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ABSTRACT An Internet of Things (IoT) refers to a network of smart devices that enable data collection
and exchange. RPL is a protocol specifically designed for IPv6 over Low Power Wireless Personal Area
Networks (6LoWPAN) to bring the concept of IoT into reality. As a result, RPL has become a standard
routing protocol for connecting IPv6 to IoT networks. However, like any other network protocol, RPL is
vulnerable to various attacks, including sinkhole attacks, which can disrupt network operations. Sinkhole
attacks exploit vulnerabilities in RPL by manipulating routing preferences by disseminating falsified data,
leading to an abnormal increase in traffic directed toward the attacker’s node. This paper introduces the
Passive Rule-based Approach (PRBA) to detect sinkhole nodes in RPL-based IoT networks. The PRBA
approach relies on three proposed behavioral indicators: (I) Bi-Directional behavior, (II) Bi-Directional Fre-
quently behavior, and (III) Power Consumption behavior. The proposed PRBA approach was implemented
and evaluated using the COOJA simulator and compared with state-of-the-art approaches. Simulation results
demonstrate that the PRBA approach achieves a detection accuracy rate ranging from 90% to 100%, with a
false-positive rate ranging from 0% to 0.2%. Additionally, due to its carefully designed deployment strategy,
the proposed approach satisfies the power consumption requirements of constrained nodes without causing
an increase in power consumption.

INDEX TERMS Internet of Things (IoT), routing protocol for low-power and lossy networks (RPL),
IPv6 over low power wireless personal area networks (6LoWPAN), internet protocol version 6 (IPv6),
international data corporation (IDC), distributed denial of service (DDoS).

I. INTRODUCTION
One of the most severe and damaging routing attacks in
WSN is the sinkhole attack, which misleads nodes with fake
routing information, drops packets, overrides data, or trans-
fers selective and partial data. Additionally, it can deplete
the surrounding nodes’ energy, creating energy gaps in the
network [1], [2], [3]. Therefore, many researchers proposed
several sinkhole attack detection approaches in RPL-based
networks.

The associate editor coordinating the review of this manuscript and

approving it for publication was Byung-Seo Kim .

The IETF standardized the RPL protocol in RFC4919 and
RFC6550 documents [4], [5] that focus on IP for LLNs
by employing IPv6 over 6LoWPAN, leading to standard-
izing IPv6 in IEEE 802.15.4 networks. Subsequently, the
IETF formed the Routing over Low Power and Lossy Links
(ROLL) group to specify RPL. RPL is now a standard
routing protocol for IPv6 connected to IoT, and the RPL’s
objective function selects an optimal route. Each node is
assigned an ID centered on the rank and IPv6 address. Nodes
exchange graph-related information with other nodes using
three RPL-specific Internet Control Message Protocol ver-
sion 6 (ICMPv6) messages: DIS, DAO, and DIO, as shown
in Figure 1 [6]. Routing protocols allow routers to establish
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FIGURE 1. RPL topology.

routes between nodes by exchanging route details. However,
networks could be vulnerable to attacks if these route details
are leaked [7].

IDS has long been an active research topic in network
security. Recently, researchers have started to include the
detection of sinkhole attacks in IoT networks, which can be
classified into two categories (Signature Based Approach and
Anomaly-based approaches).

Anomaly-based approaches are more efficient in detect-
ing attacks compared to signature-based approaches. In an
anomaly-based approach, the network’s normal behavior is
defined and used as a baseline. Anomalies are detected
when deviations from this baseline occur, and alerts are
generated when traffic behavior exceeds a threshold. Any-
thing that does not match normal behavior is considered an
intrusion.

The existing approaches for detecting sinkhole attacks
neglect the significant behavioral characteristics contributing
to accurate detection. Furthermore, most current approaches
suffer from increased energy consumption due to their
deployment design. Therefore, there is a need for a better
solution that can detect sinkhole attacks with low power
consumption and high accuracy.

This research paper makes two contributions to the body
of knowledge. First, we propose a set of behaviors that can
indicate a sinkhole attack in an RPL-based network. These
indicators include (i) Bi-Directional, (ii) Bi-Directional Fre-
quency, and (iii) Power Consumption. Second, we propose a
rule-based mechanism with predefined threshold values for
detecting sinkhole attacks based on these behavioral indica-
tors. The aim is tomaximize detection accuracy andminimize
the risk of sinkhole attacks.

The remainder of this research paper is organized as
follows: Section II discusses IoT, IPv6, RPL, and Sink-
hole attacks. Section III explores related works. Section IV
describes the proposed approach. Section V presents the
experimental findings. Finally, Section VI concludes the
paper and suggests potential future works.

II. BACKGROUND
This section introduces the IoT, the IPv6 protocol, and RPL.
This section also emphasizes the Sinkhole attack.

A. IoT OVERVIEW
IoT encompasses various constraints, including limited pro-
cessing capability, low storage capacity, short power life,
and restricted transmission range. Therefore, the success-
ful implementation of IoT relies on leveraging the existing
Internet Protocol (IP) infrastructure to optimize resource uti-
lization and take advantage of the vast address space offered
by Internet Protocol Version 6 (IPv6) [8], [9].
According to the International Data Corporation (IDC),

it is estimated that by 2025, there will be 55.7 billion
connected IoT devices. Furthermore, IDC predicts that the
data collected by IoT devices will triple by 2025 compared
to 2019, reaching 18.3 zettabytes [3]. Kaspersky Lab’s IoT
report highlights a significant increase of over 100% in cyber-
attacks targeting IoT in the first half of 2021. Attackers aim to
steal data, mine cryptocurrency, or create botnets. The report
indicates that the number of IoT attacks during the first half of
2021 exceeded 1.5 billion, more than twice the number in the
previous six months. These attacks primarily focus on data
theft and botnet creation [10].

