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ABSTRACT Chlorophyll-a (Chl-a) is an important parameter of water bodies, but due to the complexity of
optics in water bodies, it is currently difficult to accurately predict Chl-a concentration in water bodies by
traditional methods. In this paper, Sentinel-2 remote sensing images is used as the data source combined with
measured data, and Ulansuhai Lake is taken as the study area. An adaptive ant colony exhaustive optimization
(A-ACEO) algorithm is proposed for feature selection and combined with a novel intelligent algorithm of
optimizing support vector regression (SVR) by genetic algorithm (GA) for prediction of Chl-a concentration.
The ant colony optimization (ACO) algorithm is improved to select remote sensing feature bands for Chl-a
concentration by introducing relevant optimization strategies. The GA-SVR model is built by optimizing
SVR using GA with the selected feature bands as input, and comparing with the traditional SVR model. The
simulation results show that under the same conditions, using A-ACEQO algorithm to select feature bands as
inputs can effectively reduce the model complexity, and improve the model prediction performance, which
provides a valuable reference for monitoring Chl-a concentration in lakes.

INDEX TERMS Chlorophyll-a (Chl-a), genetic algorithm, lake, machine learning algorithm, remote sensing,
support vector regression.

I. INTRODUCTION

Lake wetland ecosystem is an important ecosystem in the
world [1] and also the guarantee for the survival of human
beings, animals, and other organisms [2]. However, due to
the interference of human activities, various water resource
problems have emerged, and the lakes have difficulties in
maintaining normal ecosystem functions [3]. Chlorophyll-a
(Chl-a) is an important carrier of algal organisms, and its
concentration is also an important indicator for assessing
the degree of algae and eutrophication in water bodies [4].
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Ulansuhai Lake wetland ecosystem, not only has the charac-
teristics of a typical cold and arid lake [5], but also carries
the receding water of agricultural fields and the discharge of
industrial pollution wastewater in the region [6]. Therefore,
it is of great practical significance to carry out the monitoring
of Chl-a concentration by taking Ulansuhai Lake as the study
area to understand the lake water ecosystem and manage the
water environment.

Traditional monitoring techniques are not capable of
large-scale water quality monitoring due to high cost,
time-consuming and susceptibility to external conditions
[7]. Remote sensing as an important monitoring tech-
nology has become an effective method for monitoring
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Chl-a concentration in lakes due to the advantages of fast
speed, low cost and wide detection range [8]. In previous
studies, most scholars predict Chl-a concentration based
on the bands contained in remote sensing data. For the
feature bands existing in remote sensing data, it can be
roughly divided into single-band, multi-band combination
and full-band combination predictive modeling. When a sin-
gle band is used for modeling, the band data is less sensitive to
Chl-a, and the performance of the model will be affected [9].
When full-band modeling is used, the feature bands will inter-
fere with each other due to the influence of multicollinearity,
which will also affect the accuracy of model prediction [10].
Therefore, when analyzing the feature bands of remote sens-
ing satellites, determining the feature variables of Chl-a is the
first prerequisite to improve the operation efficiency of the
prediction model, simplify the model structure, and enhance
the model stability, and it is more common to select the band
combination most related to the concentration of Chl-a [11].

The feature band selection methods of remote sensing
data can be divided into two types. One is the selection
method based on mathematical statistical characteristics.
Some commonly used methods are correlation coefficient
analysis (CC), successive projections algorithm (SPA), com-
petitive adaptive reweighted sampling method (CARS), etc.
For example, Zhang et al. [12] used CC to analyze band data
in Landsat 8 and measured Chl-a concentrations in Donghu
Lake, China, where the feature band with a high correlation
coefficient with Chl-a was selected to construct a prediction
model. Zhang et al. [13] used SPA to analyze the sensitive
band of the remote sensing feature data, and selected the most
sensitive band to construct the Chl-a concentration prediction
model of Qinghai Lake. Liu et al. [14] used CARS to select
the optimal feature bands, and built a soil organic matter
prediction model based on the selected feature bands. Such
methods can eliminate part of the redundant information to
some extent, but there are still a large number of variables
after selection, and the stability of the model is also poor.
The other is a new band feature extraction method based on
group intelligent optimization algorithm. For example, Deng
et al. [15] uses GA to select feature bands, which effectively
reduces the data dimension and achieves good results. Yang
et al. [16] used particle swarm optimization (PSO) and ACO
algorithms for feature band selection and demonstrated that
irrelevant feature bands can be filtered out, signal-to-noise
ratio can be reduced, and the accuracy of the prediction
model can be improved. Such algorithms solve problems
by simulating the way groups behave in nature, and have
a rigorous theoretical basis, providing feasible solutions to
complex problems that cannot be addressed in conventional
methods.

