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ABSTRACT Passive systems play a vital role in ensuring the safety and advancement of Nuclear Power Plant
(NPP) technology. The precise evaluation of their reliability is of paramount importance for their successful
implementation in the nuclear industry. A thorough understanding of the reliability of these passive systems
is essential to ensure the safety and efficiency of nuclear power plants, making them a cornerstone of nuclear
energy generation. A newmethodology has been developed to assess the reliability of passive systems, which
are distinguished by three main components: systematic functional analysis, dynamic component analysis,
and phenomenological factors. Each step of the methodology is described and commented, and a diagram
of the methodology is presented. The paper presents a novel approach for analysing dynamic systems
by incorporating dependencies among events and component states, as well as accounting for the impact
of phenomenological factors. A state space solution to generate all possible system states and stochastic
transitions is proposed, resulting in a Continuous TimeMarkov Chain (CTMC) representation of the system’s
behaviour. To support this analysis, an algorithm that integrates multiple phenomenological factors by
sampling their values from respective probability distributions is also developed. Through Monte Carlo
simulation, the approach provides a comprehensive and realistic assessment of the system’s performance,
enabling accurate reliability analysis and decision-making.

INDEX TERMS Passive system reliability. probabilistic safety assessment, model based safety assessment,
generalized stochastic Petri net.

I. INTRODUCTION
Reliability R(t) [1] is a commonly used measure to quantify
the dependability of safety or mission-critical systems.
It represents the probability that a system performs its
required function within the time interval (0, t). To evaluate
the reliability or unreliability of a system, constructing
models is a common approach. These models can be based
on various techniques such as fault trees, stochastic Petri
nets, or Markov chains [1]. By constructing and analysing
these models, it becomes possible to estimate the reliability
or unreliability of the system, as well as other dependability
measures of interest. These models provide insights into the
system’s behaviour, failure modes, and factors influencing its
performance, facilitating decision-making processes related
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to system design, maintenance strategies, and risk mitiga-
tion [2].

To analyse a dynamic system that is dependent on physical
phenomenon factors, one would need to identify the relevant
physical variables and their relationships. Nuclear passive
safety systems can be among those dynamic systems that
depend on physical phenomenon factors. These systems are
designed to use physical processes such as natural convection,
gravity, or phase change to safely shut down a nuclear reactor
and prevent the release of radioactive materials in the event
of an accident or loss of power [2], [3], [4]. The behaviour of
these systems is influenced by physical variables such as tem-
perature, pressure, and flow rates, and their performance is
subject to uncertainties and variability. Therefore, analysing
and assessing the reliability of nuclear passive safety systems
requires a thorough understanding of the physical phenomena
involved. This may involve using mathematical models,
simulations, or experimental data to understand the behaviour
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of the system over time. Additionally, it is important to
consider the uncertainties and potential sources of variability
that may impact the system’s performance or reliability. The
dependability of passive safety systems is a contemporary
issue that confronts today’s advanced reactors, especially
Small Modular Reactors (SMR). It is also a relatively new
area that is driven by technological advancements and safety
regulations.

Despite recent developments [5], [6], [7], [8], there remain
technological challenges and issues in incorporating passive
systems into reactor designs. One key challenge is accurately
quantifying the functional reliability of these systems during
normal operation, transients, and accidental conditions.
Functional failures in passive systems can occur due to
deviations in boundary conditions or geometric parameters,
as the driving forces in passive systems are relatively
small and can be affected by small changes in operating
parameters or system geometry [2], [3], [4]. The reliability
and availability of a passive system depend primarily on two
factors: the integrity and functionality of its components and
the confidence with which it can perform under all required
conditions, such as thermal-hydraulic performance.

Recent research in reliability has introduced new eval-
uation methodologies for engineering systems that aim
to improve the understanding of system performance and
resilience. One such approach is the use of dynamic-
Bayesian-network-based degradation and maintenance,
which can providemore accurate predictions of the behaviour
of engineering systems over time [6]. Another approach is
the development of availability-based engineering resilience
metrics, which provide a new measure of system resilience
and can be used to inform decision-making. The use of
Bayesian networks in reliability evaluations has also been
explored, enabling the incorporation of uncertainties and
dependencies into the analysis of engineering systems [7].

Researchers have explored the use of both static and
dynamic fault trees for system analysis. Static fault trees are
typically used to model the failure events and their dependen-
cies that can lead to system failure. In contrast, dynamic fault
trees can capture the time-dependent behaviour of a system
and account for the impact of repairs, maintenance, and other
factors on system performance.

