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ABSTRACT One of the purposes of fuzzy set theory is to overcome the uncertainties in the problems
of multi-criteria decision-making (MCDM) via membership functions. But the fuzzy set theory has own
limitations. To remove the limitations on membership functions of fuzzy sets, such as intuitionistic fuzzy,
Pythagorean fuzzy, q-rung orthopair fuzzy sets, the linear Diophantine fuzzy (LDF) concept is defined with
the reference parameters. The benefit of this approach is that it is more flexible and efficient at handling
uncertain data than other fuzzy sets. In this study, firstly, new information measures (distance, similarity,
entropy) have been proposed for linear Diophantine fuzzy sets and their properties are studied. Secondly,
the LDF-VIKOR method is given in as full detail. In the proposed method, the weights of criteria are
calculated using the entropy-based objective weighting method. Thirdly, the effect of entropy measures
in the LDF-VIKOR method on the best and compromise solutions is examined. Finally, an application
of LDF-VIKOR on a healthcare management decision problem is given to show applicability of proposed
method.

INDEX TERMS Distance measure, entropy measure, linear Diophantine fuzzy sets, similarity measure,
VIKOR.

I. INTRODUCTION
In real-life decision-making problems, vague and uncertain
data has become a major issue. To overcome the difficulties
of the complexities and uncertainties of real-world prob-
lems, Zadeh [1] developed the concept of fuzzy set (FS).
The fact that the fuzzy set definition did not consider the
negative opinions of the experts caused some limitations in
solving real-life problems. Then, Atanassov [2] proposed
intuitionistic fuzzy set (IFS) as an extension of FS to han-
dle this problem by using the condition that the sum of
membership and non-membership degrees between 0 and
1. In some real-life problems, the sum of the degree of
membership and non-membership, which is determined by
experts, may be greater than one (e.g., 0.7 + 0.9 > 1).
Yager [3] introduced Pythagorean fuzzy set (PFS) to over-
come these problems. PFS introduced the concept of mem-
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bership and non-member degrees with the sum of the squares
of them is equal or less than 1. In some cases, the sum
of squares of these grades may also be larger than 1 (e.g.,
0.72 + 0.92 > 1). These situations cannot be eradicated
by PFS theory. Then, Yager [4] proposed q-rung orthopair
fuzzy set (q-ROFS) with the condition that the sum of qth

(where q ≥ 1) power of membership degree and qth power
of non-membership degrees is equal or less than 1. This
means that if q = 1, then q-ROFS is reduced to IFS and if
q = 2, then q-ROFS is induced to PFS. In q-ROFS, the fact
that the value of the q parameter can be determined by the
decision makers (DMs) provides freedom in determining
the values of the membership and non-membership degrees.
Sometimes vagueness and uncertainties in real-life decision-
making problems cannot be overcome by using q-ROF sets.
For example, both membership and non-membership grades
are equal to 1, it is obtained that 1q + 1q > 1, which
opposes the restriction of q-ROFS. In this case, the concept of
q-ROFS restrains the judgment of DMs. This means that the
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concept of q-ROFS has own limitations. Riaz and Hashmi [5]
presented the concept of linear Diophantine fuzzy set (LDFS)
by adding reference parameters in the definition of FS to
remove the limitations on membership and non-membership
degrees of FSs. Thanks to its reference parameters, LDFS is
more flexible and efficient in handling uncertain data than
other fuzzy sets. Also, the addition of reference parame-
ters made the valuation area of theoretical knowledge more
inclusive.

Information measures (distance, similarity, entropy) have
general application fields such as medical diagnosis, clus-
tering, pattern recognition, etc. Distance measure is used to
distinguish between two fuzzy sets. Similarity measure is a
very useful tool for overcoming vague and uncertain data to
reach the final decision by determining the degree of similar-
ity between fuzzy concepts. Entropy measure determines the
fuzziness degree of fuzzy sets besides being used for attribute
weighting in the applications of MCDM problems. Over
the past decades, distance, similarity, and entropy measures
have received growing interest as a significant quantitative
measures of uncertain information from many researchers.

Atanassov [6] first introduced distance measure for IFS.
Burillo and Bustince [7] gave distance measures between
IFSs and entropy measures for IFS. Szmidt and Kacprzyk [8]
proposed new definitions of distance measures for IFSs.
Grzegorzewski [9] defined new distance measures for IFSs
based on the Hausdorff metric. Wang and Xin [10] intro-
duced several intuitionistic fuzzy distance measures. Hung
and Yang [11] developed several fuzzy similarity measures
to IFSs and gave two new similarity measures for IFSs.
Iancu [12] presented similarity measures for IFSs based
on min-max operators. Gohain et al. [13] defined a novel
distance measure based on the concept of the information
held by the IFSs and applied it to pattern recognition, med-
ical diagnosis, and the decision-making problem of face
mask selection for the novel COVID-19 virus. Joshi and
Kumar [14] proposed α-ordered entropy measure for IFS and
gave an application of entropy measure in multi attribute
decision-making (MADM) problem. Thao [15] obtained an
entropy measure of IFS based on divergence measures and
used the proposed entropy to determine criteria weight to
solve the MCDM problem.