Additionally, despite increased spending on IT security,
IDC reports that 70% of breaches originate from endpoints.
Moreover, there is a projected growth in the global secu-
rity market from $167.1 billion in 2019 to $248.26 billion
by 2023, with a Compound Annual Growth Rate (CAGR)
of 10.4% [11], [12]. The COVID-19 pandemic has fur-
ther emphasized the need for enhanced security measures,
as remote work has become prevalent across numerous com-
panies. Furthermore, Statista forecasts steady global growth
in end-user spending on IoT solutions from 2023 to 2025 [13].
Additionally, IDC estimates that by 2025, there will be
55.7 billion connected IoT devices [3].

Among routing attacks, the sinkhole attack stands out as a
particularly damaging Denial of Service (DoS) attack within
the IoT environment. Combined with other attacks, it can
result in even greater devastation and potential loss of infor-
mation. If undetected, a sinkhole attack can disconnect nodes
from the Internet leading to packet loss and failure to deliver
data to the base station. Furthermore, this attack increases
network overhead and reduces the network’s lifespan due to
increased energy consumption, ultimately causing network
degradation [14], [15].

B. IPv6 OVERVIEW
IoT has many constraints, including limited processing capa-
bility and storage volume, short power life, and limited
radio range. Therefore, the IoT implementation uses the
existing IP infrastructure to maximize the utilization of avail-
able resources while benefiting from the vast address space
of IPv6. Additionally, 6LoWPAN is a promising solution
that adds an adaptation layer in the network protocol stack
to integrate low-power networks, which is suitable for wire-
less communication of constrained devices, as shown in
Table 1 [16], [17], [18].
IPv6 is the next generation of IP to replace Internet Pro-

tocol Address Version 4 (IPv4), designed as an upgrade
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TABLE 1. 6LoWPAN protocol stack.

to IPv4 to support the whole world network devices. IPv4
was introduced in 1981, and the number of interconnected
computers has grown dramatically, leading to the exhaus-
tion of IPv4 addresses. Accordingly, a new version of the
addressing system called IPv6 was developed in 1995 with
the main difference in their formats. IPv4 uses 32-bit
(4-bytes) addresses to uniquely identify nodes within the
global Internet, whereas IPv6 uses 128-bit (16-bytes)
addresses. The ample IPv6 address space can resolve the IP
address exhaustion issue in IPv4 [19], [20].

C. RPL OVERVIEW
RPL, designed for 6LoWPAN, enables IoT and utilizes var-
ious routing messages such as DIS, DIO, and DAO. It out-
performs other protocols in terms of overhead, delay, and
memory. However, RPL has limitations in physical node
protection and cryptographic capabilities [21].

IETF standardized RPL in RFC4919 and RFC6550 [4], [5]
to establish IPv6 over 6LoWPAN for IEEE 802.15.4 net-
works. RPL is now the standard routing protocol for IoT, with
nodes identified by IPv6 address and rank. RPL uses ICMPv6
messages (DIS, DIO, and DAO) for exchanging graph-related
information [6].

D. SINKHOLE ATTACK
A sinkhole attack is a network layer attack in which the
attacker draws a vast amount of traffic and diverts or drops
it, aiming to prevent a base station (root) from receiving com-
plete data from nodes. The sinkhole node transmits fabricated
routing information to neighboring nodes, who incorporate
it into their routing metrics to determine the best data trans-
mission route. As a result, all traffic is directed through
the sinkhole node before reaching its intended destina-
tion [14], [22]. This continuous consumption and draining of
node energy by the sinkhole node lead to decreased network
lifetime.

Sinkhole attacks are considered one of the most destructive
routing attacks. They flood surrounding nodes with false rout-
ing path information and engage in data falsification or selec-
tive forwarding of passing data. This attack can potentially
drain the energy of neighboring nodes, creating energy holes
in wireless sensor networks (WSNs). Furthermore, it can
provoke inappropriate and possibly dangerous responses by
enabling other attacks, such as selective forwarding attacks,
acknowledge spoofing attacks, and drops or alters routing
information [14], [23].

III. RELATED WORKS
Intrusion detection has long been an active research topic
in network security. Recently, researchers have started
to include the detection of sinkhole attacks in IoT net-
works. Many of the existing approaches for detecting
sinkhole attacks suffer from increased energy consump-
tion and a high false-positive rate, and inadequately stud-
ied behavioral characteristics, resulting in low detection
accuracy [24], [25], [26], [27].

Alzubaidi et al. proposed the Neighbor Passive Monitoring
Technique (NPMT) as a lightweight technique for detecting
sinkhole attacks in RPL-based IoT networks. The proposed
IDS employs a Passive Intermediate Node (PN) to analyze
nodes’ broadcasts. Neighboring nodes with similar ranks are
not flagged as suspicious, while those with different ranks are
identified as suspicious nodes. The NPMT outperforms the
existing SVELTE method, achieving a 99.5% Accuracy Rate
and a 0.53% false-positive rate based on COOJA simulation
results. However, using passive intermediate and edge nodes
introduces overhead [28], [29].