The traditional remote sensing prediction methods can
be roughly divided into empirical method, semi-empirical
method and analytical method. The empirical method [17] is
relatively simple and has a good effect in linear relation, but
the relationship between remote sensing spectral features and
water body elements is difficult to be expressed by simple
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linear function, and the adaptability of empirical method
is usually poor. Semi-empirical method [18] and analytical
method [19] are prediction methods that mainly utilize the
inherent optical characteristics in water bodies and combine
with remote sensing reflectivity. The demand for optical data
is large, the model is complex, and it is difficult to obtain a
large amount of data in practical applications, so they are not
suitable for wide application. At present, machine learning,
as a new method, has been widely used in remote sensing
prediction. For example, Xu et al. [20] built three machine
learning models to study Chl-a concentration in Xingkai
Lake, and the results show that combining machine learn-
ing algorithms with remote sensing technology can achieve
large-scale monitoring more effectively. Zhao et al. [21] stud-
ied and analyzed the concentration of Chl-a in Taihu Lake
and constructed multiple linear models and multiple machine
learning models for prediction. The results showed that the
prediction accuracy of the machine learning model was more
accurate than that of the linear model. SVR, as an important
machine learning algorithm, has shown strong usability in
the field of remote sensing because of its good performance
in solving small sample data and nonlinear problems. For
example, Guo et al. [22] constructed a variety of machine
learning methods to predict dissolved oxygen in Lake Huron,
and the results show that SVR model has higher prediction
accuracy and better model stability and generalization ability
than other machine learning models. He et al. [7] analyzed the
concentration of Chl-a in lakes and constructed SVR model
and other methods for prediction. The results showed that
SVR model was more effective and promising in predicting
the concentration of Chl-a. In general, the traditional remote
sensing prediction method is relatively simple, but it cannot
be widely used in remote sensing prediction due to its existing
characteristics, while machine learning, as a new method, has
been widely used in remote sensing prediction. SVR also
has strong availability in remote sensing prediction due to its
existing advantages.

In summary, taking Ulansuhai Lake as the study area,
combining Sentinel-2 remote sensing image and measured
Chl-a concentration data, an adaptive ant colony exhaustive
optimization (A-ACEO) algorithm is proposed by analyzing
the correlation between Chl-a and remote sensing features.
The selected feature bands are taken as input, and the advan-
tages of artificial intelligence optimization algorithm are
comprehensively considered. By introducing GA to optimize
SVR parameters, the Chl-a concentration prediction model
was constructed. Finally, the model was analyzed and the
performance of the method was verified.

Il. STUDY AREA AND DATA SETS

A. STUDY AREA

Ulansuhai Lake (40°36’ N-41°03' N, 108°43’ E-108°57' E),
as shown in Fig. 1, located in Bayan Nur City, Inner Mon-
golia, is the biggest lake wetland at the same latitude in
the world. The lake covers an area of 325.31km?, in which
123.11km? is open water and the remaining is reed area,
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with a reservoir capacity of about 2.5 to 3 x 103m>. The
wetland of Ulansuhai Lake is relatively rich in species, inhab-
ited by a large number of fish and birds. However, due
to the continuous exploitation of Ulansuhai Lake, the lake
is decreasing in size, while the industrial and agricultural
wastewater discharged into the lake is increasing year by year
and a large number of fish are dying, resulting in serious
ecological damage of the lake and gradual degradation of
ecosystem function.
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FIGURE 1. Location and sampling point distribution of study area.

B. MEASURED DATA ACQUISITION

The measured data is provided by the national research team
of Inner Mongolia Agricultural University, “River and Lake
Wetland Water Environmental Protection and Restoration
Technology Research and Innovation Talent Team™, which
is dedicated to the research of lake wetlands in the northern
cold and arid region for a long time, providing comprehensive
big data management and sharing services for ecological
protection in China. Ulansuhai Lake starts to freeze in early
November every year, and the freezing and thawing period
can be up to 5 months, so the sampling time is mainly
concentrated in June to September, and the sampling is fixed
to the middle and end of each month, and the sampling depth
is 0.5m down from the water surface vertically. The measured
data of Chl-a concentration were collected from 2015 to
2018 with 92 samples, and some measured data are shown
in TABLE 1. The 92 samples were randomly divided into
64 samples as training set and 28 samples as test set.