Zhang and Xu [16] introduced distance measure for PFSs
and extended the TOPSIS method to PFS. Peng et al. [17]
proposed distance, similarity, and entropymeasures for PFSs.
Also, they gave the relationship with each other and its
application of pattern recognition, clustering analysis, and
medical diagnosis. Biswas and Sarkar [18] defined entropy
measure based on distance measure for PFSs and used
proposed entropy measure for determining the weights of
criteria. Hussian and Yang [19] introduced distance and sim-
ilarity measures for PFSs based on the Hausdorff metric and
gave an application to PF-TOPSIS with proposed measures.
Ejegwa [20] presented axiomatic definition of distance and
similarity measure for PFSs and extended some distance and

similarity measures in IFS to PFS. Sarkar and Biswas [21]
proposed Pythagorean fuzzy distance and entropy measures
and designed an entropy weight model to determine criteria
weight for PF-MCDM problems. Wan et al. [22] presented
entropy measure of PFS to obtain attribute weights. Yang and
Hussain [23] defined Pythagorean fuzzy entropy measures
based on probabilistic-type, distance, and min–max operator.
Thao and Smarandache [24] introduced entropy measure for
PFS extension of IFS entropymeasure and calculated weights
by using proposed entropy measure in COPRAS method.
Xu et al. [25] gave new definition of entropymeasure for PFS
and used entropy weight formula to solve MCDM problem.

Peng and Liu [26] proposed q-rung orthopair fuzzy infor-
mation measures (distance, similarity, entropy, and inclusion
measure) and gave the relationships between these mea-
sures. Also, they applied the similarity measure to pattern
recognition, clustering analysis, and medical diagnosis. Peng
and Dai [27] gave the formulae of distance and similarity
measures and determined two algorithms for solving q-ROF
decision-making problemwith CODAS andmulti-parametric
similarity measures. Pinar and Boran [28] achieved a new
distance measure for q-ROFSs and used it in q-ROF TOPSIS
and q-ROF ELECTRE. Verma [29] introduced an α-ordered
entropy measure for q-ROFS and determined weights of
attributes based on the proposed entropy measure for solving
MCDMproblem. Liu et al. [30] defined entropymeasures for
q-ROFS to obtain the attribute weights.

In LDFS, Mohammad et al. [31] and Gül and
Aydoğdu [32] introduced Euclidean and Hamming dis-
tance measures, simultaneously and unknowingly. Also,
Mohammad et al. [31] gave the generalization of Euclidean
and Hamming distance measures and several similar-
ity measures for LDFS and applied proposed measures
to medical diagnosis problem. Gül and Aydoğdu [32]
introduced the first entropy measure for LDFS and
used the proposed entropy measure to obtain weights of
attributes in a novel extension of LDFS-TOPSIS. Fur-
thermore, the extension of LDFSs have been studied by
many researchers such as Riaz et al. [33] defined spheri-
cal LDFSs, Mahmood et al. [34] introduced interval-valued
LDFS. Almagrabi et al. [35] proposed q-LDFSs and aggre-
gation operators for q-LDSS. Kamacı [36] defined com-
plex LDFSs and similarity measures for complex LDFSs.
Ashraf et al. [37] gave a generalization of q-LDFSs that is
named spherical q-LDFSs. Also, Riaz et al. [38] presented
the prioritized aggregation operators for LDF for solv-
ing the best third party reverse logistic provider problem,
Alnoor et al. [39] extended the linear Diophantine fuzzy
rough sets (LDFRSs) into the MCDM and applied them to
the problem of sustainable transportation.

Many MCDM methods have been developed to achieve
successful outcomes in solving real-life problems contain
different alternatives and multiple criteria in the decision-
making process. Fuzzy logic is frequently used in the
literature to overcome the uncertainties that occur in
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decision-making process in MCDMmethods [40], [41], [42],
[43], [44], [45], [46], [47]. In MCDM problems, determining
the importance weight of each attribute is an important issue
in the evaluation of the criteria. In literature, there are two
basic types of weighting. In the subjective weighting meth-
ods, the weights are obtained by representing the decision
makers’ preferences and judgments with numbers. In the
objective weighting method, the weights are determined by
mathematical models without considering the decision mak-
ers’ preferences. One of the weighting methods used to
determine the attribute weights objectively is entropy. In the
entropy-based objective weighting method, the importance of
an attribute is determined by the dispersion that occurs in the
evaluation of alternatives.