Ioulianou et al. developed a detection module called IDS
Router and a lightweight monitoring module called IDS
Detector. IDS Detector monitors and logs network traffic,
forwarding it to the IDSRouter for detectingmalicious nodes.
The IDS Router matches attacks against known signatures.
IDSDetector onlymonitors operations within its area and for-
wards useful information to IDS monitors. A wired connec-
tion is recommended for IDSDetector nodes to prevent signal
jamming. The evaluation demonstrates high accuracy and low
false positives even in large networks, with the main chal-
lenge being balancing performance and overhead [30], [31].

Pandu et al. proposed a cognitive security approach for IoT
networks to improve user services. The proposed components
interact with the IDS, including a data acquisition module
that collects data from IoT devices and delivers it to the
central monitoring system. The central monitoring system
consists of detection and cognitive modules that process
the Access Control and Associated Accounting Schemes.
The detection module is capable of detecting wormhole and
sinkhole attacks. However, the evaluation results regarding
performance efficiency are not available [32].

Kaur presented a hybrid IDS called the Ultimate Approach
IDS for Mitigating Attacks in RPL-based Low Power Lossy
Networks, which follows a universal approach. The IDS can
detect known signatures and anomalies using blockchain and
calculates trust values to identify attacks and isolate adver-
saries. It can detect up to eight attacks, including Sinkhole,
flooding, wormhole, decreased rank, neighbors, DODAGver-
sion number, clone-ID, and sniffing attacks. The author pro-
vides a conceptual framework, highlighting its effectiveness,
low resource requirements, and extensibility. The system
partially supports mobile nodes, focusing on the root and
sub-DODAG parents as fixed positions [33].

Verma and Ranga proposed Ensemble Learning Intrusion
Detection System (ELNIDS), a signature-based detection
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system utilizing machine learning mechanisms. They imple-
mented four ensemble-based ML classifiers: Bagged Trees,
RUSBoosted Trees, Boosted Trees, and Subspace Discrim-
inant, to detect sinkhole attacks. ELNIDS consists of six
modules: sniffer model, sensor events and traffic reposi-
tory, feature extraction module, analysis engine, rule base
database, and attack notification manager. The evalua-
tion using the RPL-NIDDS17 dataset, containing traffic
signatures of various attacks, shows the effectiveness of
ELNIDS. The ensemble of Boosted Trees achieved the high-
est Detection Accuracy (94.5%), while the Subspace Dis-
criminant method achieved the lowest Detection Accuracy
(77.8%) [34], [35].

Bhale et al. proposed a lightweight IDS with a roving
nature in their work. They placed a lightweight IDS in a 6BR
router and a roving IDS in constrained nodes. The defense
method was implemented using the Cooja network simula-
tor on the Contiki operating system. Through experimental
results, they demonstrated that the solution is lightweight,
performs remarkably well, and can accurately identify sink-
hole attacks. It achieved a True Positive Rate of 95.86%
and a True Negative Rate of 94.31%. However, it should
be noted that the Roving IDS, when placed in a constrained
environment, exhibits high memory utilization [36].

In summary, the existing mechanisms for detecting sink-
hole attacks face several challenges. First, they consume a
large amount of network bandwidth and memory. Addition-
ally, they have a notable false positive rate leading to incor-
rectly flagging normal network activity as sinkhole attacks.
Thirdly, insufficient research into sinkhole attacks’ behav-
ioral characteristics results in low detection accuracy. Fur-
thermore, many mechanisms have overlapping features and
struggle to select the most crucial features for detecting sink-
hole attacks. The problem contributes to a high false-positive
rate and undermines detection accuracy. Finally, deployment
design leads to challenges such as high overhead and energy
consumption, as shown in Table 2, which presents the key
findings of existing mechanisms.

IV. THE PROPOSED APPROACH
This section explains the proposed approach PRBA, which
aims to detect sinkhole attacks with low power consumption
and high detection accuracy. Figure 2 shows the general
stages of PRBA.

A. DATA COLLECTION AND PRE-PROCESSING (STAGE1)
Data collection and pre-processing are essential stages that
involve collecting and transforming power consumption val-
ues and capturing ICMPv6 network traffic into a meaningful
format. This process prepares the data as an input dataset
for the subsequent stage, which is feature selection. Often,
datasets contain significant irrelevant information, which can
increase processing time. Moreover, overlapping features and
including insignificant features for sinkhole attack detection
can negatively impact detection accuracy and result in a high
false-positive rate [26], [37].

TABLE 2. Summary of related works.

In this stage, power consumption data and ICMPv6 packets
are passively collected from each node to identify relevant
information contributing to sinkhole attack detection. This
stage elaborates on data collection, capture, and filtering to
construct a dataset. The data collection and preprocessing
stage can be divided into two steps, as depicted in Figure 3.

1) DATA FILTRATION
In the IoT network, various types of network traffic, includ-
ing different packet protocols, traverse through the system.
However, not all protocols are relevant to detecting sinkhole
attacks. The primary purpose of this step is to filter ICMPv6
packet-specific attributes, such as source, destination, and
rank. Additionally, the power consumption features of each
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FIGURE 2. General stages of PRBA.

FIGURE 3. Data collection and preprocessing steps.

node are collected. The ICMPv6 packets and the power con-
sumption feature are significant in detecting sinkhole attacks.

