29]. Three variant models
are developed, and their results are compared with the above-
mentioned methods. The methods are FGSM on full hyper-
spectral data, PFGSM on PCA based dimension-reduced
data and LFGSM on LDA-based dimension-reduced
data.

The quality metrics used to illustrate performance eval-
uation are listed in Table 3. Smaller values indicate better
performance for all performance measures.

A. EXPERIMENT 1. TEST ON SIMULATED DATA
The first experiment was conducted on simulated data of
100×100 size with 224 bands generated by randomly select-
ing four endmembers from the USGS spectral library and
highly mixed by applying mean filter. Then, the zero mean
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FIGURE 6. Spectral angle mapper error values of endmembers for various values of clusters.

FIGURE 7. Spectral signatures obtained from target pixels in a cluster-Jasper Ridge image.

Gaussian noise with the same variance is added to all bands
to further degrade the data. The various SNR values chosen
to analyse the performance of the methods are 20, 25, 30,
35, and 40 dB. Most methods, especially all non-clustering
methods, perform well when the noise variance is low i.e.,
at SNR = 35 or 40 dB.

The performance of different methods at various SNR
values is displayed in Figure 3. Performance metrics indicate
that in general, clustering-basedmethods are producing lower
error results than non-clustering-basedmethods. Among non-
clustering-based methods, MDA seems to perform better
when compared to its counterparts. FGSM is capable of
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FIGURE 8. Experimental results of non-clustering methods and proposed FGSM method (Jasper Ridge Image). Red indicates ground truth, while blue
depicts the extracted endmember. FGSM endmembers are more similar to GT endmembers. Particularly, the ‘‘water’’ endmember extracted in FGSM
compared well to other methods. The remaining three extracted endmembers are similar to the GT. (X axis-Wavelength, Y axis-Reflectance).

producing comparable results with clustering-based
approaches WFP and K-P means.

In the case of SNR= 20 dB, FGSM and PFGSM produced
minimum error values in comparison to other methods. The
next smallest values were produced by WFP, K-P, MDA, and
LFGSM respectively.

In the case of SNR = 25 dB, VCA, NFINDR sometimes
identify all endmembers or may miss one endmember, and
similar results were obtainedwith SNR= 20 dB. In summary,
FGSMachievedminimum error values and the nextminimum
error value obtained for the proposed variant model LFGSM
followed by WFP, PFGSM, K-P, and MDA consecutively.
In Experiment 1, the degradation of images due to varied
amounts of noise is taken into account. The algorithm has

been tested on simulated data with varying levels of noise,
and the results are promising, as mentioned in the Results and
Discussion sections.

In summary, both for endmember estimation and abun-
dance map generation, the proposed method is capable
of producing minimum error values or comparable results
to the WFP method among clustering-based approaches
and to the MDA among non-clustering-based methods.
The extracted endmembers exhibit spikes in the case
of SNR=20 dB for non-clustering-based methods VCA,
NFINDR, indicating that they fail to extract endmem-
bers; whereas FGSM and its proposed variant methods are
capable to extract smooth endmembers and are shown in
Figure 4.
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FIGURE 9. Experimental results of clustering methods and proposed methods (Jasper Ridge Image). Red indicates ground truth, while blue
depicts the extracted endmember. The proposed methods FGSM, PFGSM, LFGSM extracted endmembers are more similar to the GT compared
to other methods. (X axis-Wavelength, Y axis-Reflectance).

When SNR exceeds 30 dB, most methods perform sat-
isfactorily. Nevertheless, in this case, the proposed method
achieves the minimum error compared to other methods,
as displayed in Figure 3.

B. EXPERIMENT 2: TEST ON REAL DATA 1
A Jasper Ridge image was adopted as real data 1, whose
specifications are listed in Table 2. The number of endmem-
bers and noise of an image are estimated using the Hysime
algorithm. Then, the performances of the proposed methods
are evaluated with the use of GT information available.

