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ABSTRACT Multi-ported memories are widely used in many applications, such as for high-speed and high-
performance parallel computations. While conventional SRAM-based memory macros are limited in both
flexibility (e.g., to accommodate a large number of write inputs and read outputs) and performance, standard
cell-based memories are much more flexible and can be parameterized. The physical implementation
approaches of the existing tools have great difficulty in dealing with these memories due to the multiplicity
of wiring and misunderstanding of the regular structure of these arrays, to the point of inability to
converge under certain conditions. This paper presents novel methodologies for the logical and physical
implementation of many-ported standard cell memories (MPSCMs). Two methodologies are proposed to
replace the standard design flow by controlling and guiding the design tools to improve power consumption,
area and performance of these arrays. A commercial 65 nm CMOS technology was used to evaluate
and benchmark the two design methodologies on MPSCM macros of different sizes as compared to
other equivalent macros designed with standard methodologies and state-of-the-art designs. Physical
implementation results show that as compared to a standard RTL approach, the implementation of a 3-write,
5-read port (3W5R) register file with the tightly-controlled methodology leads a 2 × increase in placement
density along with significant reductions in write power (–66%), read power (–37%) and leakage power
(–80%), while also improving the access time (–6%). When considering an extreme case of a many-ported
memory with 20-write and 20-read ports (20W/20R), the guided methodology leads to improvements in
delay (–13%), write power (–62%), and leakage power (–51%). Both methodologies were implemented
within an automation utility based on the ‘‘Salamandra’’ open source netlisting tool, enabling fast and easy
migration to additional process nodes and standard cell libraries for generating MPSCMs with various sizes
and features.

INDEX TERMS Standard cell memories (SCMs), multi-ported memories, controlled placement, low-power,
vector register file, register file, many-ported memory.

I. INTRODUCTION
On-chip memory is a major bottleneck for performance,
energy-efficiency, and area footprint of state-of-the art
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systems-on-chip (SoCs) and modern microprocessors [1].
On-chip memories are commonly implemented with
six-transistor static random access memory (6T-SRAM)
based macro-cells, which are provided as hard macros by
memory vendors or directly by the foundry. These memories
are often provided with various design targets, such as
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high-density, high-speed and low-leakage, but at their basis,
they are optimized for size, and are therefore based on
foundry-supplied ‘‘pushed rule’’ bitcells, which are very
constrained in their usage envelope. For robust operation
in advanced process nodes and to meet the high memory
throughput requirements, the 6T-SRAM macros require
dedicated, custom-designed peripherals [2], [3], [4], [5], [6].
Since these macros are designed for general use, they often do
not support special design requirements, such as low-voltage
operation, non-standard array or periphery sizes, multi-ported
functionality, etc. [7], [8]. Therefore, when an embedded
memory with special functionality is required, the choice is
usually between the long, expensive and high-risk approach
of custom-designing the memory, the use of architectural
techniques to achieve the required features with standard
SRAM macrocells, or behaviorally defining the required
memory as part of the register transfer level (RTL) description
of the system [8], [9].

For non-standard (e.g., multi-ported) memories up to a
certain size (usually several kB), the third solution is usually
chosen. Defining the memory with a standard hardware
description language (HDL) and then synthesizing and
implementing it through the standard design flow can lead
to some advantages. First, the portability of the memory
design to different technologies is greatly simplified. Next,
it is relatively easy to modify design parameters (such as
the number of words, the number of bits per word or the
number of access ports) at design time and even at quite
advanced stages of the design cycle. Finally, since top-level
designs comprising standard-cell-based memory blocks can
be placed automatically using a standard placement tool,
the data locality is improved, while the routing can be
also reduced [9]. However, the straightforward behavioral
description of such a block misses out on several functionally
equivalent characteristics of a memory that cannot be
exploited by the standard flow. This leads to synthesis of
the RTL into gate-level structures that cannot be further
optimized in the way that custom-designed memory macros
are. One example of this is the clocking of storage
elements – whereas a custom-designed memory macro only
has a single clock port that has a relatively low toggling
load (e.g., only the input latches), an RTL defined memory
requires distributing a clock to each storage element, leading
to a high-degree of clock tree buffering, routing complexity,
and clock power consumption. Another problem with the
RTL-defined approach is that the addition of such an array
of clocked elements creates a large number of timing paths,
which can overload the timing optimization tools, leading to
extremely long tool runtimes.