The COOJA simulator’s ‘collect view’ feature provides the
energy consumption details of each node, while the Wire-
shark tool offers information about the network traffic of
ICMPv6 transmissions. The resulting data, which includes
the features from both the ICMPv6 packet and power con-
sumption values, are passed to the next stage (Feature Selec-
tion) to identify themost significant features that contribute to
the detection of sinkhole attacks. Furthermore, these features
will be categorized based on their contributions to sinkhole
attack detection.

The Data Filtration step filters out the ICMPv6 packet and
power consumption data as follows:

•ICMPv6 Packet: ICMPv6 helps to detect sinkhole attacks
by filtering and keeping an eye on specific network traffic
attributes like RPLInstanceID, DODAGID, DODAG Version
Number, Rank, Sequence, and IPv6 Address. By looking at
these attributes, ICMPv6 can find changes or inconsistencies
in the network’s topology and routing protocols that are not
normal, leading to detecting possible sinkhole attacks early
and taking quick steps to stop them. The reason for filtering
these particular ICMPv6 attributes is their common usage
in existing studies, as demonstrated in [29] and [35]. The
Wireshark sniffing tool filters the ICMPv6 attributes through
the ‘‘protocol==icmpv6’’ command. A total of 33 ICMPv6
attributes are filtered. However, not all these features sig-
nificantly contribute to the detection of sinkhole attacks;
hence, these attributes are passed to the next stage, ‘‘feature
selection,’’ to select the subset of features representative of
all features and essential to the detection of sinkhole attacks.

•Power Consumption Values: Energy consumption moni-
toring can detect sinkhole attacks in IoT networks. Increased

power consumption by devices in the network may indicate
a sinkhole attack, where a malicious node serves as a central
hub for all network activity. In a normal network operation,
nodes maintain relatively balanced energy consumption by
performing regular functions and communicating. However,
a sinkhole node may exhibit higher-than-normal power usage
as it diverts and reroutes traffic intended for other legitimate
nodes. Abnormalities that suggest a sinkhole attack can be
identified by continuously monitoring the power consump-
tion of devices. In this research, the power consumption
features/values such as all_cpu, all_lpm, and all_transmit are
obtained using the Powertracer tool [29], which saves them
as a ‘‘text’’ file. The features of power consumption are used
as input for the next stage.

2) DATA CLEANSING
The Data Cleansing step aims to reduce the traffic volume
in the dataset by addressing various issues such as fix-
ing or removing corrupted, incorrectly formatted, duplicate,
or incomplete data. By performing data cleansing, the detec-
tion accuracy is improved, and the search time for the dataset
is reduced.

The resulting cleansed dataset, including the features
derived from the ICMPv6 packet and power consumption
values, will proceed to the next stage (Features Selection).
In this stage, the most significant features that contribute
to detecting sinkhole attacks will be selected. Additionally,
these features will be categorized based on their respective
contributions to detecting sinkhole attacks.

B. FEATURE SELECTION (STAGE 2)
In detecting sinkhole attacks, feature selection poses two
significant challenges. Firstly, it selects practical features that
efficiently identify and detect sinkhole attacks. Secondly,
determining the importance of features, assigning higher
weight values to those essential for sinkhole attack detection
while excluding those with low weight values. The primary
objective of feature selection techniques is to reduce the size
of selected features and identify the most significant ones
using appropriate algorithms. In the Feature Selection stage,
the focus is on retaining the features with the most significant
impact on detecting sinkhole attacks while discarding redun-
dant or unnecessary features. This process typically employs
ranking techniques that assign weight values to each fea-
ture as parameters, optimizing the sinkhole attack detection
model.

Various algorithms are suitable for feature ranking, includ-
ing ReliefF, Principal Component Analysis (PCA), and Infor-
mation Gain Ratio (IGR). ReliefF is widely used among
them due to its simplicity, high operational efficiency, and
satisfactory results. It demonstrates good convergence and
efficiency, making it practical for feature selection in most
scenarios [38].

The ReliefF algorithm utilized in the proposed method
is adapted using the Waikato Environment for Knowledge
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Analysis (Weka) software [38], [39]. The ReliefF algorithm
selects 15 of the 33 features as themost important for sinkhole
detection. These 15 features are chosen based on equations
that reflect their significance and importance in identifying
and detecting sinkhole attacks. These essential features play
a crucial role in contributing to the accuracy and effectiveness
of sinkhole detection.

C. BEHAVIOURAL INDICATORS (STAGE 3)
The Behavioral Indicators stage plays a crucial role in
this approach as it aims to identify suspicious nodes in
RPL networks by analyzing selected features. The features
obtained from the previous stage (Feature Selection), includ-
ing ICMPv6 and power consumption data, are utilized to
detect abnormal behavior associated with sinkhole attacks
in RPL-based networks. Abnormal behavior indicators are
identified through repeated experiments and continuousmon-
itoring of sinkhole attack behavior.

1) BI-DIRECTIONAL BEHAVIOUR
The Bi-Directional behavior has been identified through
experiments and observations of normal packet transmission
and abnormal behavior associatedwith a sinkhole attack. This
behavior occurs when the victim node selects the sinkhole
node as its parent node while the sinkhole node reciprocally
selects the victim node as its parent. The purpose of this
behavior is for the sinkhole node to attract a significant
amount of traffic, aiming to disrupt the flow of complete data
from the sensor nodes to the base station.