One of the well-known MCDM method is VIKOR
(VIsekriterijumska optimizacija i KOmpromisno Resenje) is
focuses on proposing compromise solutions that can help the
decision makers to reach a final decision in MCDM prob-
lems with non-commensurable and conflicting criteria [48].
This method provides a maximum ‘‘group utility’’ of the
‘‘majority’’, and a minimum of the individual regret of the
‘‘opponent’’ and acquires more reasonable sorting results.
In the Fuzzy-VIKOR method, some of the recent studies in
the literature on the applications of the entropy-based objec-
tive weighting method are briefly given in Table 1.
To the best of our knowledge, linear Diophantine fuzzy

VIKOR method has not yet been developed in the literature.
Therefore, the information measures of the current study are
used in extension of VIKOR to LDFS. The contributions of
this research are listed as follows:
(i) New distance and similarity measures are defined on

LDFSs, and their properties are investigated. The rela-
tionships between the distance measure and similarity
measure are studied. Also, a new similarity measure
based on distance measure is introduced.

(ii) A new entropy measure is proposed for LDFS. We dis-
cuss the relationship among the distance measure, sim-
ilarity measure, and entropy measure. Besides two new
entropy measures based on distance and similarity mea-
sures are obtained.

(iii) The proposed entropy measures are used to obtain the
weights of criteria. The proposed distance measure is
used for calculating the closeness of alternatives to
the ideal solution in required by the new extension
of VIKOR, namely LDF-VIKOR. Then the effects of
entropy measures and distance measures on the com-
promise solution is showed.

(iv) The classical VIKOR method is extended to apply to a
health management decision-making problem based on
the proposed distance and entropy measures. Moreover,
the comparison and sensitivity analyses are given to
expose the advantages of the proposed method.

The rest of this paper is organized as follows. Section II
explains the preliminaries of LDFS. Novel information mea-
sures for LDFS are given and shown its properties are exhib-
ited in Section III. In section IV, entropy based LDF-VIKOR

TABLE 1. Some of the recent fuzzy VIKOR applications.

method is described. In section V, proposed LDF-VIKOR
is applied in a healthcare management problem presented
in [63]. Section VI includes a comparative analysis between
LDF-VIKOR and LDF-TOPSIS. A sensitivity analysis for
LDF- VIKOR is given in Section VII. Section VIII concludes
the study with the results and future research agenda.

II. LINEAR DIOPHANTINE FUZZY SETS
Definition 1 [5]: Let R be the reference set. A linear

Diophantine fuzzy set D is defined by

D = {(ϱ, ⟨ϕD(ϱ), υD(ϱ)⟩, ⟨aD(ϱ), bD(ϱ)⟩) : ϱ ∈ R}

where ϕD(ϱ) is membership grade, υD(ϱ) is non-
membership grade, aD(ϱ) and bD(ϱ) are reference param-
eters where ϕD(ϱ), υD(ϱ), aD(ϱ), bD(ϱ) ∈ [0, 1], and for
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every ϱ ∈ R, 0 ≤ aD(ϱ) + bD(ϱ) ≤ 1 and 0 ≤

aD(ϱ)ϕD(ϱ) + bD(ϱ)υD(ϱ) ≤ 1.
The hesitancy degree, ιL, is evaluated as cL(ϱ)ιL(ϱ) = 1−

(aD(ϱ)ϕD(ϱ) + bD(ϱ)υD(ϱ)) where cL(ϱ) is the reference
parameter of hesitancy degree.

The following sets are called absolute and null LDF sets
on R, respectively:

D1
= {(ϱ, ⟨1, 0⟩, ⟨1, 0⟩) : ϱ ∈ R}

D0
= {(ϱ, ⟨0, 1⟩, ⟨0, 1⟩) : ϱ ∈ R}

Definition 2 [5]: A linear Diophantine fuzzy number
(LDFN) is defined by N = (⟨ϕN, υN⟩, ⟨aN, bN⟩) , where
ϕN, υN, aN, bN ∈ [0, 1] , with the conditions 0 ≤ aN +

bN ≤ 1 and 0 ≤ aNϕN + bNυN ≤ 1.
We denote by LDFN (R) all LDFNs on R.
Definition 3 [5]: Let D = {(ϱ, ⟨ϕD(ϱ), υD(ϱ)⟩, ⟨aD(ϱ),

bD(ϱ)⟩) : ϱ ∈ R} and E = {(ϱ, ⟨ϕE(ϱ), υE(ϱ)⟩, ⟨aE(ϱ),
bE(ϱ)⟩) : ϱ ∈ R} be two LDFSs on R, then