C. MEASURED DATA ACQUISITION
Developed by the European Space Agency (ESA), the
Sentinel-2 satellite can be used to monitor remote sens-
ing images of terrestrial ecology, inland rivers and the
coastal areas. It is equipped with a multispectral imager
with 13 spectral bands and three spatial resolutions of
10m, 20m and 60m. Specific satellite data are shown in
TABLE 2. The image data are available on the ESA website
(https://scihub.copernicus.eu/dhus/#/home).

The quasi-synchronous Sentinel-2L1C class remote sens-
ing image data synchronized with or one day removed from
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TABLE 1. Selected measured data from 2015-2018.

Measured Chl-a

Date of Remote Sensing Sampling .
actual test Image Dates point concentration
(pg/L)
2015/9/25 2015/9/25 112 17.014
2016/6/20 2016/6/21 S6 4.704
2017/6/25 2017/6/26 P9 5.017
2017/8/29 2017/8/30 Q8 19.064
2017/9/25 2017/9/24 J13 30.289
2018/7/26 2018/7/26 Ml14 7.451

the date of the measured Chl-a concentration data were down-
loaded through ESA for pre-processing. The pre-processing
of Sentinel-2 remote sensing image data includes crop-
ping, resampling, geometric correction and band reflectance
extraction to obtain remote sensing reflectance in each
band. For atmospheric correction of the data, the Sentinel-
2L.2A level image data was acquired using Sen2Cor plug-
in from ESA. When the data was resampled, the S2
Resampling Processor in SNAP software is used and
the resolution is set to 20m using the nearest-neighbour
method. The SNAP software is available from ESA website
(https://step.esa.int/main/download/snap-download/).

IIl. METHODS

A. REMOTE SENSING DATA PRE-PROCESSING METHOD
Fig. 2(a) shows the reflectance of the original band. Since the
remote sensing image is greatly affected by weather, time,
angle and other factors, the quality of the remote sensing
image may be reduced, resulting in errors in the obtained band
reflectance. Therefore, the second derivative (SD) method
was used in this paper to preprocess the original bands
in order to reduce the influence of external factors on the
remote sensing data. The reflectivity of the waveband after
pre-processing is shown in Fig. 2(b) After pretreatment, the
feature band is selected.
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FIGURE 2. (a) Original and (b) pretreatment band reflectance.

B. FEATURE BAND SELECTION METHOD

1) COMPETITIVE ADAPTIVE REWEIGHTED SAMPLING
Competitive adaptive reweighted sampling (CARS) takes the
Darwin’s “survival of the fittest’ as the theoretical idea [23],
which treats each feature as an individual and selects the
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TABLE 2. Sentinel-2 sensor spectral characteristic information.

Sentinel-2A

Sentinel-2B

Band Number Spatial resolution(m)
Central wavelength (nm) Bandwidth(nm) Central wavelength (nm) Bandwidth(nm)
1 4339 27 442.3 45 60
2 496.6 98 492.1 98 10
3 560.0 45 559.0 46 10
4 664.5 38 665.0 39 10
5 703.9 19 703.8 20 20
6 740.2 18 739.1 18 20
7 782.5 28 779.7 28 20
8 835.1 145 833.0 133 10
8A 864.8 33 864.0 32 20
9 945.0 26 943.2 27 60
10 1373.5 75 1376.9 76 60
11 1613.7 143 1610.4 141 20
12 2202.4 242 2185.7 238 20

individual with strong adaptability. The specific steps are
shown as follows:

1) N samples were randomly selected in the feature band
by using the Monte Carlo algorithm, and the par-
tial least squares regression (PLSR) model was con-
structed.

2) The absolute value of the regression coefficient of
the model is calculated, and the variables are selected
by the exponential decay function and the adaptive
reweighted sampling algorithm, where the high regres-
sion coefficients are retained and the low regression
ones are removed. The exponential decay function
retains the proportion of variables as shown in
equation (1):

R; = ae ki (1)

where a and b are constants. Based on the first calculation
with all variables and the N-th calculation with 2 variables,
ie.rp = 1and n = 2, so a and b are shown in
equations (2)-(3):

a=Er @
_ )
=NCT ®

where p is the variable number.

3) The retained variables were used as a new subset and
the PLSR model was constructed while calculating the
root mean square error of cross validation (RMSECV).

4) Step (1)-(3) are repeated. After N times of calculation,
N samples will get N variable subsets, and N variable
subsets will get N RMSECVs. Finally, the smallest
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variable subset in RMSECVs is selected as the optimal
feature band combination.