2) BI-DIRECTIONAL FREQUENTLY BEHAVIOUR
After conducting numerous experiments and closely moni-
toring the Bi-Directional behavior, it has been observed that
the Bi-Directional Frequently Behavior occurs multiple times
between the sinkhole node and its neighboring nodes. This
behavior arises when the sinkhole node attempts to attract
multiple victims from its neighboring nodes. Consequently,
the number of member nodes transmitting data to the base
station decreases. Furthermore, with an increased number of
infected neighbors, the network’s overall efficiency dimin-
ishes as the base station receives fewer data packets.

3) POWER CONSUMPTION BEHAVIOUR
The sensors near the sinkhole attack experience a severe
battery power exhaustion issue, reducing the overall network
lifetime and increasing control overhead. Additionally, the
energy outflow surrounding the sinkholes is altered, neg-
atively impacting the network’s performance. The severity
of energy drainage on neighboring nodes depends on the
number of nodes affected by the sinkhole attack. Meanwhile,
the remaining nodes in the network maintain energy levels
similar to those in a network without sinkhole attacks.

The monitoring node performs the task of passively
listening to all messages that traverse through the network
topology. Whenever bi-directional behavior, bi-directional
behavior, or power consumption behavior is detected,

an alarm is triggered, indicating the transition to the next
stage, the Sinkhole Attack Detection.

D. SINKHOLE ATTACK DETECTION (STAGE 4)
This stage aims to decide whether there is a sinkhole
attack according to information from the previous stage
(behavioural indicators). This stage consists of the following
subsequent steps.

1) RULE-BASED
This step identifies the suspicious nodes by analyzing the
ICMPv6 and power consumption features by applying spe-
cific rules with thresholds. Determining the threshold values
involves conducting experiments, observations, and analyses
under normal and abnormal conditions.

As a result, the Threshold values are applied to behavioural
indicators. The rules are as follows:

Rule No.1: Bi-Directional Behaviour detection
The first proposed rule aims to detect Bi-Directional

Behaviour using the following rule:

Based on the following rule, Bi-Directional Behaviour is
identified for each DODAG:

If Child (Node) Refer Parent (Node) AND Parent
(Node), Refer Child (Node) At the exact moment, then
consider it as suspicious behaviour.

The Bi-Directional behaviour will be calculated for each
DODAG every minute, and the above rule will be applied.
Whenever a Bi-Directional behaviour occurs, an alert is
triggered.

Rule No.2: Bi-Directional Frequently Behaviour
detection

The second proposed rule aims to detect Bi-Directional
Frequently Behaviour using the following rule:

Based on the following rule, Bi-Directional Behaviour is
identified for each DODAG:

If Count (Bi-Directional behaviour) > th, consider it
suspicious behaviour.

An alert will be triggered if the Bi-Directional Behaviour
count exceeds the threshold (th).

Rule No.3: Power Consumption Behaviour Detection
The third proposed rule aims to detect Power Consumption

Behaviour. The power consumption for each node is calcu-
lated using the following rule:

Based on the following rule, Power Consumption
behaviour is identified for each node:

If Power Consumption (Node) > th1, then consider it as
a suspicious behaviour
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The thresholds th and th1 are preconfigured, and their val-
ues are determined through experiments, observations, and
analyses conducted under various network conditions, includ-
ing normal and abnormal scenarios. While using predefined
thresholds allows for simplicity and ease of implementation,
it is essential to acknowledge their limitations in adapting
to dynamic and evolving attack patterns in real-world IoT
environments. As a result, careful consideration should be
given to regularly updating and fine-tuning these thresholds
to optimize detection accuracy andminimize attack risks. The
output of the rules is passed as input for the next stage in the
detection process.

2) UNWEIGHTED VOTING METHOD FOR DETECTING THE
SINKHOLE ATTACK
The proposed approach employs the unweighted voting
method, wherein each voter or rule carries equal weight,
to identify sinkhole anomalies accurately. This method does
not allow voters to express their preference for one candidate
over another, making it less complex as it does not involve
intricate measures [37], [40]. To detect a sinkhole attack,
a majority voting rule is applied to the outcomes of the
behavioral rules. In particular, the unweighted voting method
requires a majority of over 51% to determine the presence of
a sinkhole attack based on the voting result [41], [42].

The unweighted voting method stands out due to its char-
acteristic of assigning equal weight to each voter in the
decision-making process. Unlike other selectionmethods like
Preference Ballots or Plurality, the unweighted votingmethod
avoids complexity and allows voters to express their prefer-
ences for candidates equally.

The selection of Bi-Directional behavioral, Bi-Directional
Frequently behavioral, and Power Consumption behavior
indicators for the unweighted voting method is based on
their relevance and contribution to identifying sinkhole nodes
within the proposed research context. These indicators have
been carefully chosen from other options based on their
ability to capture key characteristics of sinkhole attacks and
distinguish them from normal network behavior [43], [44].

Although the specific indicators may be tailored to the
IoT context of the sinkhole attack detection, the unweighted
voting method can be generalized and applied to other related
applications, as demonstrated in [45]. The technique can be
adapted by selecting appropriate indicators relevant to the
problem. For example, in a different application domain,
such as anomaly detection in network traffic, the unweighted
voting method can be utilized by selecting indicators that
capture the desired abnormal behavior patterns.