1. Dc
= {(ϱ, ⟨υD(ϱ), ϕD(ϱ)⟩, ⟨bD(ϱ), aD(ϱ)⟩) : ϱ ∈ R}

2. D = E if and only if ϕD(ϱ) = ϕE(ϱ), υD(ϱ) =

υE(ϱ), aD(ϱ) = aE(ϱ), bD(ϱ) = bE(ϱ)
3. D ⊆ E if and only if ϕD(ϱ) ≤ ϕE(ϱ), υD(ϱ) ≥

υE(ϱ), aD(ϱ) ≤ aE(ϱ), bD(ϱ) ≥ bE(ϱ)

4. D ∪ E =


ϱ,

⟨
max (ϕD(ϱ), ϕE(ϱ)) ,

min (υD(ϱ), υE(ϱ))
⟩,

⟨
max (aD(ϱ), aE(ϱ)) ,

min (bD(ϱ), bE(ϱ))
⟩

 : ϱ ∈ R


5. D ∩ E =


ϱ,

⟨
min (ϕD(ϱ), ϕE(ϱ)) ,

max (υD(ϱ), υE(ϱ))
⟩,

⟨
min (aD(ϱ), aE(ϱ)) ,

max (bD(ϱ), bE(ϱ))
⟩

 : ϱ ∈ R


Definition 4 [5]:LetN1 =

(
⟨ϕR1 , υR1⟩, ⟨aR1 , bR1⟩

)
and

N2 =
(
⟨ϕR2 , υR2⟩, ⟨aR2 , bR2⟩

)
be two LDFNs on R and

k > 0 then

1) N1 ⊕N2 =
(
⟨ϕR1 +ϕR2 −ϕR1ϕR2 , υR1υR2⟩, ⟨aR1+

aR2 − aR1aR2 , bR1bR2⟩
)

2) N1 ⊗ N2 =
(
⟨ϕR1ϕR2 , υR1 + υR2 − υR1υR2⟩,

⟨aR1aR2 , bR1 + bR2 − bR1bR2⟩
)

3) kN1 =

(
⟨1− (1−ϕR1 )

k , υkR1
⟩, ⟨1− (1−aR1 )

k , bkR1
⟩

)
4) Nk

1 =

(
⟨ϕkR1

, 1− (1− υR1 )
k
⟩, ⟨akR1

, 1− (1− bR1 )
k
⟩

)
.

Definition 5 [5]: Let N = (⟨ϕR, υR⟩, ⟨aR, bR⟩) be an
LDFN. Themapping s : LDFN (R) → [−1, 1] is called score
function on LDFN N defined by

s (N) =
(ϕN − υN) + (aN − bN)

2

Definition 6 [5]: Let N = (⟨ϕR, υR⟩, ⟨aR, bR⟩) be an
LDFN. The accuracy function a : LDFN (R) → [0, 1] is
defined by

a (N) =
(ϕN + υN) + 2 (aN + bN)

4
.

Mohammad et al. [31] introduced generalized distance mea-
sure as follow:

δM (D, E) =

 1
4n

n∑
i=1


|ϕD (ϱi) − ϕE (ϱi)|

p

+ |υD (ϱi) − υE(ϱi)|p

+ |aD (ϱi) − aE (ϱi)|
p

+ |bD (ϱi) − bE (ϱi)|
p




1
p

Here D and E are two LDFSs. For p = 1, 2 we get normal-
ized Hamming distance and normalized Euclidean distance
between two LDFSs D and E as follow, respectively:

δHM (D, E) =
1
4n

n∑
i=1


|ϕD (ϱi) − ϕE (ϱi)|

+ |υD (ϱi) − υE(ϱi)|
+ |aD (ϱi) − aE (ϱi)|

+ |bD (ϱi) − bE (ϱi)|

 ,

δEM (D, E) =

 1
4n

n∑
i=1


|ϕD (ϱi) − ϕE (ϱi)|

2

+ |υD (ϱi) − υE(ϱi)|2

+ |aD (ϱi) − aE (ϱi)|
2

+ |bD (ϱi) − bE (ϱi)|
2




1
2

.

Gül and Aydoğdu [32] presented two entropy measures for
LDFS D as follow:

εGA1 (D) = 1 −
1
2n

n∑
i=1

[
|ϕD (ϱi) − υD (ϱi)|

+ |aD (ϱi) − bD (ϱi)|

]
,

εGA2 (D) = 1 −

{
1
2n

n∑
i=1

[
(ϕD (ϱi) − υD (ϱi))

2

+ (aD (ϱi) − bD (ϱi))
2

]} 1
2

.