An alternative solution consists of carefully defining
the memory block in what is referred to as the semi-
custom, or standard cell memory (SCM) approach [9],
[10], [11], [12]. The SCM approach, which takes into
consideration the structural compilation of the digital block
and not just its behavioral functionality, leads to improved

implementation as compared to the purely-behavioral
RTL-defined alternative. While the block will remain
functionally-equivalent, it may not be logically-equivalent,
and therefore, a synthesis tool will not reach such a solution
based on the straightforward behavioral description. For
example, since memory writes are applied to a single decoded
row, the clock signal can be replaced by each row’s write
word line, which only toggles when that row is selected,
significantly reducing the power consumption. Taking this
approach a step further, controlled-placement can be applied
to the structurally-defined macrocell, further exploiting the
characteristics of the array for gains in power, performance
and area [7], [8], [13]. Another benefit of the controlled
placement approach is the significant reduction in physical
implementation runtime, since the blocks can be either
implemented independently of the full design or removed
from the timing optimization process, such that the tools are
not loaded by the additional timing paths [7].

Previous work on SCM implementation has exclusively
focused on two-ported memories; i.e., macros with one read
and one write port (1W1R), which are natively supported
by the SCM approach. However, many applications require
memories with additional ports; from a small number of
ports for processor register files to a very high number of
ports for highly-parallel computational units, such as digital
signal processors (DSPs). We refer to memories with more
than two ports as ‘‘many-ported’’, since these memories are
non-standard in the sense that it is very uncommon to find
SRAM-based memory compilers supporting these require-
ments. This work presents a novel design methodology
for the physical implementation of many-ported memories
that are based on standard cells. We have evaluated the
inherent structure and properties of many-ported memories,
and subsequently replaced the implementation through the
conventional digital implementation flow (DIF) with a
novel methodology based on specially developed algorithms
and utility tools for efficient implementation in terms of
performance, power, and area (PPA). In particular, the
proposed solution aims to manipulate the netlist according to
the desired architecture with the goal of improving the place
and route steps by properly guiding the electronic design
automation (EDA) tools according to the physical structures
of the common components. Our study covers all the stages of
digital design frommemory specification through full layout,
as demonstrated with a commercial 65 nmCMOS technology
and standard cell library.

Two separate methodologies are proposed. The first,
referred to as the ‘‘tightly-coupled’’ technique is intended
for highly-optimized macros with clear specifications, such
as a 3W5R register file required to meet the requirements
of a dual-issue RISC-V processor pipeline [14]. The sec-
ond, referred to as the ‘‘guided’’ technique is a flexible
approach intended for macros with a large number of ports
and supporting design flows that support a parameterized
definition, such as the vector register file (VRF) of a
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high-performance DSP [15]. Post-layout simulation results
have been benchmarked against other equivalent macros
designed with standard methodologies. As compared to
a standard RTL approach, the implementation of the
aforementioned 3W5R processor register file with the
tightly-controlled methodology leads a 2× increase in
placement density along with significant reductions in write
power (–66%), read power (–37%) and leakage power
(–80%), while also improving the access time (–6%). At the
other extreme, a many-ported VRF with 20-write 20-read
ports (20W/20R) provides very significant gains in leakage
power (2×), write power (–62%) and access time (–13%),
while ensuring high memory density, and considerably
reducing the implementation run time (–47%), as compared
to the behavioral RTL design approach.

The rest of the paper is organized as follows. Section II
presents the background of our work. Section III introduces
the proposed methodology for implementation of many-
ported memories. Section IV presents and discusses obtained
implementation results. Finally, Section V summarizes our
work.

II. BACKGROUND
A. WHY MULTI-PORTED EMBEDDED MEMORIES?
Embedded memories with multiple read/write (R/W) ports
are very appealing for modern SoCs [1], [2], [16], [17].
Various blocks that are usually integrated in these systems,
such as media and graphics processing units (GPUs) as
well as computational cores, require multi-port memories
to support instruction-level parallelism with the goal of
increasing processing speed while avoiding data serialization
and reducing wait states during pipelining [2], [3], [18], [19].
As an example, dual-port memories are widely used for video
processing units, since two read and write access operations
can be performed within the same clock cycle [20], [21],
[22], [23], [24]. An even larger number of read ports is also
utilized in graphics processors, digital signal processors, and
for shared system level memories that provide simultaneous
access to multiple processing units [3], [16], [25], [26],
[27]. In addition, a large number of write ports can be
useful in multi-threaded applications and vector processing.
Furthermore, many read/write ports (>10) are needed in
high-endmicroprocessor register files to support high degrees
of multi-threading, wide issues and other features [28],
[29]. These, and many other applications, raise the need for
many-ported memory design.