2) STANDARD ANT COLONY OPTIMIZATION ALGORITHM
The ant colony optimization (ACO) algorithm is a swarm
intelligence optimization algorithm that simulates the for-
aging behavior of ants [24]. ACO algorithm was originally
designed to solve static combinatorial problems, but it also
has good applicability in dynamic combinatorial optimization
problems [25]. Therefore, ACO presents feasibility in the
feature band selection method.

{By, Bz, B3, B3}

FIGURE 3. Visualization of ACO algorithm to select feature bands.

As shown in Fig. 3, each node in the figure corresponds to
a feature band, where {B1, B, ..., Bi} is the set of original
feature bands. An ant randomly starts from a node and selects
another node according to the rules, after a period of traversal,
a subset of original feature bands {Bj, B>, B3, Bj} will be
obtained, and if this subset satisfies the stopping condition,
it is judged to be a feasible solution. The ACO algorithm is
shown below:
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1) Initialization of the pheromone concentration. The ini-
tial pheromone of all nodes is set to 1, and the initial
nodes are randomly selected according to the roulette
method.

2) Node selection probability. The ant selects the next
node according to the pheromone concentration pre-
sented at the node, and the probability from node B;
to node Bj is shown in equation (4):

Tij(?) .
_, elJ
2.7 Ti(®) / “4)
0, Other

Pij ) =

where t is the iteration number, t is the node pheromone
concentration, and J is the collection of unselected nodes
reachable by ants at node B;.

3) Feature subset objective function selection. The root
mean square error (RMSE) in the GA-BP model is used
as the basis for the calculation of the feature subset
function F in the ant colony algorithm as shown in
equation (5):

C
F=——
1 + RMSE

where C is a constant term that is usually set to 1. The
equation shows that the smaller the RMSE, the easier the
subset is selected.

4) Pheromone concentrations updating. Once all ants have
completed one iteration, the node pheromone concen-
tration will be updated, the node pheromone concen-
tration within the selected subset set increases, and the
remaining node pheromone concentration volatilizes,
as shown in equations (6)-(7):

&)

T (t+ 1) = (1= p) 5 (1) + 7; (1) (6)
F.ij~, <Ii,j>€B
ti/j(t) - { O,<l]> Other @

where p is the pheromone volatility factor between (0,1), B is
the set of selected subsets of feature bands.

3) ADAPTIVE ANT COLONY EXHAUSTIVE OPTIMIZATION
ALGORITHM

Although standard ACO algorithm has good advantages in
solving dynamic combinatorial problems, the initial param-
eters tend to influence the algorithm, which can easily lead
to too slow convergence and relatively low efficiency [26].
The adaptive ant colony exhaustive optimization algorithm
(A-ACEO) introduces the corresponding adaptive strategy
based on the standard ACO algorithm, so that it can find
the optimal parameter value adaptive, shorten the running
time of the algorithm and improve the efficiency. In addition,
the combination of ACO algorithm and exhaustive method
[27] is used to increase the diversity of subset features and
avoid the defects of exhaustive search method, which greatly
reduces the search time. The A-ACEO algorithm process is
as follows:
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1) Adaptive adjustment strategy of initialized pheromone
concentration. In standard ACO algorithm, the initial
pheromone concentration factor of the nodes is the
same fixed value and the ant randomly selects a node
as the initial node, which makes the algorithm inef-
ficient. To solve the above problem, the reciprocal of
RMSE corresponding to each node is used as the initial
pheromone concentration based on GA-SVR model to
guide ants in selecting the initial nodes, which avoids
the shortage of the ants finding nodes randomly in the
iterations.

2) Adaptive adjustment strategy of volatilization factor p.
In standard ACO algorithm, the volatility factor is a
fixed value, if the value is not set reasonably will affect
the convergence speed, or even lose the global search
ability. To solve the above problem, p is made adaptive
adjustment strategy to enhance the algorithm search
capability, as shown in equation (8):

_ - Ll=p®

T (®)
where t and T are the current and maximum iteration number
respectively. It is clear that initially, p has a larger value, with
more and more iterations, p decreases, the probability of the
optimal node gradually increases.

3) Adaptive updating strategy of pheromone concentra-
tion. The pheromone concentration update strategy is
improved with standard ACO algorithm as shown in
equation (9):

pt+1)=

1
i+ O X —, <Ii,j>€B
i+ QX MSES (1) / ©)

0, Other

1:19(t) =

where ;; is the initialized pheromone concentration of the
node selected by the ant, Q is the pheromone heuristic fac-
tor, B is the set of the selected subset of feature bands,
RMSE;;(t) is the RMSE of the selected subset of nodes at the
t-th iteration.