III. NEW INFORMATION MEASURES FOR LDFS
In this part, we establish the axiomatic skeleton of LDF
informationmeasures and present the corresponding formula.

A. DISTANCE MEASURE FOR LDFS
Definition 7 [31]: A distance measure δ is a mapping δ :

LDFS (R) × LDFS (R) → [0, 1], providing the following
properties, for all D, E, F ∈ LDFS(R),
D1) 0 ≤ δ (D, E) ≤ 1,
D2) δ (D, E) = 0 if D = E,
D3) δ (D, E) = δ (E, D),
D4) IfD ⊆ E ⊆ F, then δ (D, F) ≥ δ (D, E) and δ (D, F) ≥

δ (E, F).
Let D and E be two LDFSs on reference set R. We define a
mapping on LDFS (R) as follows:

δ (D, E) =
1
8n

n∑
i=1




|ϕD (ϱi) − ϕE (ϱi)|

+ |υD (ϱi) − υE(ϱi)|
+ |aD (ϱi) − aE (ϱi)|

+ |bD (ϱi) − bE (ϱi)|


+ 4max


|ϕD (ϱi) − ϕE (ϱi)| ,

|υD (ϱi) − υE(ϱi)| ,
|aD (ϱi) − aE (ϱi)| ,

|bD (ϱi) − bE (ϱi)|




.

Theorem 1: Let D and E be two LDFSs, then δ (D, E) is
a distance measure.
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Proof:
D1) By the definition of LDFS, we get ϕD(ϱ), ϕE(ϱ), υD(ϱ),

υE(ϱ), aD(ϱ), aE(ϱ), bD(ϱ), bE(ϱ) ∈ [0, 1] for all ϱ ∈

R. Then,

0 ≤ ϕD(ϱ) ≤ 1, 0 ≤ ϕE(ϱ) ≤ 1 ⇒ 0

≤ |ϕD(ϱ) − ϕE(ϱ)| ≤ 1

0 ≤ υD(ϱ) ≤ 1, 0 ≤ υE(ϱ) ≤ 1 ⇒ 0

≤ |υD(ϱ) − υE(ϱ)| ≤ 1

0 ≤ aD(ϱ) ≤ 1, 0 ≤ aE(ϱ) ≤ 1 ⇒ 0

≤ |aD(ϱ) − aE(ϱ)| ≤ 1

0 ≤ bD(ϱ) ≤ 1, 0 ≤ bE(ϱ) ≤ 1 ⇒ 0

≤ |bD(ϱ) − bE(ϱ)| ≤ 1

δ (D, E) =
1
8n

n∑
i=1




|ϕD (ϱi) − ϕE (ϱi)|

+ |υD (ϱi) − υE(ϱi)|
+ |aD (ϱi) − aE (ϱi)|

+ |bD (ϱi) − bE (ϱi)|


+ 4max


|ϕD (ϱi) − ϕE (ϱi)| ,

|υD (ϱi) − υE(ϱi)| ,
|aD (ϱi) − aE (ϱi)| ,

|bD (ϱi) − bE (ϱi)|




≤

1
8n

n∑
i=1

[ (
1 + 1 + 1 + 1

)
+ 4 · 1

]
= 1.

It is obviously that δ (D, E) ≥ 0.
D2) If D = E, then ϕD(ϱ) = ϕE(ϱ), υD(ϱ) =

υE(ϱ), aD(ϱ) = aE(ϱ), bD(ϱ) = bE(ϱ) for all ϱ ∈ R.
So, δ (D, E) = 0.

D3)

δ (D, E)

=
1
8n

n∑
i=1




|ϕD (ϱi) − ϕE (ϱi)|

+ |υD (ϱi) − υE(ϱi)|
+ |aD (ϱi) − aE (ϱi)|

+ |bD (ϱi) − bE (ϱi)|


+ 4max


|ϕD (ϱi) − ϕE (ϱi)| ,

|υD (ϱi) − υE(ϱi)| ,
|aD (ϱi) − aE (ϱi)| ,

|bD (ϱi) − bE (ϱi)|





=
1
8n

n∑
i=1




|ϕE (ϱi) − ϕD (ϱi)|

+ |υE (ϱi) − υD(ϱi)|
+ |aE (ϱi) − aD (ϱi)|

+ |bE (ϱi) − bD (ϱi)|


+ 4max


|ϕE (ϱi) − ϕD (ϱi)| ,

|υE (ϱi) − υD(ϱi)| ,
|aE (ϱi) − aD (ϱi)| ,

|bE (ϱi) − bD (ϱi)|




= δ (E, D) .