The unweighted voting method offers simplicity and fair-
ness by assigning equal weight to each voter or rule in the
decision-making process. It enables straightforward imple-
mentation and interpretation while ensuring that all indicators
are considered equally. This generalizability and flexibil-
ity make the unweighted voting method valuable in vari-
ous applications where multiple indicators contribute to the
decision-making process.

3) THE DETECTION OF SINKHOLE ATTACKS IS BASED ON
EQUATION (1)

R = (
∑

(Abnormal Behaviours)/3) (1)

If R > 51% Then Alert =True
Else

Alert=False
End
R: is the result

Equation (1) shows sinkhole attacks will be detected if R
exceeds 51%. Otherwise, it is treated as a normal packet.

By utilizing a threshold of 51% in the unweighted voting
method, we aim to capture themajority of voters’ preferences.
This threshold represents a significant portion of the voting
population, precisely two-thirds. Setting the threshold at this
level ensures a clear majority consensus is reached before
determining the presence of a sinkhole attack based on the
voting results.

The selection of 51% as the detection threshold was moti-
vated by a desire to maximize accuracy. It is rigorous enough
to prevent false positives and broad sufficient to identify
actual sinkhole assaults. The threshold facilitates an assured
decision-making procedure by requiring a large margin of
agreement among the indicators.

V. EXPERIMENTAL RESULTS
This section evaluates the proposed approach and provides
insights and discussions regarding the experimental results.
For the experiment of creating the RPL-NIDDS17 andNPMT
datasets, a detailed list of specific parameters used is pre-
sented in Table 3.

TABLE 3. Parameter settings of the experiments.

A. DATASET
The PRBA is evaluated using the RPL-NIDDS17 [35] and
NPMT [29] datasets to measure detection accuracy, false-
positive rate, and power consumption. These datasets were
chosen based on their common usage in existing research,
such as [46], [47], and [48].

The RPL-NIDDS17 dataset consists of seven types of
modern routing attacks: Sinkhole, Blackhole, Selective For-
warding, Clone ID, Sybil, Hello Flooding, and Local Repair.
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The evaluation of the RPL-NIDDS17 dataset involves assess-
ing four machine-learning classifiers: RUSBoosted trees,
bagged trees, boosted trees, and subspace discriminant
boosted trees. Performance measures such as accuracy, area
under the curve, and the ROC curve are evaluated as part
of the performance assessment process. The RPL-NIDDS17
dataset is used to train the classifiers, although the classifier
tuning and feature selection techniques were not employed.

NetSim is a tool employed to generate the RPL-NIDDS17
dataset. The IoT network comprises a gateway, sensor nodes,
wired nodes, and a router, as depicted in Figure 4.

FIGURE 4. ELNIDS architecture.

The RPL-NIDDS17 dataset consists of twenty-two
attributes, such as Time, Source Destination ID, Packet Type
(TCP, ICMPv6, and UDP), Attack Category, and Label (Nor-
mal or Attack) [49], [50].

To generate the NPMT dataset, the COOJA simulator is
run for basic DODAG topology without any attack for a
specific time, then runs the attack after a while, and two
datasets are collected. The COOJA simulator tool created
these datasets with a simulated IoT network topology that
includes a Base station (Router/Sink), Passive nodes, and
Sensor nodes, as shown in Figure 5 [51], [52].
The first dataset comprises data from the packet ana-

lyzer collected using the COOJA simulator and saved as a
‘‘PCAP’’ file. The second dataset includes each skymote’s
power consumption data obtained using the Powertracer tool,
which saves the data in a ‘‘text’’ file. All the information
is kept in a separate CSV and text file for sinkhole attacks.
The packet analyzer dataset consists of ten features, such
as Time, Source IP, Destination IP, Rank, Info, Protocol
Type (TCP, ICMPv6, and UDP), and Label (Normal or
Attack) [29].

B. RESULTS OF THE FEATURE SELECTION STAGE
Sixteen features with the highest ReliefF algorithm value
weights are selected and nominated as contributors to detect-
ing sinkhole attacks. The result of the field ranking using
the ReliefF algorithm in WEKA tools shows the selected
features.

FIGURE 5. NPMT architecture.

C. RESULTS OF BEHAVIOURAL INDICATORS STAGE
The stage aims to identify suspicious nodes in RPL-based
networks by analyzing the features listed in Table 4, which
are associated with abnormal behavior. These features were
introduced in the previous step specifically to detect abnormal
behavior.

1) DETECTION OF BI-DIRECTIONAL BEHAVIOURAL
INDICATOR
Bi-Directional behavior occurs when the attacked node
selects the sinkhole node as its parent node, and simulta-
neously the sinkhole node selects the attacked node as its
parent. This means that the parent node considers its child
as a parent, and the child node simultaneously considers its
parent as a parent. The sinkhole node attempts to attract a
significant amount of traffic, making the base station unable
to receive sensor data from the nodes exhibiting this behavior.
Table 5 presents the records of Bi-Directional behavior in the
RPL-NIDDS17 and NPMT datasets, explicitly indicating the
occurrences between the parent and destination nodes.

In the RPL-NIDDS17 dataset, it is evident that there
is Bi-Directional behavior between the parent node and
the destination node. The records show that the source
IP address of the parent node, fe80::212:7407:7:707, cor-
responds to the destination IP address of the parent
node, fe80::212:7411:11:1111. Similarly, the records indi-
cate that the source IP address of the parent node,
fe80::212:7411:11:1111, corresponds to the destination IP
address of fe80::212:7407:7:707. This reciprocal relationship
confirms the presence of Bi-Directional behavior in the RPL-
NIDDS17 dataset.