B. STANDARD CELL MEMORIES
On-chip memories are commonly implemented with custom-
designed macrocells based on 6T-SRAM, which is optimized
by the foundry to achieve very dense layouts that enable
integration of as much memory as possible within the
allocated silicon area. However, for small storage arrays,
a common practice is to define the registers in RTL
and synthesize them along with the rest of the digital

logic. While structural design of such arrays was probably
commonly practiced beforehand, the groundbreaking papers
by Meinerzhagen et al. [9], [11] coined the term ‘‘SCM’’ for
this semi-custom design approach for register arrays. In these
works, the case for SCMs was presented, describing various
options for implementation of the SCMs and comparing
them with compiled 6T-SRAM macrocells in 180nm to
65nm technologies. A primary conclusion from [9] was
that the tradeoff point, at which SCMs overtake 6T-SRAM
macros in area and start presenting a growing overhead,
is at approximately 1 kbit (32×32) bits. That said, the work
presented in [11] shows the value of SCMs as a low power
alternative to 6T-SRAM, which fails under voltage scaling
and is not appropriate for subthreshold operation.

The study of SCMs was taken a step farther in [13]
and [7], where a controlled-placement approach was pro-
posed and an architecture for implementing SCMs with high
placement utilization and low wirelength was developed.
These works presented comparisons of controlled SCMs
in 28nm FD-SOI technology, comparing various memory
sizes and configurations with several types of compiled
SRAM macros and register files. This and following
work in additional technologies showed significant energy
savings through controlled placement, reaching as high as
50% and 70% as compared to non-controlled SCMs and
6T-SRAM, respectively, while retaining similar performance.
Furthermore, the controlled placement technique was shown
to enable scaling of SCMs to large sizes, with a 16 kbyte
(512× 256 bit) macro demonstrated in a 28nm bulk CMOS
process [30]. These approaches have been applied to SCMs
fabricated in many research chips, including from the PULP
team at ETH-Zurich [8]. Similarly, IBM has reported
extensive use of synthesized soft arrays (SCMs with some
custom-designed parts) in their POWER9 processor, using
controlled placement to implement hundreds of scannable
register files [29].

C. MANY-PORTED STANDARD CELL MEMORIES
Fig. 1 shows the top-level of a conventional many-ported
standard cell memory (MPSCM), which is composed of four
main blocks:

1) The storage array withR ×C memory elements, where
R is the number of rows and C is the number of
columns.

2) The write logic, including the write address decoders,
that is fed by a set of input data (DIN), write enable
(WE) and write address (WADDR) signals for each
write port.

3) The read logic, which for each read port, comprises
read out multiplexers that drive the data out (DOUT)
signals and read address decoders that receive read
address (RADDR) and read enable (RE) signals.

4) The clock controller, which provides the gated clock
signals to the registers during write operations and the
sampling clock for optional input/output registers or
latches.
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FIGURE 1. Simple block diagram of a many-ported standard cell memory (MPSCM) with R × C storage elements, WPn-write and
RPm-read ports, and the corresponding peripheral with decoupled read and write paths.

As shown in Fig. 1, for n-write (WPn) and m-read
(RPm) ports, each input to the decoupled write and
read logic corresponds to a single write and read port,
respectively.

The storage elements could be implemented using
flip-flops or latches. Flip-flop based implementation is
more straightforward and can mitigate potential race con-
ditions, while a latch-based approach offers a reduced area
footprint [7]. Additionally, the latch-based implementation
can improve access time by leveraging the time-borrowing
property of latches. Due to the static CMOS nature of
standard cells, both storage elements can easily support
multi-port writing and reading, given the logic added for
correct operation. This logic can be trivially described in
RTL and implemented through synthesis. The SCMwrite and
read logic from Fig. 1 have been extensively studied in [7]
for a two-port (1R1W) memory. For many-ported memories,
the majority of the logic remains the same. In particular, for
the readout block, slight modifications should be taken into
account to efficiently implement multiple read ports. The
readout block has to choose the bit that will be transferred
to the output in each column, according to the read address.
When implementing the readout path from the storage
elements to the output, previous explorations, reported in [7]
and [11], indicate that multiplexer-based readout is more
efficient than the tri-state buffer-based logic. Accordingly,
to propagate the data stored in the targeted row to the output
port (DOUT), an R : 1 multiplexer is needed. To provide
a mapping of such a multiplexer, this can be synthesized,
potentially using high fan-in cells, which are undesired for
low voltage operation, and could also result in complicated

routing with long wires and high pin density, especially when
multiple read ports are required.