4) Optimal threshold and optimal matrix strategy. Com-
bining the standard ACO algorithm with the exhaustive
enumeration method, an optimal threshold and optimal
matrix strategy is proposed. The subset of nodes gener-
ated by the iteration is filtered by the optimal threshold,
and only the subset of nodes better than the optimal
threshold is deposited into the optimal matrix. Finally,
the optimal node subset is filtered in the optimal matrix,
which is the optimal feature subset. By filtering, this
strategy significantly reduces the space of data storage
and the consumption of computational resources. The
optimal threshold is shown in equation (10):

o(t) <X,y >€ By (10)

= RMSE(t)’

where By, is the pheromone concentration set of nodes in
order from highest to lowest, RMSEyy is the RMSE of
the set of subsets of nodes with the highest pheromone
concentration.
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C. PREDICTION METHOD FOR CHL-A CONCENTRATION
In order to improve the accuracy of model prediction. This
paper proposes a GA-SVR prediction model by optimizing
the SVR with GA, based on SVR.

1) SUPPORT VECTOR REGRESSION

Support vector regression (SVR), originally proposed by the
scholar Vapnik [28]. SVR has fewer adjustable parameters
and fewer overfitting problems [29]. Therefore, SVR has
good feasibility in multidimensional function problems.

For a set of experimental data {(x1,y1), (x2,¥y2), ",
(xi, yi)}, where x; € R" is the input, y; € R is the output, and
n is the number of data, the input and output can be related by
defining a linear regression function f(x) [30]. f(x) is shown
in equation (11):

f=w-Px)+b an

where @ and b are the weight vector and deviation,
respectively. @ (x) is a nonlinear function which is used to
map the original input dataset to the high dimensional feature
space. w and b are calculated as shown in equation (12), based
on the minimization of structural risk:

1 5

3 ||w||2+C§(éi +&0)
— (- D) +b) <e+EF

sty (- ®(x)+bi) —yi <e+§

minR (w) =

(12)

si_v§i+20»l.=1,2s"‘an

where C is the penalty factor, &;” and & f are the relaxation
variables, and ¢ is the insensitivity coefficient. By introducing
Lagrange multipliers and constructing a Lagrange function,
the function minimization problem is transformed into a pair-
wise problem whose dual is solved as shown in equation (13):

n

n
max Z (i — o )yi— Z (o +a)e

i=1 i=1

——ZZ(al af)ej — o k(xi, i)

ll/—
ai—a)=0
. é( X (13)
O<ajof <C,i=1,2,---,n

where o; and o are Lagrangian multipliers and k (x, ;) is the
kernel function. The final function is shown in equation (14):

n

= (w

i=1

VY] —of) k(x,x) +b (14)
SVR contains a large number of kernel functions, and the
selection of the appropriate kernel function will greatly affect
the accuracy of the model prediction. Since the Chl-a con-
centration prediction model of Ulansuhai Lake belongs to a
nonlinear relationship with multiple inputs and single output,
and the radial basis function (RBF) has strong applicability in
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nonlinear problems, the RBF is chosen as the kernel function
of the SVR for modeling, and the specific mathematical

model is shown in equation (15):
| —
202

2) GENETIC ALGORITHM TO OPTIMIZE SUPPORT VECTOR
REGRESSION

Although SVR can better solve the small sample and nonlin-
ear problems and has been used in many fields, the values of
its parameters directly affect the accuracy of SVR model pre-
diction [31]. However, there is no clear method to determine
the values of parameters, and most studies have been manu-
ally selecting parameter values relying on experience, making
it difficult to obtain optimal values of parameters [32].

The genetic algorithm (GA), first proposed by John holland
[33], is a stochastic search method that simulates natural
selection in nature. GA is a gradient-free optimization and
search technique that can randomly generate starting points
from different directions and perform fast adaptive search
in the solution space by the guidance of fitness function.
Therefore, using the global search ability and learning speed
of GA to find the optimal solution of the three parameters of
penalty factor C, insensitivity coefficient ¢ and RBF kernel
function o parameters in SVR model can not only improve
the shortcomings of SVR model, but also improve the learn-
ing speed of SVR model. The GA-SVR process is shown
in Fig.4.

k(x,x) = exp(— (15)

where o is the kernel parameter.

Initialize GA parameters | ( Start )
and encode

I |

Input data

]

| Build SVR prediction model|

Define the fitness function

r—

| Select operation
)
| Crossover opel ation |

Decode

Mutation operatlon | l
| Output the optimal
parameters C, € and ¢

Calculate the individual
fitness

Output GA-SVR prediction
model

l

< Forecast simulation )

FIGURE 4. Flow chart of the GA-SVR model.