D4) For any LDFS F = {(ϱ, ⟨ϕF(ϱ), υF(ϱ)⟩, ⟨aF(ϱ),
bF(ϱ))⟩) : ϱ ∈ R}, if D ⊆ E ⊆ F, then ϕD(ϱ) ≤

ϕE(ϱ) ≤ ϕF(ϱ), υD(ϱ) ≥ υE(ϱ) ≥ υF(ϱ), aD(ϱ) ≤

aE(ϱ) ≤ aF(ϱ), bD(ϱ) ≥ bE(ϱ) ≥ bF(ϱ) for all ϱ ∈ R.

So, we have |ϕD(ϱ) − ϕE(ϱ)| ≤ |ϕD(ϱ) − ϕF(ϱ)|,
|υD(ϱ)−υE(ϱ)| ≤ |υD(ϱ)−υF(ϱ)|, |aD(ϱ)−aE(ϱ)| ≤

|aD(ϱ)−aF(ϱ)| and |bD(ϱ)−bE(ϱ)| ≤ |bD(ϱ)−bF(ϱ)|.
Thus,

δ (D, E)

=
1
8n

n∑
i=1




|ϕD (ϱi) − ϕE (ϱi)|

+ |υD (ϱi) − υE(ϱi)|
+ |aD (ϱi) − aE (ϱi)|

+ |bD (ϱi) − bE (ϱi)|


+ 4max


|ϕD (ϱi) − ϕE (ϱi)| ,

|υD (ϱi) − υE(ϱi)| ,
|aD (ϱi) − aE (ϱi)| ,

|bD (ϱi) − bE (ϱi)|





≤
1
8n

n∑
i=1




∣∣ϕD (ϱi) − ϕF (ϱi)

∣∣
+
∣∣υD (ϱi) − υF(ϱi)

∣∣
+
∣∣aD (ϱi) − aF (ϱi)

∣∣
+
∣∣bD (ϱi) − bF (ϱi)

∣∣


+ 4max


∣∣ϕD (ϱi) − ϕF (ϱi)

∣∣ ,∣∣υD (ϱi) − υF(ϱi)
∣∣ ,∣∣aD (ϱi) − aF (ϱi)
∣∣ ,∣∣bD (ϱi) − bF (ϱi)
∣∣



= δ (D, F) .

It can be shown δ (D, F) ≥ δ (E, F) in the same way,
which completes the proof.

The following propositions give the various features of the
proposed distance measure under the complement of LDFS.
Proposition 1: Let D and E be two LDFSs, then we get

1. δ (D, Ec) = δ (Dc, E) ;

2. δ (D, E) = δ (Dc, Ec).

Proof:

1. By the definition of complement of LDFS, we get

δ
(
D, Ec

)

=
1
8n

n∑
i=1




|ϕD (ϱi) − ϕEc (ϱi)|

+ |υD (ϱi) − υEc (ϱi)|
+ |aD (ϱi) − aEc (ϱi)|

+ |bD (ϱi) − bEc (ϱi)|


+ 4max


|ϕD (ϱi) − ϕEc (ϱi)| ,

|υD (ϱi) − υEc (ϱi)| ,
|aD (ϱi) − aEc (ϱi)| ,

|bD (ϱi) − bEc (ϱi)|





=
1
8n

n∑
i=1




|ϕD (ϱi) − υE (ϱi)| +

|υD (ϱi) − ϕE (ϱi)|

+ |aD (ϱi) − bE (ϱi)| +

|bD (ϱi) − aE (ϱi)|


+ 4max


|ϕD (ϱi) − υE (ϱi)| ,

|υD (ϱi) − ϕE (ϱi)| ,

|aD (ϱi) − bE (ϱi)| ,

|bD (ϱi) − aE (ϱi)|
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=
1
8n

n∑
i=1




|υDc (ϱi) − υE (ϱi)|

+ |ϕDc (ϱi) − ϕE (ϱi)|

+ |bDc (ϱi) − bE (ϱi)|

+ |aDc (ϱi) − aE (ϱi)|


+ 4max


|υDc (ϱi) − υE (ϱi)| ,

|ϕDc (ϱi) − ϕE (ϱi)| ,

|bDc (ϱi) − bE (ϱi)| ,

|aDc (ϱi) − aE (ϱi)|




= δ

(
Dc, E

)
.

2.