One approach that has been proposed is to combine static
and dynamic fault trees to provide a more comprehensive
analysis of system reliability. For example, a study by
Baek, Sejin et al. [7] proposed a hybrid fault tree model
that integrates partially static and dynamic fault trees to
analyse the reliability of certain systems. The model used
static fault trees to identify the failure events and their
dependencies, while dynamic fault trees were used to capture
the time-dependent behaviour of the system and the impact
of repairs and maintenance on system performance.

Another study by Khare, Vikas et al. [7] proposed a similar
approach, where a hybrid static-dynamic fault tree model
was used to analyse the reliability of a hybrid renewable

power station. The model used static fault trees to identify
the failure events and their dependencies, while dynamic fault
trees were used to capture the time-dependent behaviour of
the system and the impact of repairs and maintenance on
system performance.

Overall, the use of a hybrid static-dynamic fault tree
model can provide a more comprehensive analysis of
system reliability by accounting for both the static and
dynamic aspects of the system. This approach can lead to
improved decision-making regarding the design, operation,
and maintenance of engineering systems.

These evaluation methodologies integrate both static and
dynamic aspects of the system to provide a more compre-
hensive understanding of system performance and reliability.
They can inform the design, operation, and maintenance of
engineering systems, improving their safety and reliability.
Overall, the development and application of these evaluation
methodologies are essential for the continued improvement of
engineering systems and their resilience to unforeseen events.

The use of qualitative and quantitative methodologies in
reliability and risk assessment studies contributes to increased
safety and reliability. In the past, various methodologies
such as Methodology for the Reliability Assessment of
Passive System ReliAbility (APSRA) [9] and Methods for
Passive Safety Functions (RMPS) [10] have been developed
to evaluate the reliability of passive systems. However,
when implementing the RMPS or mechanistic method for
assessing the reliability of passive systems and integrating
it with plant-specific probabilistic safety assessment (PSA),
certain shortcomings become apparent. These issues can be
summarized as follows:

1) The methodology used in mechanistic approach such as
RMPS [8] does not take into account the interaction between
hardware/component failure and the functional failure of
passive systems. It is possible that hardware/component
degradation during the operation of passive systems may
result in functional failure. This fault tree treatment of
considering the hardware failure and functional failure of
passive systems separately could be improved.

2) The event tree treatment of passive systems is only
applicable to one accident scenario, and each passive system
needs to be analysed separately for different initiating events
and accident scenarios. This could result in a computationally
intensive scheme.

3) Instead of using classical PSA treatment based on
the assumptions of the same failure rates of components
throughout the mission time, a more advanced form of PSA
such as dynamic probabilistic safety assessment (DPSA) [8]
can be utilized for implementing risk-informed decision
making.

4) Best estimate codes based on phenomenological
simulations of natural convection passive systems may
have significant uncertainties that need to be incorporated
appropriately in the performance and reliability analysis of
such systems.
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5) The REPAS, RMPS, and APSRA [7], [8], [9] method-
ologies do not consider dynamic failures of components or
processes that could strongly influence the failure of passive
systems. To address this, a dynamic reliability methodology
based on Monte Carlo simulation can be used to present the
influence of dynamic failure characteristics of components on
system failure probability.

As severe accidents are being considered more exten-
sively and safety requirements are increasing, there is
a growing interest in passive safety systems for future
nuclear reactors. These systems are effective and transparent
and are often used in combination with active safety or
operational systems in innovative reactor concepts. Passive
systems, as defined by the IAEA (1991) [2], do not
require external energy to operate and offer benefits such
as simplicity, decreased need for human interaction, and
reduced dependence on external electrical power or signals.
However, there are challenges to consider, including a lack
of data on certain phenomena and a smaller range of driving
forces compared to active safety systems. Additionally,
economic competitiveness remains an important factor to
consider.