Satisfy the condition

The specific steps are as follows:

1) Determination of network topology. The feature band
selected by the A-ACEO algorithm is taken as the input
layer, and the Chl-a concentration is taken as the output
layer.
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2) Initialization of parameters. Set the population size,
the maximum number of iterations, the probabilities of
selection, crossover and variation, the upper and lower
bounds of the parameters C, ¢ and ¢, and encode them
as a set of chromosomes.

3) Definition of fitness function. The mean square error
in the GA-SVR model is set as the fitness function F.
The smaller the F, the higher the fitness. As shown in
equation (16):

1 n

F= };Z(yi—f’i)z
i=1

(16)

where y; and y; are the measured and predicted values of
Chl-a concentration.

4) Select operation. Roulette selection is used to deter-
mine the probability and select the best individuals to
breed and enter the next generation.

5) Crossover operation. Two individuals in the population
are selected for the cross operation to produce the more
adaptive individuals. The mathematical model is shown
in equation (17):

/ 17
X, = (1 = p)Xa + pXp

[X; = pXa+ (1 —p)Xp
where X and X;) are child individuals, X, and X}, are parent
individuals, and p is a random factor between (0,1).

6) Mutation operation. An individual is selected in the
population, and a portion of its genes in which are
selected to exchange and vary with their alleles,
so as to produce individuals with stronger fitness. The
m gene variation of the X; individual is shown in
equations (18)-(19):

Xim — [ Xim + (sz — Xmax) -f(m)r1 > 0.5 (18)
Xim + (Xmin - Xim) 'f(m)rl < 0.5
fomy = 2 19

where Xpax and Xpyin are the upper and lower bounds
of individual genes, m and T are the current and max-
imum iteration numbers, r; and r, are random numbers
between [0, 1].

7) Calculation of individual fitness. Determine whether
the stop condition is satisfied, if so, Step (8) is executed;
otherwise, Step (4) is executed.

8) Decoding. The parameter values output by GA are used
as the values of parameters C, ¢ and o in SVR, and the
final prediction results are output.

In conclusion, the prediction process of Chl-a concentration
based on A-ACEOQ algorithm feature selection combined with
GA-SVR is shown in Fig.5.

D. MODEL EVALUATION METRICS
In this paper, the coefficient of determination (R?%) and the
root mean square error (RMSE) are used as the evaluation
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preprocessing A-ACEO Testing set

FIGURE 5. Overall process of Chl-a concentration prediction.

indexes of the prediction model of Chl-a concentration. The
details are shown in equations (20)-(21):
n
A2
Z (Yi - )’i)
RP=1-E5

_ 20
> i —9)? ()

S
—_

2n

where y; and y; are the measured and predicted value of Chl-a
concentration, y; is the average value of Chl-a concentration.
The closer the R? is to 1, the more stable the model is; the
smaller the RMSE, the more accurate the model is.

IV. RESULTS

A. MODEL PARAMETERS SETTING

The parameter values affect stability and efficiency of the
algorithm. Whether A-ACEO or standard ACO algorithm is
used to select feature bands, the parameters need to be set
reasonably. TABLE 3 shows the relevant parameter settings
for A-ACO-E and ACO algorithms.

TABLE 3. The relevant parameter settings for A-ACO-E algorithm and ACO
algorithm.

Parameter ACO A-ACO-E
Maximum iterations number 50 50
Initial population size 20 20
Pheromone volatility factor 0.1 /
Pheromone inspiration factor 5 5

When the GA-SVR model was constructed, the population
was selected by selection, crossover and variation behaviors
in population, and the population was gradually screened to
select the best adapted individuals, i.e., the optimal parameter
value of SVR. Among them, the parameter values in the GA-
SVR model are set reasonably to obtain the optimal individual
more efficiently. In TABLE 4 the settings of the parameters
related to the GA-SVR algorithm are displayed.

B. BAND REFLECTANCE PRE-PROCESSING RESULTS

The prediction results of the GA-SVR model before and after
SD pre-processing are shown in TABLE 5. We can see that
the R? and RMSE of the GA-SVR model are improved after
pre-processing the remote sensing data using SD algorithm.
Therefore, SD algorithm can effectively eliminate the inter-
ference of some external factors on remote sensing images
and improve the accuracy of the model.
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FIGURE 6. Prediction results of the GA-SVR model for (a) full-band, (b) CARS, (c) ACO and (d) A-ACEO feature band selection methods.
TABLE 4. GA-SVR parameter settings. TABLE 5. Prediction results of GA-SVR and SD-GA-SVR models.
. Training set Test set
Parameter Value (Probability) Model
R>-C RMSE-C(ug/lL)  R>P  RMSE-P(ug/L)
Maximum iterations number 50 GA-SVR 0.8346 0.0712 0.8172 0.0774
Initial population size 20 SD-GA-SVR  0.8732 0.0646 0.8585 0.0663
Selection 0.2
Crossover 0.2
Mutation 0.2 ) ‘ o
Upper boundary 0.0001 respectively. Fig. 6 presents the prediction results, where the
Lower boundary 100 diagonal line in the figure is the 1:1 line between predicted