δ (D, E)

=
1
8n

n∑
i=1




|ϕD (ϱi) − ϕE (ϱi)|

+ |υD (ϱi) − υE(ϱi)|
+ |aD (ϱi) − aE (ϱi)|

+ |bD (ϱi) − bE (ϱi)|


+ 4max


|ϕD (ϱi) − ϕE (ϱi)| ,

|υD (ϱi) − υE(ϱi)| ,
|aD (ϱi) − aE (ϱi)| ,

|bD (ϱi) − bE (ϱi)|





=
1
8n

n∑
i=1




|υDc (ϱi) − υEc (ϱi)|

+ |ϕDc (ϱi) − ϕEc (ϱi)|

+ |bDc (ϱi) − bEc (ϱi)|

+ |aDc (ϱi) − aEc (ϱi)|


+ 4max


|υDc (ϱi) − υEc (ϱi)| ,

|ϕDc (ϱi) − ϕEc (ϱi)| ,

|bDc (ϱi) − bEc (ϱi)| ,

|aDc (ϱi) − aEc (ϱi)|




= δ

(
Dc, Ec

)
.

Proposition 2: LetD be an LDFSs, then δ (D, Dc) = 1 iff
D is crisp set.

Proof: If D is a crisp set, then ϕD(ϱ) = 1, υD(ϱ) = 0,
aD(ϱ) = 1 and bD(ϱ) = 0 or ϕD(ϱ) = 0, υD(ϱ) = 1,
aD(ϱ) = 0 and bD(ϱ) = 1. In both cases

δ
(
D, Dc)

=
1
8n

n∑
i=1




|ϕD (ϱi) − ϕDc (ϱi)|

+ |υD (ϱi) − υDc (ϱi)|
+ |aD (ϱi) − aDc (ϱi)|

+ |bD (ϱi) − bDc (ϱi)|


+ 4max


|ϕD (ϱi) − ϕDc (ϱi)| ,

|υD (ϱi) − υDc (ϱi)| ,
|aD (ϱi) − aDc (ϱi)| ,

|bD (ϱi) − bDc (ϱi)|





=
1
8n

n∑
i=1


(

2 |ϕD (ϱi) − υD (ϱi)|

+2 |aD (ϱi) − bD (ϱi)|

)
+ 4max

(
|ϕD (ϱi) − υD (ϱi)| ,

|aD (ϱi) − bD (ϱi)|

)


=
1
8n

n∑
i=1

[ (
2 · 1 + 2 · 1

)
+ 4 · 1

]
= 1.

Otherwise, if δ (D, Dc) = 1, then we have


|ϕD(ϱ) − ϕDc (ϱ)|

+ |υD(ϱ) − υDc (ϱ)|
+ |aD(ϱ) − aDc (ϱ)|
+ |bD(ϱ) − bDc (ϱ)|


+ 4max


|ϕD(ϱ) − ϕDc (ϱ)| ,
|υD(ϱ) − υDc (ϱ)| ,
|aD(ϱ) − aDc (ϱ)| ,
|bD(ϱ) − bDc (ϱ)|




= 8


(

2 |ϕD(ϱ) − υD(ϱ)|
+2 |aD(ϱ) − bD(ϱ)|

)
+ 4max

(
|ϕD(ϱ) − υD(ϱ)| ,
|aD(ϱ) − bD(ϱ)|

)
 = 8


(

|ϕD(ϱ) − υD(ϱ)|
+2 |aD(ϱ) − bD(ϱ)|

)
+2max

(
|ϕD(ϱ) − υD(ϱ)| ,
|aD(ϱ) − bD(ϱ)|

)
 = 4.

In this case, either |ϕD(ϱ) − υD(ϱ)| > |aD(ϱ) − bD(ϱ)|,
or |ϕD(ϱ) − υD(ϱ)| < |aD(ϱ) − bD(ϱ)| , since 0 ≤

|ϕD(ϱ) − υD(ϱ)| ≤ 1 and 0 ≤ |aD(ϱ) − bD(ϱ)| ≤ 1, we get
0 ≤ 3 |ϕD(ϱ) − υD(ϱ)| + |aD(ϱ) − bD(ϱ)| ≤ 4 or 0 ≤

|ϕD(ϱ) − υD(ϱ)| + 3 |aD(ϱ) − bD(ϱ)| ≤ 4, respectively.
In both cases, it can be seen clearly D is a crisp set.
Proposition 3: Let D be an LDFSs, then δ (D, Dc) = 0 if

and only if ϕD(ϱ) = υD(ϱ) and aD(ϱ) = bD(ϱ) for all
ϱ ∈ R.

Proof: If ϕD(ϱ) = υD(ϱ) and aD(ϱ) = bD(ϱ) for all
ϱ ∈ R, then

δ
(
D, Dc)

=
1
8n

n∑
i=1




|ϕD (ϱi) − ϕDc (ϱi)|

+ |υD (ϱi) − υDc (ϱi)|
+ |aD (ϱi) − aDc (ϱi)|

+ |bD (ϱi) − bDc (ϱi)|


+ 4max


|ϕD (ϱi) − ϕDc (ϱi)| ,

|υD (ϱi) − υDc (ϱi)| ,
|aD (ϱi) − aDc (ϱi)| ,

|bD (ϱi) − bDc (ϱi)|





=
1
8n

n∑
i=1


(

2 |ϕD (ϱi) − υD (ϱi)|

+2 |aD (ϱi) − bD (ϱi)|

)
+ 4max

(
|ϕD (ϱi) − υD (ϱi)| ,

|aD (ϱi) − bD (ϱi)|

)


= 0.