In the NPMT dataset, it is evident that Bi-Directional
behavior is observed between the parent node and the destina-
tion node. The records show that the source IP address of the
parent node, fe80::212:7405:5:505, corresponds to the desti-
nation IP address of the parent node, fe80::212:7404:4:404.
Similarly, the records indicate that the source IP address of the
parent node, fe80::212:7404:4:404, corresponds to the des-
tination IP address of fe80::212:7405:5:505. This reciprocal
relationship confirms the presence of Bi-Directional behavior
in the NPMT dataset.

The detected Bi-Directional behavior is an essential input
for the unweighted voting method in the Sinkhole Attack
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TABLE 4. List of selected features.

Detection stage. Since the Bi-Directional behavior is con-
sidered suspicious, it contributes to the decision-making pro-
cess in identifying potential sinkhole attacks. Including this
behavioral indicator in the unweighted voting, method helps
enhance the accuracy and effectiveness of detecting sinkhole
attacks in the network.

2) DETECTION OF BI-DIRECTIONAL FREQUENTLY
BEHAVIOURAL INDICATORS
The primary objective of this behavior is to track the
frequency of Bi-Directional occurrences within a specific
DODAG ID. By monitoring the event of Bi-Directional
behavior, the IDS (Intrusion Detection System) can iden-
tify potential sinkhole attacks. An alert is triggered when

TABLE 5. Bi-directional records.

TABLE 6. Bi-directional frequency records.

the number of Bi-Directional behaviors surpasses a pre-
defined threshold, indicating a higher likelihood of sink-
hole attacks. Table 6 presents the records of Bi-Directional
Frequently behavior observed between the parent node
and destination node in both the RPL-NIDDS17 and
NPMT datasets. The RPL-NIDDS17 dataset exhibits two
instances of Bi-Directional behavior. In the first instance,
the source IP VOLUME XX, 2017 address for the par-
ent node, fe80::212:7407:7:707, refers to the destination
IP address for the parent node, fe80::212:7411:11:1111.
Simultaneously, the dataset records show that the source
IP fe80::212:7411:11:1111 of the parent node refers to the
destination IP fe80::212:7407:7:707. Similarly, in the sec-
ond instance, the source IP address for the parent node,
fe80::212:7407:7:707, refers to the destination IP address for
the parent node, fe80::212:7412:12:1212, while the source
IP fe80::212:7412:12:1212 of the parent node refers to the
destination IP fe80::212:7407:7:707. Thus, Bi-Directional
Frequent behavior is observed in the RPL-NIDDS17 dataset.

Similarly, the NPMT dataset displays Bi-Directional Fre-
quently behavior in two instances. In the first instance, the
source IP address for the parent node, fe80::212:7405:5:505,
refers to the destination IP address for the parent node,
fe80::212:7404:4:404, while the source IP fe80::212:7404:
4:404 of the parent node refers to the destination IP
fe80::212:7405:5:505. In the second instance, the source
IP address for the parent node, fe80::212:7405:5:505,
refers to the destination IP address for the parent node,
fe80::212:7409:9:909, and the source IP fe80::212:7409:9:909
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of the parent node refers to the destination IP fe80::212:7405:
5:505. These occurrences of Bi-Directional Frequently
behavior surpass the threshold value set to one, indicating
suspicious behavior.

The results of the Bi-Directional Frequently behavior are
subsequently used as input for the unweighted voting method
in Sinkhole Attack Detection.

3) DETECTION OF POWER CONSUMPTION BEHAVIOURAL
INDICATOR
The passive node collects power consumption values from
the nodes, and changes in CPU, LPM, TX, and RX power
consumption values indicate the stability or instability of
the network routing topology. An increase in these power
consumption values suggests an unstable network, while a
decrease indicates a stable network. By analyzing the power
consumption of each node, the impact of the sinkhole attack
can be determined.

Table 7 provides information on the power consumption
behavior of the sinkhole node in the RPL-NIDDS17 dataset.
The table describes the CPU, LPM, TX, and RX power
consumption values, indicating whether the values increase
or decrease.

TABLE 7. Power consumption records for sinkhole node (NODE 7) -
RPL-NIDDS17 dataset.

Similarly, Table 8 presents the power consumption behav-
ior for the sinkhole node in the NPMT dataset. It provides
details on the CPU, LPM, TX, and RX power consump-
tion values and indicates whether these values increase or
decrease.

TABLE 8. Power consumption records for sinkhole node (NODE 5) –
NPMT DATASET.

The impact of the sinkhole attack on the network can
be assessed by analyzing the power consumption behavior
recorded in these tables.

The power consumption of the sinkhole node exhibits sig-
nificant changes after the attack. In both the RPL-NIDDS17
and NPMT datasets, the power consumption of the CPU,

LPM, TX, and RX experienced an increase, with values
changing from 0.7239 mW to 1.3717 mW and 0.7437 mW
to 1.1015 mW, respectively.

Rule No.3, which focuses on power consumption, has been
applied, and it has been observed that the power consumption
exceeds the threshold value of 1 mW. This behavior is con-
sidered suspicious.

The increase in power consumption results from the sink-
hole node attracting and processing traffic from nearby nodes.
The sinkhole node handles two types of illegitimate traffic:
transmitted traffic (TX) and received traffic (RX).