C. GA-SVR MODEL BUILDING

The GA-SVR model is constructed to validate the effective-
ness of the proposed A-ACEO algorithm and compared using
full-band, CARS and ACO feature band selection methods,

VOLUME 11, 2023

and measured values, and the prediction evaluation metrics
are shown in TABLE 6.

The GA-SVR models constructed by four different feature
band selection algorithms as input all have good prediction
effects. From Fig. 6, most of the values are well-distributed
along the 1:1 line, and only a few values are more discrete.
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FIGURE 7. Prediction results of the SVR model for (a) full-band, (b) CARS, (c) ACO and (d) A-ACEO feature band selection methods.

From TABLE 6, the results using A-ACEO algorithm
combined with GA-SVR model is the best, with R2-C and
R2-P of 0.9696 and 0.9617, respectively, and RMSE-C and
RMSE-P of 0.0330g/L and 0.0345ug/L, respectively, which
are better than the GA-SVR model built from feature bands
selected by the full-band, CARS and ACO algorithms. There-
fore, using A-ACEO algorithm for feature band selection
simplifies the model and improves the model prediction
performance.

D. SVR MODEL BUILDING
The traditional SVR model is built and compared with the
GA-SVR model. Fig. 7 presents the prediction results of SVR
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model with different feature bands selection algorithms, and
the prediction evaluation metrics are shown in TABLE 6.

From Fig. 7, the prediction accuracy of SVR model con-
structed with different feature band selection algorithms is
not satisfactory. The prediction effect of the SVR based
on the full-band is the worst compared with CARS, ACO
and A-ACEOQ algorithms. The prediction results of the SVR
model are generally distributed along 1:1 line, and there are
some deviations.

From TABLE 6, compared with the GA-SVR mod-
els, all SVR models have a reduced prediction effect.
The prediction accuracy of SVR model constructed using
full-band is the lowest, while the best accuracy is achieved
using the A-ACEO algorithm, with R>-C and R>-P are
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TABLE 6. Prediction evaluation metrics of GA-SVR models with different feature band selection algorithms.

Number of

Model feature

Training set

Test set

bands R2-C

RMSE-C(ug/L) R2-P

RMSE-P(ug/L)

GA-SVR 12 0.8732

CARS-GA-SVR 9 0.9076
ACO-GA-SVR 5

A-ACEO-GA-SVR 7

0.9524
0.9696

0.0646 0.8585 0.0663

0.0557 0.8944 0.0573

0.0412 0.9422 0.0424

0.0330 0.9617 0.0345

CARS |- "] o "] o o o o o o

ACO

A-ACEO |- ] o o ] o o )

1 1 1 1 1 1 1 1 1 1 1 1
434 497 560 665 704 740 783 835 865 945 1614 2202

Wavelength/nm

FIGURE 8. Visualization of three algorithms to select the feature band.

0.7982 and 0.7817, respectively, and RMSE-C and RMSE-P
are 0.0801pg/L and 0.0823 ug/L, respectively, and the num-
ber of selected feature bands was relatively small. This further
demonstrates that A-ACEO algorithm has greater application
potential in the selection of feature bands.

E. FEATURE BAND SELECTION

Fig. 8 shows the comparison of the optimal feature bands
selected by CARS, ACO and A-ACEO algorithms. The
results are visualized in Fig. 8, A-ACEO algorithm selected
seven feature bands related to the Chl-a concentration, and
CARS and ACO algorithms selected nine and five fea-
ture bands related to the Chl-a concentration, respectively.
A-ACEO algorithm not only selects effective feature bands
but also reduces the number of input variables to simplify the
model.

V. DISCUSSION

Remote sensing technology has become an important tool for
Chl-a concentration monitoring in lake wetlands, in which
it is important to choose the appropriate feature band selec-
tion method and modeling method. This paper proposes an
A-ACEOQ feature band selection algorithm and a GA-SVR
modeling method based on the collected 92 samples.
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A. CARS, ACO AND A-ACO-E FEATURE BAND SELECTION
ALGORITHMS

By comparing the full band with CARS, ACO and A-ACEO
algorithms, it can be found that all algorithms reduce the input
of the feature band and improve the model prediction. This
shows that the three algorithms are effective methods for the
selection of Chl-a concentration feature bands in Ulansuhai
Lake, among which the proposed A-ACEO algorithm has the
best prediction effect.