Differently from an SRAM-based implementation, whose
clock signal is fed only to the peripheral circuitry, every SCM
storage cell requires a clock signal for writing new data. This
results in several implementation challenges:

• The addition of a large number of clock sinks leads to
an extreme rise in complexity of clock tree synthesis,
resulting in multiple-level buffering, unconventional
placement, inherent routing congestion, large skews and
long run times.

• The clock pin in each storage cell toggles regardless
of read/write activity, resulting in a large increase in
dynamic power consumption.

• Each bitcell introduces additional sequential timing
paths. This large number of additional paths must
be accounted for and optimized by the timing and
optimization engines, leading to complexity and long
run times.

In this work, we propose solutions to the above-mentioned
issues to be applied in the physical design phase.

III. MULTI-PORT STANDARD CELL MEMORY (MPSCM)
USING CONTROLLED PLACEMENT
A. MULTI-PORT STANDARD CELL MEMORY
MICRO-ARCHITECTURE
Previous work dealing with controlled-placement of
SCMs [7] has shown that, when implemented with standard
logic, memories suffer from complex wiring that leads to high
congestion of interconnections and sub-optimal implemen-
tation. Many-ported memories require multiplexing address
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FIGURE 2. (a) General multi-port standard cell memory micro-architecture with R × C storage elements. (b) Read/Write logic circuitry.

and data busses from and to each port, resulting in additional
wiring and routing to areas with high pin densities. This issue
is further exacerbated as the number of read and write ports
grows, leading to severe congestion, convergence challenges
and diminished PPA.

Fig. 2(a) shows a general MPSCM micro-architecture for
an array of R × C storage elements with WPn-write and
RPm-read ports. First, to carry the data in/out (DIN/DOUT)
from or to the memory by selecting the appropriate row,
an additional decoder is needed for each read and write port
(not illustrated in Fig. 2) to access the corresponding read or
write address, respectively.

For each independent write port, there is a write
decoder that receives WADDR WIDTH bits, and outputs
2WADDR WIDTH write word line (WWL) signals – one to

each row of the array. For example, considering WPn ports,
the output of the last write decoder is WWL[WPn][R−1:0],
which refers to the WWL of the write port WPn with a bus
of [R-1 : 0] signals. Given the assumption that no writing
operation is allowed from multiple ports to the same row
during a given clock cycle, only a single WWL signal from
each write decoder will be active at a given time. The WWL
signal for a particular row feeds all the registers of that row
and has two roles. The first is to enable the clock to the
selected row (please, refer to the ‘‘clock control’’ circuit
in Fig. 2(a)-(b)). The second role is to serve as a switch
for the appropriate data entry of the port from which the
address came (please, refer to the ‘‘mux logic’’ circuit in
Fig. 2(a)-(b)). This mux logic is local to each individual
register, as illustrated in Fig. 2(a).
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FIGURE 3. Implementation of an expanded bitcell for a 3W5R register file.

Similar to the write ports, each port requires a separate
decoder, which drives a read word line (RWL) bus signal
that is propagated to all registers across the entire word.
For a memory with RPm read ports, the output of the last
read decoder will be RWL[RPm][R−1:0]. The RWL signal is
also used here as a switch for the reading mux (refer to the
‘‘reading mux’’ circuit in Fig. 2(a)-(b)); however, in contrast
to the write requirements, in the case of read, there is no limit
on reading from two different ports on the same row. The read
mux component for each port also needs to be placed next to
each register. More specifically, the ‘‘reading mux’’ circuit is
shared between columns.

This microarchitecture provides the foundation for divid-
ing the register file into R×C expanded bitcells, composed of
a flip-flop, n write mux elements, and m read mux elements.
An example of such an expanded bitcell is illustrated in Fig. 3
for 3-write and 5-read (3W5R) ports. The write mux is simply
constructed of an AND-OR tree, where the DIN of each
write port is ANDed with the WWL of the corresponding
port and the outputs are all ORed to create the data signal
to be (potentially) written into the storage element. The
clock pin of the flip-flop is fed by the WLCLK signal that
is shared by the entire row, as generated by the control
clock element of Fig. 2(b). The output of the flip-flop is
connected to m minimum sized NAND gates, which receive
the corresponding read port’s RWL signal as their second
input.