The purpose and motivation behind developing this new
dynamic methodology for reliability evaluation of safety
systems, particularly passive systems, lies in the need for
improved safety measures and risk assessment in nuclear
power plants. The existing methodologies, such as RMPS,
APSRA, and REPAS, have shown limitations in adequately
addressing the dynamic behaviour and interactions within
passive systems. The proposed methodology bridges these
gaps and presents a more comprehensive and accurate
assessment, enabling better-informed decision making for
the nuclear industry. By incorporating dynamic component
analysis, systematic functional analysis, and accounting for
phenomenological factors, the new method provides a more
realistic representation of system behaviour and failure
modes. It allows for a more advanced form of probabilistic
safety assessment (DPSA), accommodating uncertainties in
best estimate codes and addressing the influence of dynamic
failures of components. With the integration of Monte Carlo
simulation, the methodology offers a powerful tool for
capturing complex system dynamics and optimizing safety
strategies. Overall, the development of this new dynamic
reliability evaluationmethodology aims to enhance the safety,
reliability, and risk management of nuclear power plants,
ensuring safer and more efficient operation in the nuclear
industry.

A specific methodology was deemed necessary to evaluate
the reliability of passive system B or C (i.e. implementing
moving working fluid, following the IAEA (1991) classi-
fication). This methodology is developed within the R&D
activities carried out by Innovation department of Assystem1.
The methodology focuses on predictive dynamic reliability
assessment through functional analysis of the system and its
components, as well as the integration of phenomenological
factors.

II. METHODOLOGY OVERVIEW
The proposed dynamic methodology for evaluating the
reliability of safety systems, including passive systems,
represents a significant innovation in the field of nuclear
safety and risk assessment. Unlike traditional methodologies,
the new approach integrates three main components: system-
atic functional analysis, dynamic component analysis, and
consideration of phenomenological factors. By combining
these elements, the methodology offers a comprehensive
and realistic assessment of the reliability of passive sys-
tems, taking into account the dynamic nature of their
behaviour and the influence of various external factors.
This dynamic methodology addresses the shortcomings of
previous approaches, such as the lack of interaction consid-
eration between hardware/component failure and functional
failure of passive systems, the need for separate analyses for
each passive system and initiating events, and the inability
to capture dynamic failures of components or processes.
With the incorporation of Monte Carlo simulation, the
influence of dynamic failure characteristics of components
on system failure probability can now be presented. The new
methodology provides a more advanced form of probabilistic
safety assessment (DPSA) and enables risk-informed deci-
sion making, contributing to increased safety and reliability
in nuclear power plant technology.

The proposed methodology consists of several elements,
which are illustrated in Fig. 1 and described in more detail in
the following sections.

III. THE MAIN ELEMENTS
The proposed methodology is based on integration of
dynamic components analysis into static functional analysis
of the system, incorporation of phenomenological analysis.

Systematic functional analysis, including methods like
Failure Modes and Effects Analysis (FMEA) and Fault
Tree Analysis (FTA) [9], helps identify the potential failure
modes and their consequences in a structured manner. These
methods analyse the system from a top-down perspective and
identify the critical paths and components that may cause
the system to fail. Systematic functional analysis also helps
identify the measures to prevent or mitigate the effects of
failures. Component dynamic analysis, including methods
like Dynamic Fault Tree (DFT) [9], [10], [11], [12] analysis,
takes into account the dynamic behaviour of the system
components and their interactions with each other over time.
This analysis can help evaluate the reliability of individual
components and how their performance affects the overall
system reliability. Component analysis can also help identify
the potential failure modes of the individual components and
their consequences.

Phenomenological factors, such as environmental and
operational conditions, can significantly affect the perfor-
mance and reliability of a passive safety system [2], [3]. These
factors are often difficult to predict or model accurately,
but their impact on the system reliability should not be
ignored. Including phenomenological factors in the reliability
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FIGURE 1. Commonly used logic gates in DFT.

evaluation helps assess the system’s behaviour under different
operating conditions and how these conditions affect the
system’s reliability.

To understand why it is necessary to consider both static
and dynamic aspects of a system and incorporate the physical
phenomena factors, let’s take the example of a nuclear reactor.

The static aspect of a nuclear reactor involves its design,
materials, and geometry. These factors affect the behaviour
of the system under normal operating conditions and provide
the basis for safety analysis. For instance, the containment
structure and fuel cladding are designed to withstand high
temperatures and pressures and prevent the release of
radioactive materials.

However, the dynamic behaviour of a nuclear reactor is
also crucial to its safety. This includes the response of the
system to changes in operating conditions or the occurrence
of abnormal events, such as a loss of coolant accident.
Physical phenomena such as heat transfer, fluid mechanics,
and thermodynamics play a critical role in determining the
behaviour of the system under these conditions.