The analysis of power consumption behavior serves as
input to the unweighted voting method in the Sinkhole Attack
Detection process.

D. COMPARISON WITH THE ELNIDS APPROACH
This section compares the detection accuracy of the PRBA,
and ELNIDS approaches using the datasets provided in
Table 9 and Table 10. The detection accuracy is evaluated
to assess the performance of each approach in identifying
sinkhole attacks.

TABLE 9. Comparison between PRBA and ELNIDS on false-positive rate
and detection accuracy rate.

TABLE 10. Comparison between PRBA and NPMT on false-positive rate
and detection accuracy rate.

Comparing the PRBA approach and the ELNIDS approach
for detecting sinkhole attacks indicates that the ELNIDS
approach achieves the highest accuracy rate of 94.5%. How-
ever, it also has the worst accuracy rate, 77.8%, as shown in
Table 9. On the other hand, the NPMT technique achieves a
high accuracy rate of 99.5% with a low false-positive detec-
tion rate of 0.53%, as shown in Table 10.

The simulation results reveal that the PRBA approach with
the unweighted voting method achieves a perfect accuracy
rate of 100%. Without the unweighted voting method, the
PRBA approach still achieves a high accuracy rate of 90%
with a low false-positive rate of 0.2%. These results are
summarized in Table 9 and Table 10.
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The PRBA approach demonstrates better detection accu-
racy than the ELNIDS and NPMT approaches due to its
reliance on three indicators supported by rules and an
unweighted voting method.

This research proposes a passive rule-based approach for
detecting sinkhole attacks in 6LoWPAN RPL-based IoT net-
works, prioritizing low power consumption and high detec-
tion accuracy. Sinkhole attacks are evaluated using three
primary behavior indicators. The subsequent subsections pro-
vide a detailed discussion of the obtained results. The PRBA
approach is implemented and evaluated using the COOJA
simulator, and its performance is compared with the ELNIDS
approach and NPMT technique.

1) DISCUSSION IN TERMS OF ACCURACY DETECTION
Table 9 demonstrates that the PRBA approach achieves
a higher detection accuracy than ELNIDS and NPMT,
as evidenced by the experimental results. This superior-
ity can be attributed to PRBA’s utilization of three indi-
cators supported by rules and unweighted voting methods.
The ELNIDS approach, although accurate and effective in
detecting known attacks through signature-based intrusion
detection, lacks the comprehensive coverage provided by
PRBA. On the other hand, NPMT’s reliance on only two
indicators, namely power consumption, and ranking, renders
it susceptible to failure if any of these indicators fail to
trigger.

Incorporating the three major behavior indicators in
PRBA significantly enhances its detection accuracy, espe-
cially with the unweighted voting methods. These indicators
revolve around bi-directional behavior, bi-directional fre-
quency behavior, and power consumption behavior. By lever-
aging these indicators, PRBA can effectively identify and
detect sinkhole attacks in RPL networks, surpassing the capa-
bilities of ELNIDS and NPMT.

2) DISCUSSION IN TERMS OF POWER CONSUMPTION
The PRBA approach aims to meet the requirements of con-
strained nodes by conserving energy, prolonging battery life,
and minimizing power consumption. In contrast, ELNIDS
consumes significant power due to the necessity of maintain-
ing an extensive attack signature database. Similarly, NPMT
exhibits higher energy consumption than PRBA due to an
inappropriate deployment design where the IDS is installed
on a passive intermediate node that analyzes all nodes’ broad-
cast traffic.

In the case of PRBA, power consumption is measured with
and without the passive node, ensuring that data collection
by the passive node does not impact other constrained nodes
in the network. The average power consumption without the
passive node is approximately the same as the average power
consumption with the passive node and without any attacks.
Moreover, since the passive node is connected via a wired
network, it does not interfere with the power supply of normal
nodes. This aligns with the primary objective of the thesis,

which is to propose a low-power consumption approach for
detecting sinkhole attacks in RPL-based IoT networks.

VI. CONCLUSION
The current approaches for detecting sinkhole attacks lack
consideration of significant behavioral characteristics crucial
for accurate identification. Moreover, the deployment design
of these approaches often leads to increased energy consump-
tion. Therefore, there is a need for amore efficient and precise
method of detecting sinkhole attacks. The PRBA approach
aims to meet constrained node requirements by conserving
energy, improving battery life, and reducing power consump-
tion. Adopting this approach makes it possible to detect
sinkhole attacks effectively while minimizing the impact on
power consumption. In future research, exploring additional
behavioral indicators that can enhance the detection accuracy
of sinkhole attacks in RPL networks is recommended. For
instance, investigating the effectiveness of DIO transactions
as an indicator of abnormal behavior could provide valuable
insights.

Furthermore, considering the influence of mobility and
environmental factors on sinkhole attack detection may lead
to developing more robust and reliable detection mechanisms
in RPL networks. Moreover, a combination of rule-based
systems with other advanced techniques such as machine
learning, anomaly detection, and behavior analysis is often
employed to ensure maximum detection accuracy and min-
imum attack risk. These approaches enable the detection
of unknown and emerging attack patterns, providing bet-
ter protection against evolving IoT attacks. Also, evaluat-
ing the proposed approach in a real-world environment is
recommended to assess its effectiveness and performance
in practical scenarios. Finally, we plan to explore more
sophisticated techniques for threshold determination, such
as machine learning algorithms or adaptive thresholding
methods.
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