The output of these NAND gates (RPi,L1) is ‘0’ only if
a ‘1’ is stored and the row was selected for readout for
this row. Therefore, all other RPi,L1 of the same column
will be ‘1’ and we need to propagate the ‘0’ to the column
output. This is done by chaining interleaved NAND and NOR
gates, as detailed in [7], however only one additional gate
is required for each bitcell to create this logic. Therefore,
a NAND, NOR, or output buffer will be included in the
expanded bitcell, based on its row number and the total
number of rows in the array.

By constructing these expanded bitcells, no additional
logic is required to realize the write and read out muxes.
To complete the array, the only additional peripherals are
write and read decoders and control clock units, as illustrated
in Fig. 2(b). Furthermore, scan can be supported by
simply expanding the write mux to support an additional
port. This structure enables building an efficient physical

implementation based on controlled placement, as described
in the following section.

B. PHYSICAL IMPLEMENTATION BASED ON CONTROLLED
PLACEMENT
In order to determine the locations of all components in
the design, we developed two algorithmic techniques for
determining the physical placement of standard cells, hereby
referred to as Tightly-Controlled and Guided.

1) TIGHTLY-CONTROLLED TECHNIQUE
The Tightly-Controlled technique, is similar to that carried
out for the prior-art two-port SCM [7]. Each cell is placed
at a specific coordinate to achieve maximum utilization
and minimum wire length. The location of each standard
cell is accurately calculated, taking into account horizontal
and vertical wiring. As a consequence, a particularly high
utilization of area is achieved along with minimal and straight
wiring. This results in improved performance and power with
respect to conventional automatic placement approaches.
Note that such an approach can only be taken with a detailed
structural description of the structural netlist, where each
gate can be identified and its location can be calculated.
The structural description of Fig. 2 is compatible with this
approach; however, defining this structure with an HDL (e.g.,
using ‘‘generate’’-type statements) and running it through a
synthesis tool is both cumbersome to write and parameterize,
and is non-trivial (and tool-dependent) to manipulate specific
gates in the place and route tool. For this reason, a utility
for generation of the netlist with the particular structure and
instance names was developed and used, as described in
Section III-C.

2) GUIDED TECHNIQUE
To overcome the design-time limitations of the Tightly-
Controlled technique, we propose an alternative that allows
flexible automation in terms of number of ports and features,
while maintaining high utilization and low wire-length.
In this approach, rather than providing the exact location
of each gate, we treat a single memory bit cell with all the
components of its read and write ports as a single grouped
entity. Thereafter, a group is provided with an area (‘‘fence’’)
large enough to accommodate all of its components, and this
fence is placed at a precise location. The place and route tool
is then given the option to perform optimization, buffering,
and legalization within and in between the groups.

3) COMPARISON OF PLACEMENT TECHNIQUES
Table 1 summarizes the key differences between the two
proposed techniques. The Tightly-Controlled and Guided
placement techniques offer complementary benefits. The
Tightly-Controlled approach is best suited for small, fixed
port counts and achieves maximum utilization and mini-
mum wiring through precise coordinate-based placement,
providing full control over each cell, but requires significant
design time for each new architecture. In contrast, the Guided
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TABLE 1. Key differences between the Tightly-Controlled and Guided
placement techniques.

technique is highly parameterizable, supporting any number
of ports without altering the algorithm. While exhibiting
slightly lower utilization and wirelength, it provides control
at the group level and significant area, performance and
power benefits versus standard unguided approaches. More-
over, by placing groups of cells in defined regions rather
than individual components, the Guided technique enables
automated application to new architectures without extensive
floorplan tuning. This makes the Guided approach suitable as
a generic compiler technique for varied SCM designs.

C. PROPOSED CONTROLLED PLACEMENT
METHODOLOGY FOR MANY-PORTED STANDARD CELL
MEMORIES
Previous works on standard cell memories were carried out
by describing the structure in RTL and providing synthesis
directives and constraints to ensure that the specified structure
would be kept when generating the netlist. However, this
approach is both tool specific and was found to be very
limited when trying to configure various features, such as the
number of ports, reset configurations, scan configurations,
etc. Furthermore, all controlled placement had to be handled
in the place and route tool, which was again both tool specific
and very hard to control/configure. Therefore, to support
this work, we started by designing a netlisting framework
for defining the specific architecture and generating the
netlist and location directives in a very flexible and non
tool-specific fashion. We developed this framework as an
extensible Python library called ‘‘Salamandra’’, which is now
available as an Open Source project [31].