Therefore, to study the safety of a nuclear reactor, it is
necessary to consider both the static and dynamic aspects of
the system and integrate physical phenomena factors.

The following formula is used to prioritise failure modes
based on their risk priority number, which is a quantitative
measure of the potential risk associated with a specific failure
mode [11]. In FMEA, the Risk Priority Number (RPN) is
calculated as the product of three values:

RPN = S × O× D (1)

where:
S is the Severity rating (typically on a scale of 1-10),

FIGURE 2. The proposed methodology for safety system (passive).

O is the Occurrence rating (typically on a scale of 1-10),
and

D is the Detection rating (typically on a scale of 1-10).
Dynamic Component Analysis: This type of analysis

focuses on the individual components of the system and
how their performance affects the overall system reliability.
Dynamic Fault Trees (DFTs) [14], [15], [16], [17], [18],
[19] are a common technique used in component analysis.
Figure 2 shows graphical symbols of the commonly usedDFT
gates. The DFT can: (1) management of spare components
and their allocation, (2) the functional dependency, and (3)
the failure sequence dependency. They allow us to model
the interactions between different components of the system
over time and calculate the probability of different failure
scenarios. By simulating the behaviour of the system over
time, we can evaluate its reliability and identify potential
failure modes. The probability of a top event in a Dynamic
Fault Tree (DFT) can be calculated using the following
equation [13]:

P (TopEvent) = 1 −

∏n

i=1
(1 − Gatei)−1 (2)

where P(Gatei) is the probability of the ith gate in the DFT
being successful (i.e. not failing).

The probability of a component failure in a DFT can be
calculated using the following equation:

P (ComponentFailure) =

∑m

j=1
P

(
FailureModej

)
× P(Modej → Component)) (3)

where P
(
FailureModej

)
is the probability of failure mode j

occurring, and P
(
Modej → Component

)
is the probability

that failure mode j will cause a failure of the component.
Integrating dynamic fault tree analysis into static fault tree

analysis offers several advantages, including the management
of spare components and their allocation, consideration of
functional dependency, and analysis of failure sequence
dependency:
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A. MANAGEMENT OF SPARE COMPONENTS AND
ALLOCATION
Integrating dynamic fault tree analysis allows for the
consideration of spare components and their allocation
strategies. By modeling the availability and repair processes
of spare components, the analysis can provide insights into
the optimal allocation of spare components within the system.
This helps in managing inventory, reducing downtime, and
ensuring the system’s availability during failures.

B. FUNCTIONAL DEPENDENCY
In many systems, the failure of one component can affect
the functioning of other components. By integrating dynamic
fault tree analysis, functional dependency between com-
ponents can be captured. This means that the occurrence
or failure of one event in the fault tree can dynamically
propagate to other events, considering the dependencies and
their impact on the system’s reliability. It enables a more
accurate assessment of the system’s behaviour and potential
failure scenarios.

C. FAILURE SEQUENCE DEPENDENCY
Failure sequence dependency refers to the order in which
failures occur within the system and their impact on
subsequent events. Dynamic fault tree analysis considers the
temporal aspect of failures and incorporates failure sequence
dependencies. It allows for modeling the cascading effects of
failures, where the occurrence of one failure event can trigger
or inhibit other events in the fault tree. By capturing the failure
sequence dependencies, the analysis can provide insights
into the system’s behaviour over time and the potential
consequences of failure events.

By integrating phenomenological factors, such as human
errors, environmental conditions, and operational factors, into
the fault tree analysis, the model can evaluate the predictive
reliability of the dynamic system. This enables the assessment
of the system’s performance under various operational
conditions and the identification of potential vulnerabilities
and improvement opportunities and aids in making informed
decisions regarding system design, maintenance strategies,
and risk mitigation measures.

The overall risk associated with a system can be calculated
using the following equation [18]:

Risk =

∑ (
P (Failurei) × Consequencei

)
(4)

where P (Failurei) is the probability of failure scenario i
occurring, and Consequencei is the consequence (in terms of
human or environmental impact) of failure scenario i.

The probability of an external event (e.g. earthquake,
operator error) can be estimated using historical data, expert
judgment, or other sources of information. For example, the
probability of an earthquake occurring in a given region in a
given year can be estimated using statistical models based on
historical earthquake data.