The CARS algorithm is a relatively simple feature band
selection method, but there is a part of redundant infor-
mation in the selected feature bands, so it is difficult for
the CARS algorithm to select the most relevant feature
band with Chl-a concentration, which affects the accu-
racy of model prediction. As an intelligent algorithm, ACO
algorithm can effectively avoid the interference of redundant
information, but it is difficult to find the optimal solution
when the problem faced is quite complex, therefore, ACO
algorithm will lead to information loss, resulting in the reduc-
tion of model prediction accuracy. The A-ACEO algorithm
improves on ACO algorithm by introducing the adaptive
update strategy, optimal threshold and optimal matrix strat-
egy, which improves the convergence speed and global
search ability of the algorithm, and improves the diver-
sity of feature bands while improving the information loss
problem.

B. COMPARISON OF GA-SVR MODEL AND SVR MODEL

According to the model prediction results, the GA-SVR
model established by different feature band selection methods
has better prediction effect than the traditional SVR model,
which indicates that the optimization of the parameters in
the SVR model can effectively improve the model prediction
accuracy by using the powerful optimization-seeking ability
of the GA. This conclusion is consistent with the findings
of the existing literature [34], [35]. This may be due to the
fact that the prediction of Ulansuhai Lake Chl-a concentration
is a nonlinear problem. Although the SVR model has strong
advantages in small sample and nonlinear problems, the val-
ues of the parameters in SVR strongly affect the prediction
effect of the SVR model itself. And the optimization of the
SVR parameters by using the GA can avoid the shortcom-
ings of manual search for the SVR parameters, but also
find the optimal solution rapidly. Therefore, the GA-SVR
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FIGURE 9. Characteristics of the spatial distribution of Chl-a in different times.

model can better predict the Chl-a concentration in Ulansuhai
Lake.

C. SPATIAL AND TEMPORAL DISTRIBUTION OF CHL-A
CONCENTRATION

Through analyzing different feature bands selection algo-
rithms and different modeling methods, the GA-SVR model
established with A-ACEO algorithm has the best prediction
effect. Therefore, the Chl-a concentration distribution
obtained based on this model is shown in Fig. 9. There are

93190

some differences in the concentration and spatial distribu-
tion of Chl-a in Ulansuhai Lake over time, which may be
due to the inherent differences in the number of organisms
with Chl-a concentrations in Ulansuhai Lake at different
times. In addition, Ulansuhai Lake is an important com-
ponent of the irrigation and drainage system of the Hetao
Irrigation District in Inner Mongolia, carrying local domes-
tic sewage, industrial wastewater and farmland drainage,
which can influence the number of organisms with Chl-a
concentration.
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TABLE 7. Prediction evaluation metrics of SVR models with four feature band selection algorithms.

Number of Training set Test set
Model feature
bands R2-C RMSE-C(ug/L) R2-P RMSE-P(ug/L)

SVR 12 0.7532 0.0882 0.7379 0.0902

CARS-SVR 11 0.7631 0.0867 0.7426 0.0894

ACO-SVR 7 0.7805 0.0829 0.7734 0.0839

A-ACEO-SVR 8 0.7982 0.0801 0.7817 0.0823

VI. CONCLUSION [8] C.Wang, W. Jiang, Y. Deng, Z. Ling, and Y. Deng, “‘Long time series water

Taking Ulansuhai Lake as the study area, combining with
Sentinel-2 remote sensing data, proposing an A-ACEO fea-
ture band selection algorithm, and constructing a GA-SVR
model to predict the Chl-a concentration, this paper draws
the following conclusions:

When the SD algorithm is used to preprocess remote sens-
ing data, the errors present in the remote sensing data can
be reduced and the accuracy of the model prediction can be
improved.

When the prediction model is the same, A-ACEO
algorithm can select the feature bands related to Chl-a con-
centration more effectively, which can not only decrease the
model complexity, but also improve the model prediction
effect.

When the feature band selection method is the same, the
GA-SVR model is more accurate and can better predict
the Chl-a concentration. Among them, the prediction of the
GA-SVR model based on A-ACEO algorithm is optimal.

Therefore, the proposed method can provide new ideas
for monitoring Chl-a concentration in lakes. In future work,
it is planned to accumulate additional data to more accurately
monitor Chl-a concentration in lakes.
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