1) SALAMANDRA FRAMEWORK
Open-source projects to simplify IC design and enable
efficient workflows have become increasingly popular over
the recent past [32], [33], [34]. MyHDL [32], for example,
is a Python-based hardware-description language that enables
generation of Verilog/VHDL RTL and test-benches using
Python. Chisel [33] has been proposed as a Scala-based
alternative to traditional HDLs that provides much improved
productivity. Chipyard [34] is an open-source integrated
SoC design, simulation and implementation framework,
which provides a unified framework and work flow for

agile SoC development. Salamandra is such a framework,
intended to simplify structural design definition and provid-
ing tool-independent attributes that can be passed on to the
implementation flow.

The Salamandra framework provides an intuitive interface
for generating components in a hierarchical fashion and
defining the connectivity between them. Various properties
can be added to components, nets and pins to provide
additional information about the design, such as placement
coordinates for a given logic gate or hierarchical component.
Salamandra further supports reading-in standard cell libraries
and writing-out various EDA-supported formats, such as
Verilog netlists and Tcl commands for place and route tools.
All of this functionality can be wrapped in a Python script,
allowing Salamandra to be used as a Python library/API and
exploiting all the features and existing libraries of this popular
programming language.

For this work, the customized SCM architecture was
designed in Salamandra by instantiating components like
registers, logic gates and memories, and connecting them
hierarchically, while attaching location coordinates for con-
trolled placement. This enables the implementation of the
algorithms and logic for paramaterizing the construction
of the macrocells with various features. The design was
then mapped to the target technology through a set of
defines, without needing to go through logic synthesis. The
Salamandra-based tool emitted the Verilog netlist and Tcl
placement commands for the CAD tool, where the Tcl
controls placement according to the coordinates set during
SCM design. This allowed flexible design and generation
of the netlist and placement crucial for implementing the
customized SCM architecture, without being constrained to
a particular EDA tool flow.

2) PROPOSED MPSCM COMPILER
Fig. 4(a)-(b) shows the flow charts of conventional SCM
and the proposedMPSCMcompiler operation, corresponding
to the typical auto-placement and controlled placement
techniques, respectively. By exploiting the Salamandra
framework, we developed an MPSCM compiler, as shown
in Fig. 4(b), for generating netlist and placement commands
for a given SCM specification. The compiler uses a slightly
modified standard digital design flow; instead of writing
semi-structural RTL with generate statements and standard
cell instantiations, which are then synthesized with complex
directives and constraints, the SCM structure is entirely
designed in Salamadra. Mapping to a technology is achieved
with a simple set of defines without the need to go
through a synthesis tool, as shown in Fig. 4(b). During the
design process, location data is calculated and attributed to
each component, such that along with the output Verilog
netlist, a physical-aware format, like DEF or Tcl placement
commands, can be exported for use in the place and route
tool.

The rest of the digital implementation flow is the same,
as detailed in Fig. 4, including logic simulation, completion
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FIGURE 4. Block diagram of (a) conventional standard cell memory (SCM)
and (b) the proposed many-ported standard cell memory (MPSCM)
compilers.

FIGURE 5. Tightly-Controlled 3W5R memory: (a) single bit, (b) floorplan
of a 32 ×32 memory array.

of the place and route stages, and post-layout validation
and power estimation. This flow can accommodate two
hierarchical approaches to SCM implementation. The first
is a stand-alone (‘‘black box’’) approach, where the entire
flow is applied to the memory macro to provide a full
layout, which can then be passed as a semi-hard macro to a

top-level floorplan for integration with the other parts of the
design. The other approach is to export the SCM netlist for
integration as a soft macro in the top-level design and provide
relative placement coordinates to the top-level floorplan.
In this approach, internal routing and timing closure are
carried out as part of the top-level place and route flow.
While the first approach simplifies the integration, reduces
run-time, and enables straightforward reuse of multiple
identical SCM instances, the second approach merges the
SCM implementation with the top-level floorplan, enabling
better utilization of routing resources and more timing
flexibility.