The Fault Tree (FT) is a widely used stochastic model for
analysing the unreliability of complex systems. It represents

FIGURE 3. Simple generalised stochastic Petri nets, (a) Single-mode
Model, (b) Multi-mode model [20].

how combinations of component failure events can lead
to the failure of subsystems or the entire system using
Boolean gates. In the standard version of FT, component
failure events are assumed to be statistically independent,
which simplifies the computation of system unreliability
but limits the modeling capabilities. Dynamic Fault Tree
(DFT) is an evolution of FT that addresses the limitation of
assuming independence among events or component states.
DFT introduces dependencies among events and component
states, requiring a state space solution to generate all possible
system states and stochastic transitions between them. This
involves obtaining the Continuous Time Markov Chain
(CTMC) [18] of the system.

In real systems, the separation of independent and
dependent failures can be extended to smaller granularities by
modeling each set of reused components with its respective
fail rate. This not only allows for a more accurate model but
also allows sets of reused components to span over subsets of
systems.

IV. PETRI NETS ANALYSIS
Petri nets [20] can be a helpful tool in analysing the three
factors of fault tree analysis, and dynamic fault tree analysis
for components and phenomenological factors in order to
evaluate reliability estimation for a passive safety.

The generalised stochastic Petri net (GSPN) is a Petri net
extension where each transition (timed /immediate) is linked
to an exponentially distributed random variable expressing
the delay [9], [10].

The transition from DFT to GSPN enables the state
space solution by generating the CTMC, facilitating the
computation of system unreliability. The definition of GSPN
primitives has been expanded to include their usefulness
in modeling common-mode faults and cascading effects.
Figure 3 shows the simplest GSPN primitive for a simple
system, with safe-mode and failure-mode places representing
the state of the infrastructure. The fail rate of λt applies
in a single-mode fault model. Petri nets can be used to
determine the reliability of a system, where R(t) is defined
as the probability of the system functioning throughout the
entire time interval [0, t], given that it was functioning at
t=0. Introducing common mode failure models partitions
the fail rates, resulting in rates for faults obeying the
independence of those who assume faults and those who do
not.

93788 VOLUME 11, 2023



A. Masood, P. Robert: Predictive Dynamic Approach to Evaluating the Reliability of Passive Systems

Partitioning the fail rate in the simple model of Fig. 3.a
results in the GSPN primitive shown in Fig. 3.b. The
aggregate fail rate is given by the sum of the fail rates
for independent and common mode faults. The multi-mode
GSPNprimitive can be used to derive a common-mode failure
GSPN primitive for a two-system scenario, as shown in
Fig. 3.b. The common mode fault affecting both systems is
modeled by the subnet in the centre, consisting of place com
and its associated timed transition with a fail rate of λhzd.
Each system may fail independently as a result of the firing
of their timed transition with rate λind, but both systems fail if
the center transition fires. The fail rate of the center transition
does not depend on the markings of places Sys-i-up and Sys-
j-up because it represents the common mode failure of two
systems subjected to the same input.

Efficient techniques for generating the CTMC from a
Generalized Stochastic Petri Net (GSPN) are available in
tools like GreatSPN [1], [18]. Therefore, to perform the
state space solution of a DFT, the DFT can be converted
into an equivalent GSPN. From the GSPN, the CTMC can
be generated, allowing for the computation of the system’s
unreliability based on the CTMC.

Fig. 4 shows the PN models of the Boolean and dynamic
gates used in DFTs. As seen in the PNmodel of the AND gate
in Fig. 4(a), all input places: In Figure 4, the PNmodels of the
Boolean and dynamic gates used in DFTs are displayed. The
PN model of the AND gate in Figure 4(a) shows that all input
places, X1:dn to Xn:dn, are connected to a single immediate
transition called AND. When all input places receive a token,
the transitionANDwill activate, causing theANDgate output
to become true by depositing a token to the place X.dn. On the
other hand, the PN model of the OR gate in Figure 4(a)
represents a disjunctive behaviour.

Each input place, Xi:dn, is connected to a distinct
immediate transition, ensuring that when any of the input
places receive a token, the corresponding transition will
activate, making the OR gate output true by depositing a
token to the place X.dn. Figure 4(c) shows the PN model of
the PAND gate, which is designed to ensure that the place
(X.dn) representing the output of the PAND gate receives
a token only when the input places receive tokens in a
sequential order, according to the required sequencing of the
basic events (BEs). If the order of occurrence of the BEs is
disrupted, the place X.ok will receive a token, preventing the
transition Tn from firing and forcing the PAND output to be
false.