The four endmembers ′e′ are Tree, Water, Dirt and Road.
All the four endmembers are extracted with minimum error
by the proposed FGSM, PFGSM, and LFGSM methods
(Table 4). Sometimes, VCA and NFINDR fail to extract
one endmember and the results were shown here when all
the endmembers are extracted. VCA, NFINDR, and NMF

methods extracted three endmembers with minimum error,
but with a larger deviation with respect to the GT data
for water endmembers. The reflectance of the water is
high for VCA and NFINDR methods due to the twofold
wrong identification of an endmember and due to ran-
dom initialization [24]. FGSM and MDA results are more
comparable among non-clustering-based methods. Existing
clustering-based methods such as WFP and K-P perform bet-
ter than non-clustering methods. The FGSM method on full
hyperspectral data achieved superior results to other methods.
The minimum error values (M-SAD, S-RMSE) yielded by
this method are plotted in comparison with WFP, K-P means
and PFGSM, LFGSM methods in Figure 5. Evidently, with
′e′ number of bands, PFGSM and LFGSMmethods produced
comparable results to FGSM, WFP, K-P means clustering
methods. FGSM is easy to implement and less expensive
when compared to WFP, K-P means.
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FIGURE 10. Abundance maps obtained for non-clustering methods and proposed FGSM method. FGSM maps are more similar to the
ground truth map (particularly the background area of the water map).

C. SAM ERROR VALUES FOR VARYING CLUSTER SIZE
In the FGSM process, initially clustering is performed
directly on original data, and ′e′ numbers of clusters are
obtained. In each cluster, target pixels are identified based

on threshold membership values. For various values of ′e′

starting from ′2e′ to ′5e′, the corresponding minimum SAM
error values are determined. The plot results in Figure 6 show
that the error decreases until 4e clusters and becomes more or
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TABLE 5. Performance measures AAD, A-RMSE-Jasper Ridge Image – SNR = 30.37 dB.

TABLE 6. Performance measures SAD, S-RMSE-Samson Image – SNR = 32.68 dB.

less stable. Therefore, the stopping criterion is fixed based
on successive SAM error values for a particular endmem-
ber. Spectral signatures obtained from a few target pixels
are shown in Figure 7. The GT and extracted endmembers
using the proposed method are plotted in Figures 8 and 9,
respectively.

In terms of the abundances displayed in Figures 10 and 11,
the same inferences are achieved with the help of parameters
AAD, M-AAD and A-RMSE. As the number of extracted
endmembers becomes more exact, so do the abundances [11].
The FGSM method generates multiple signatures for a sin-
gle endmember and extracts the final signature from the

endmember bundles. It may provide more accurate endmem-
ber estimates and thereby yield abundances highly similar to
GT [63]. The abundance maps error values are displayed in
Table 5. Smaller AAD values are obtained for the proposed
methods compared to others, indicating that the proposed
endmember extraction method is good at generating more
accurate smooth fractional abundances.

D. EXPERIMENT 3: TEST ON REALDATA2
Real dataset 2 is a Samson image with only three end-
members, namely rock, tree, and water. A procedure similar
to the one above-mentioned one is applied to the datasets
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FIGURE 11. Experimental results of abundance maps obtained for clustering methods. Water and road abundance maps are similar to the
ground truth for proposed methods (FGSM, PFGSM, and LFGSM).

to obtain M-SAD and S-RMSE for endmembers (refer to
Table 6) and M-AAD, A-RMSE for abundance maps. All
three endmembers are extracted with minimum M-SAD and
S-RMSE values for FGSM, PFGSM, and LFGSM methods.
The water endmember fails to be extracted accurately in all

methods except the proposed methods and MDA is shown in
Figures 12 and 13. The results are shown for the case of all the
three-endmember extraction for VCA andNFINDRmethods.
M-SAD and S-RMSE error values are lower for FGSM, and
comparably better results were achieved with the minimum
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FIGURE 12. Spectral signature results of non-clustering and FGSM methods. The red line denotes the ground truth, and blue line denotes the
extracted endmember. All three extracted endmembers are similar to the GT in the FGSM method. (X axis-Wavelength, Y axis-Reflectance).

number of bands in PFGSM and LFGSM, as depicted in
Figure 14.

The main precise estimation of endmembers leads to more
accurate abundance maps, as indicated by the M-AAD values
listed in Table 7. The proposed FGSM yields results com-
parable to other clustering methods, such as WFP and K-P
means. M-AAD and A-RMSE values also indicate consistent
solutions obtained between estimated and GT information.
The average values of the performance metrics are displayed
in Figure 14, where clustering-based methods achieved min-
imum error values when compared to non-clustering-based

methods. In a nutshell, FGSM and its variant methods
achieved minimum error values in the estimation of endmem-
bers and abundance map generation.

E. COMPUTATION TIME
The proposed method does not involve complex calcula-
tion, as it only combines two algorithms of fuzzy clustering
and spectral matching. As a result, the computational com-
plexity is solely determined by FCM complexity O(ndc2i)
(n-number of data points, d-dimension of the data, c-number
of clusters, i-number of iterations). The performance of the
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FIGURE 13. Spectral signature results of clustering methods. Red line denotes ground truth, while blue line depicts the extracted endmember.
Overall, FGSM performs superior extraction, followed by WFP, PFGSM, LFGSM, and K-P, consecutively (X axis-Wavelength, Y axis-Reflectance).

proposed method is found to be good for both the original
and dimension-reduced data. Therefore, for the dimension-
reduced data, the complexity will be comparatively
lower.