IV. RESULTS AND COMPARISON
To evaluate the effectiveness of our controlled placement
methodology, we chose two many-ported memory examples
for implementation and comparison with the conventional
RTL approach, as well as with other multi-ported memories
reported in the literature [3], [28], [35], [36]. The first
benchmark circuit – on the low-end of the multi-ported
spectrum – is a 32× 32-bit 3-write 5-read (3W5R) memory
block, used as the register file (RF) of a dual-issue RISC-V
processor1 [14]. The second benchmark takes the proposed
methodology to the other extreme by implementing a
20-write 20-read (20W/20R) RF, intended to be used as
VRF for a high-performance DSP core [15]. The presented
results are extracted from post-layout gate-level simulations
considering a commercial 65 nm CMOS technology and
standard cell library featuring a nominal supply voltage of
VDD=1.2 V. For power measurements, Cadence Voltus IC
Power solution was applied to an extensive test-case that
includes 1000 random-data write cycles to randomwrite ports
and addresses, which were subsequently read out during the
1000 cycles in a random order.

A. FLOORPLAN AND LAYOUT
The expanded bitcells of the 5W3R register file were
hand-designed based on specific standard cells to achieve the
highest density possible. The smallest register in the library
was chosen and set at the center of the bitcell area with the
write port logic gates placed on the left and the read port logic
gates tightly wrapping the right side of the register, as shown
in Fig. 5(a). This expanded bitcell was then replicated into a
full 32×32memory array and the additional peripherals were
added to arrive at the layout shown in Fig. 5(b). As can be
seen, this Tightly-Controlled approach provides a placement
utilization approaching 100% for the smallest area possible.
Despite the high utilization and the high pin-density of the
multiplexer-heavy logic, the structured approach enables easy
routing convergence, thanks to the shares nets and reduced
wirelength. This also results in low power consumption

1The RISC-V base architecture requires two source (read) and one
destination (write) operand, resulting in a 1W2R RF. The expansion to
dual-issue doubles the required number of ports. The chosen processor also
supports post-increment instructions, which require an additional read+write
operation per instruction. The final result is a 3W5R RF.
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FIGURE 6. Guided approach: (a) floorplan of a 32 ×32 memory array,
highlighting a 20W/20R bitcell and a group of bitcells; (b) floorplan of a
group of bitcells, highlighting the 20W20R bitcell (includes register files
and write/read circuitry).

and limited usage of routing resources on higher metal
layers.

The many-ported 20W/20R memory array was imple-
mented using the Guided-placement approach. Salamndra
was used to define the expanded bitcells and the connectivity
between them, and to define placement regions (fences)
where the gates belonging to a given bitcell would be placed.
The floorplan of the many-ported memory is shown in
Fig. 6(a), with each small rectangle marking the boundary
of a single expanded bitcell. The regions were calculated
automatically based on the features of the standard cells,
providing some additional area for upsizing during optimiza-
tion. Once the initial placement was finished, the fences
were removed to enable the EDA tool to apply standard
optimization techniques to meet timing and design rules. The
resulting layout is shown for a zoomed-in portion of the
floorplan in Fig. 6(b), with the logic gates belonging to a
single expanded bitcell highlighted. Here, too, the resulting
utilization is very high and routing easily converged, despite
the challenge successfully routing a block with extremely
wide muxes and high pin count.

B. POST-LAYOUT RESULTS
Fig. 7(a)-(b) shows the post-layout gate-level simulation
results in terms of capacitance, wire-length, run time, delay,
and power consumption, for the 3W5R 32×32-bit RF
test case. In contrast to the RTL-defined implementation,
the tightly-controlled technique results in a well-structured
memory layout, which leads to reduced wire capaci-
tance (–17%), reduced wire-length (–38%), and a slight

FIGURE 7. Post-layout gate-level simulation results in terms of
(a) capacitance, write length, run time, and delay, and (b) power
consumption for a multi-port (3W5R) 32×32 register file at a 65 nm node
and VDD = 1.2V. Results consider the tightly-controlled placement
technique.

improvement in the access delay (–8%). The run-
time required for standalone implementation of the
tightly-controlled block is almost 2× faster than a traditional
implementation. By using a hard-macro approach, this
run-time savings substantially increases, as the routing and
timing of the memory are decoupled from the top-level
design, reducing the complexity of the top-level place and
route.