To incorporate the three mainly used probability distribu-
tions (exponential distribution, normal distribution, Poisson
distribution) [20] into the Petri net analysis, a stochastic
Petri net model is typically augmented with additional
information, such as transition rates or probabilities, and
then analysed using stochastic simulation techniques. The
simulation generates a large number of sample paths, each
representing a possible sequence of events and transitions,
and calculates the likelihood of various outcomes based on
these sample paths.

FIGURE 4. PN models of Boolean and dynamic gates.

Once the PN model is created, it can undergo various
forms of evaluation to perform different types of analyses. For
instance, if all the timed transitions in the PNmodel follow an
exponential distribution, then the underlying Markov model
can be used for evaluation. However, this analysis is limited
to only exponentially distributed failure data. In contrast,
if the PN model contains non-exponentially distributed timed
transitions, then Monte Carlo simulation can be used, but
this approach is computationally time-consuming [18].While
PNs allow for more flexibility in using different types of
distributions, they share many features with Markov models.
Both PN-based and Markov model-based approaches require
generating the state space of the system for analysis, which
leads to the state space explosion problem when dealing
with moderately complex systems. In the seminal work of
Bobbio et al. [22], it was demonstrated how a classical static
fault tree could be evaluated by translating it to Petri Nets
(PN). This approach has inspired the use of PN in different
methods for evaluating DFTs.

Once the probabilities are assigned to the places and
transitions in the SPN model, the reliability of the passive
safety system can be evaluated by simulating the model over
a large number of iterations. This can be done using Markov
chain Monte Carlo simulation. During the simulation, the
model generates a set of possible system states and their
associated probabilities. By analysing the results of the
simulation, the most probable failure modes and the potential
consequences of failure for the system can be identified.
This information can be used to optimize the design of the
system and to develop strategies for minimizing the risk of
failure.

Figure 5 illustrates a visual representation of how SPN and
uncertain external influencing phenomenological factors can
be integrated. The transition rates in this model are influenced
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by a vector of n random parameters with a joint probability
distribution.

The values of these parameters impact the transition rates
and, therefore, the overall behaviour of the system. Equation
(5) describes the general form of the transition rate, and the
total rate of departure from state i can be calculated based on
this equation:

λ (t, θ) =

∑m

i=0,j ̸=i
λij (t, θ) (5)

To incorporate external influencing phenomenological fac-
tors, the following steps should be followed:
1) Formulate the functions that describe the physical

relationship between the system and the transition
rates.

2) Identify the specific external influencing factors that
can impact the system’s behaviour, such as pressure,
temperature, vibration, or stress.

3) Define the distribution functions P(θ ) that represent the
uncertainties associated with these external influencing
factors θi. These distribution functions help capture the
variability or unpredictability in the values of these
factors, allowing for a more comprehensive analysis of
the system’s performance under different conditions.

V. MONTE CARLO SIMULATION
In Monte Carlo (MC) simulation, the probability distribution
function P(θ ) is not directly sampled [20]. Instead, the
simulation involves sampling the holding time at each
state and determining the transition from the current state
to another state. This process is repeated iteratively until
the accumulated holding time reaches the predefined time
horizon.

To calculate the transition probability, the following steps
are followed:

1) Begin at the initial state i.
2) Sample the holding time at the current state i. This

is done by generating a random value from the
distribution function that represents the holding time at
state i.

3) Determine the next state j by evaluating the transition
probabilities from state i to all possible states. This is
done by comparing the sampled holding time to the
cumulative probabilities of the transitions. The next
state j is selected based on the interval in which the
sampled holding time falls.

4) Move the system to the next state j.
5) Repeat steps 2-4 until the accumulated holding time

reaches the predefined time horizon or the system
reaches an absorbing state.

By performing this iterative process, a time sequence is
generated that consists of the holding times at different states.
This time sequence provides information on the duration of
the system’s stay at each state during the simulation. The
transition probabilities are implicitly accounted for through
the sampling of holding times and the subsequent state
transitions.

This Monte Carlo simulation approach allows for the
estimation of the transition probabilities in an Implicit
Continuous-TimeMarkovChain (ICTMC)model. It provides
a probabilistic representation of the system’s behaviour over
time, taking into account the uncertainties associated with
the holding times and the stochastic nature of the transitions
between states.