The running time of the experiments is evaluated on a
computer with intel i5-6200, X64 based processor, 2.4 GHz
CPU and 8 GB random access memory. Figure 15 presents
the average computing time of the Jasper Ridge and Samson
datasets. Because FGSM is implemented with full bands,
its computation time is higher than with other methods.
The computation time of the proposed methods PFGSM and
LFGSM with dimension-reduced bands are acceptable com-
pared to othermethods. Further, the proposedmethods extract
endmembers from endmember bundles, such that the time

requirement is lower compared to other clustering and non-
clustering-based methods.

F. ABLATION ANALYSIS
Increasing the number of clusters and checking for the suc-
cessive SAM error improves the performance of the proposed
method. This can be analyzed with the help of performance
measures M-SAD and average A-sRMSE. Table 8 shows the
analysis of the algorithm with fixed and varying number of
clusters with successive error for the two real datasets used in
the Results and Discussion section.

FGSM with a fixed number of clusters produces larger
errors compared to the proposed methods that increase the
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TABLE 7. Performance measures AAD, A-RMSE-Samson Image − SNR = 32.68 dB.

FIGURE 14. Performance measures (M-SAD, M-AAD, A-sRMSE, and A-aRMSE)-Samson Image. Clustering methods results are minimum compared to
non-clustering methods in terms of both SAD and AAD. Proposed methods FGSM, PFGSM, LFGSM achieved minimum error values in overall.

TABLE 8. Ablation analysis-real datasets.

number of clusters and search for successive minimum SAM
error.

G. DISCUSSIONS
The proposed methods employ a simple approach to extract
endmembers by combining fuzzy clustering and spectral-
matching algorithms. The methodology increases the number
of clusters and searches for an endmember using spectral
mapping to achieve better results. This causes the longer

computation time of FGSM. Spectral mapping parameters,
such as the SAM, spectral information divergence, and com-
bined spectral similarity value, are used tomatch the extracted
spectra with the GT. Each of these parameters has their own
advantages and disadvantages. Few of the parameters take
into account spatial characteristics only, and a few consider
spectral characteristics, while they fail to consider the effects
due to atmospheric and illumination conditions. Therefore,
this search can be replaced by any unsupervised learning or
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FIGURE 15. Comparison of computation time (in seconds)-real datasets.

deep learning techniques. Deep learning algorithms, such as
the convolutional neural network, radial basis function, and
auto encoders are used in dimension reduction and classifi-
cation of hyperspectral images [64]. The same can be applied
to search for an endmember in the fuzzy classified data of the
proposedmethods. The estimation of endmembers is a critical
step in spectral unmixing, and in the classification of the
hyperspectral image. Deep learning algorithms can be used
to estimate the number of endmembers, spectral signatures,
and abundance maps in parallel [65]. The performance of the
deep learning algorithm relies on the large training samples
used to train the network. In hyperspectral images, a large
number of training samples must be created with the available
GT spectral signatures and abundance maps. Then, a suitable
convolutional neural network can be designed to estimate
the number of endmembers and extract them in parallel.
Future work would involve replacing spectral matching with
the unsupervised learning algorithm to search for an end-
member among a set of target pixels obtained through fuzzy
clustering.

V. CONCLUSION
A novel automatic endmember extraction method is proposed
by combining fuzzy clustering and the spectral-matching
algorithm. Fuzzy clustering helps identify target pixels, fol-
lowed by the extraction of pure endmembers using the
spectral-matching algorithm. Fuzzy clustering assigns soft
class membership values to each pixel, which helps identify it
as target pixel. The spectral-matching algorithm using SAM
aims to select endmembers from the target pixels. The pro-
posed method can be implemented on full hyperspectral data,
as well as on dimensionality-reduced data. The performance
regarding computation time on dimensionality-reduced data
is good compared to existing methods. The proposed method
was tested on both simulated and real datasets. Performance
metrics show that proposed methods produce superior results
when compared to existing clustering and non-clustering-
basedmethods in the presence of noise. Performance analyses
on the generation of abundance maps from extracted end-
members likewise yielded efficient results in comparison
with the existing state-of-the-art methods. In the future, the
use of proposed endmember estimation in change detection
applications can be employed to detect and analyse changes
in the mangrove forest caused by natural and anthropogenic
disturbances.
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