The dual-level clock gating and the reduced wire-length
lead to significant savings during write (–66%) and read
(–37%) operations, as shown in Fig. 7(b). Furthermore, the
SCM structure, which includes single signal gating of the
output multiplexer [9], as well as the limited buffering and
upsizing requirements due to the tight layout, lead to an 80%
reduction in leakage power. Comprehensively, the total power
consumption is reduced by about 54% for the considered
many-ported structure.

The results of the 20W/20R VRF benchmark are sum-
marized in Fig. 8 and Fig. 9, considering a varying number
of words from 16 to 128 rows. Three vector widths
(16, 32, and 64-bits) are considered for both Controlled and
RTL approaches, presenting a total of six data points (i.e.,
six bars) per memory row. Specifically, RTL technique is
represented with dash-line bars shown on the top of the
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FIGURE 8. Post-layout gate-level simulation results in terms of
capacitance, wire length, run time, and delay, for a many-ported
(20W/20R) register file as function of the memory capacity at a 65 nm
node and VDD = 1.2V. Results consider the proposed Guided controlled
placement technique.

FIGURE 9. Post-layout gate-level simulation results in terms of power
consumption for a many-ported (20W/20R) register file as function of the
memory capacity at a 65 nm node and VDD = 1.2 V. Results consider the
proposed Guided controlled placement technique.

Controlled approach represented with solid-line with filled
pattern. Note that all the designs were implemented with
the guided-technique, which enables changing the memory
specs with an automated utility without the need for manual
intervention or optimization.
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TABLE 2. Summary comparison of many-ported memories.

Fig. 8 shows that, as compared to the RTL implementation,
the guided-technique provides savings of as much as
40%, 47%, and 16% in total capacitance, wire-length, and
access delay, respectively. Furthermore, the implementation
requires between 40%–61% less run-time using the proposed
approach. However, the most substantial savings are in write
and standby power, as shown in Fig. 9, despite read power
increasing for some of the VRF sizes. Specifically, for write
power, the Controlled technique results in reductions of
43–59% compared to the RTL approach across the various
word widths and RF sizes (16, 32, 64, 128). Similarly, for
standby power, the Controlled method leads to substantial
decreases of 38–70% versus RTL counterpart.

C. COMPARISON
Table 2 summarizes the main results of the post-layout gate-
level simulations for different register file implementations.
In particular, the primary metrics of 32×32-bit 3W5R and
20W/20R many-ported designs, implemented with the pro-
posed tightly-controlled and guided techniques, respectively,
are provided alongside equivalent macros implemented with
a conventional RTL approach within the same silicon
footprint. The metrics of several published full-custom-
designed register files in 65 nm and 90 nm processes with
2–10 write ports and 2–12 read ports are also provided in
the table, with the 90 nm results scaled to 65 nm for direct
comparison. The tightly-controlled and guided macros excel
in almost every metric. In particular, when comparing the
proposed 3W5R register file against existing designs with
fewer than 10 ports [3], [35], [36], we can observe that, owing

to the efficient allocation of the SCMs, the proposed design
leads to the best alternative in terms of power consumption,
while offering competitive operating frequency. Furthermore,
in contrast to a published many-ported register file [28],
the proposed implementation methodology for the 20W/20R
register file provides outstanding power savings (several
orders-of-magnitude) at the cost of reduced frequency.

V. CONCLUSION
In this work, we presented novel controlled-placement
approaches for low-power and area-efficient many-ported
memories. Out studywas performed using a slightlymodified
digital implementation flow and exploiting a commercial
65 nm 1.2 V CMOS technology. To evaluate the performance
benefits and power-savings, the proposed techniques were
benchmarked against conventional RTL implementations
with the same requirements in a similarly sized floorplan.
Owing to the careful utilization of the routing resources,
the main advantage of the proposed controlled-placement
techniques over their non-controlled counterparts is their
power savings. Implementing well-defined many-ported
memories with a relatively small number of ports using
the tightly-controlled technique leads to as much as 2×

total power savings, with a 5× reduction in leakage power
and slightly improved access times, as compared to RTL
techniques. In the case of a 20W/20R many-ported memory,
the proposed guided technique enables power savings of as
much as 69% and 70% for write operation and leakage,
respectively, at the expense of increased read power for
some macro sizes. Slight improvements in terms of delay
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have also been seen between the proposed methodology
and typical RTL techniques. This shows that the correct
allocation of memories with many write and read ports can
be a noteworthy alternative for low power, area efficient, and
high-performance microprocessors and accelerators.
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