A generalized version of the algorithm that simulates the
incorporation of any phenomenological factors in a nominal
transition process (failure modes):

1. Initialize the system by placing a token in the initial state
i = M (representing perfect performance).

2. Set the initial time t= 0 and define themaximumnumber
of replications as Nmax.

3. Set t′ = 0 and initialise the replication counter n = 1.
4. While n < Nmax:

a. Set t = 0.
b. While t < tmax:

i. Sample realisations of the phenomenological
factors (external influencing factors) from their respective
probability functions.

ii. For each phenomenological factor:
- Sample a value for the factor from its probabil-

ity distribution.
iii. Sample a departure time t from the distribution

function Fi(t | t′, θ ) considering the values of the phenomeno-
logical factors.

iv. Sample a random number U from the uniform
distribution in the range [0, 1].

v. For each outgoing transition (j = 0, 1, . . ., M,
j ̸= i):

- Calculate the transition probability qi,j(t | θ ,
factor values).

- If
(∑j∗−1

k=0 qi,k < U <
∑j∗

k=0 qi,k
)
activate the

transition to state j∗.
vi. Set t′ = t.
vii. Remove the token from state i and place it in

state j∗.
viii. Increment t by the sampled departure time t.

c. Increment n by 1.
5. Compute the state probability vector by dividing the

total number of visits to each state by the total number of
simulations.

In this algorithm incorporates multiple phenomenological
factors (F) by sampling their values from their respective
probability distributions P(θ ). These factors can represent
various external influences on the component failure modes,
such as pressure, temperature, vibration, stress, humidity,
etc. The sampled factor values are then considered when
sampling the departure time and calculating the transition
probabilities. This allows for a more realistic simulation that
accounts for the uncertainties and variability introduced by
the phenomenological factors in the failure modes. The state
probability vector represents the probability distribution of
the system being in each state after running the simulations.
It is computed by counting the total number of visits to each
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FIGURE 5. Graphical illustration of the integrated model.

state across all replications and dividing it by the total number
of simulations.

The algorithm takes into account the phenomenological
factors, which are sampled from their respective proba-
bility functions, to simulate the degradation process of
the component. The use of the algorithm allows for the
estimation of the probabilities associated with each state, pro-
viding valuable insights into the system’s performance and
reliability.

Further work is planned to apply the proposed approach
into GSPN to evaluating the reliability of passive safety
system incorporating the elements before being incorporated
into Model-based Safety Analysis (MBSA) [21], [22] to pro-
vide a more accurate and comprehensive assessment of pas-
sive safety systems reliability. Future work in Model-based
Safety Analysis (MBSA) should focus on addressing the
specific methodology relevant to safety systems. This should
include addressing all the points mentioned in order to
enhance the credibility of proposed approaches to address the
issue and facilitate their endorsement by the scientific and
technical community.

VI. CONCLUSION
A methodology has been developed to assess the reliability
of passive systems, which are distinguished by three main
components: systematic functional analysis, dynamic com-
ponent analysis, and phenomenological factors. The dynamic
methodology presented here overcomes the limitations of
previous approaches by addressing the interaction between
hardware/component failure and functional failure of passive
systems, eliminating the need for separate analyses for
each passive system and initiating events, and incorporating
dynamic failures of components or processes. The inclusion
of Monte Carlo simulation allows for the presentation of the
influence of dynamic failure characteristics on system failure
probability. As a result, the new methodology offers a more
advanced form of probabilistic safety assessment (DPSA)
and facilitates risk-informed decision making, leading to

enhanced safety and reliability in nuclear power plant
technology.

In order to resolve uncertainties in reliability calculations,
which may arise due to assumptions about parameters such
as atmospheric temperature, it is necessary to construct
models of such parameters using data that has been
continuously monitored during the application of passive
systems. To incorporate these probability distributions into
the Petri net analysis, a stochastic Petri net model is typically
augmented with additional information, such as transition
rates or probabilities, and then analysed using stochastic
simulation techniques. The simulation generates a large num-
ber of sample paths, each representing a possible sequence
of events and transitions, and calculates the likelihood of
various outcomes based on these sample paths. Reliability
estimations can be incorporated into Model-based Safety
Analysis (MBSA) by using object-oriented languages [23]
on addressing the specific methodology relevant to safety
systems. The information can then be used to assess the
overall safety of the system and identify areas where
improvements can be made.

Furthermore, the next step would be incorporating the
proposed methodology into GSPNmodel and try to apply the
model with a case study associated with natural circulation
phenomena in a passive safety system.
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