Conversely, if δ (D, Dc) = 0, then it follows that[ (
2 |ϕD (ϱi) − υD (ϱi)| + 2 |aD (ϱi) − bD (ϱi)|

)
+ 4max (|ϕD (ϱi) − υD (ϱi)| , |aD (ϱi) − bD (ϱi)|)

]
= 0

which implies that |ϕD (ϱi) − υD (ϱi)| = 0 and
|aD (ϱi) − bD (ϱi)| = 0. Thus, we get ϕD (ϱi) = υD (ϱi)

and aD (ϱi) = bD (ϱi) for all ϱ ∈ R. This completes the
proof.
Proposition 4: For any two LDFSsD andE, the following

equalities hold:
1. δ (D, E) = δ (D ∩ E, D ∪ E),
2. δ (D, D ∩ E) = δ (E, D ∪ E),
3. δ (D, D ∪ E) = δ (E, D ∩ E).
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B. SIMILARITY MEASURE FOR LDFS
Definition 8: A similarity measure between LDFSs is a

mapping σ : LDFS (R) × LDFS (R) → [0, 1] satisfies the
following properties, for every D, E, F ∈ LDFS(R),

S1) 0 ≤ σ (D, E) ≤ 1,
S2) σ (D, E) = 1 iff D = E,
S3) σ (D, E) = σ (E, D),
S4) σ (D, Dc) = 0 iff D is crisp set,
S5) If D ⊆ E ⊆ F, then σ (D, F) ≤ σ (D, E) and

σ (D, F) ≤ σ (E, F).

Let D and E be two LDFSs on reference set R. We define a
mapping on LDF (R) as follow:

σ (D, E) =
1
n

n∑
i=1

2 −

 max
(

|ϕD (ϱi) − ϕE (ϱi)| ,

|υD (ϱi) − υE(ϱi)|

)
+max

(
|aD (ϱi) − aE (ϱi)| ,

|bD (ϱi) − bE (ϱi)|

)


2 +

 max
(

|ϕD (ϱi) − ϕE (ϱi)| ,

|υD (ϱi) − υE(ϱi)|

)
+max

(
|aD (ϱi) − aE (ϱi)| ,

|bD (ϱi) − bE (ϱi)|

)


.

Theorem 2: Let D and E be two LDFSs, then σ (D, E) is
a similarity measure.

Proof: In order for σ (D, E) to be described as similar-
ity measure for LDFS, it must satisfy S1–S5 of axiomatic
requirements.

S1) By the definition of LDFS, the following inequalities
hold:

0 ≤ ϕD(ϱ) ≤ 1, 0 ≤ ϕE(ϱ) ≤ 1 ⇒ 0

≤ |ϕD(ϱ) − ϕE(ϱ)| ≤ 1,

0 ≤ υD(ϱ) ≤ 1, 0 ≤ υE(ϱ) ≤ 1 ⇒ 0

≤ |υD(ϱ) − υE(ϱ)| ≤ 1,

0 ≤ aD(ϱ) ≤ 1, 0 ≤ aE(ϱ) ≤ 1 ⇒ 0

≤ |aD(ϱ) − aE(ϱ)| ≤ 1,

0 ≤ bD(ϱ) ≤ 1, 0 ≤ bE(ϱ) ≤ 1 ⇒ 0

≤ |bD(ϱ) − bE(ϱ)| ≤ 1.

Then,

σ (D, E)

=
1
n

n∑
i=1

2 −

 max
(

|ϕD (ϱi) − ϕE (ϱi)| ,

|υD (ϱi) − υE(ϱi)|

)
+max

(
|aD (ϱi) − aE (ϱi)| ,

|bD (ϱi) − bE (ϱi)|

)


2 +

 max
(

|ϕD (ϱi) − ϕE (ϱi)| ,

|υD (ϱi) − υE(ϱi)|

)
+max

(
|aD (ϱi) − aE (ϱi)| ,

|bD (ϱi) − bE (ϱi)|

)


≥
1
n

n∑
i=1

2 − [1 + 1]
2 + [1 + 1]

= 0

and

σ (D, E)

=
1
n

n∑
i=1

2 −

 max
(

|ϕD (ϱi) − ϕE (ϱi)| ,

|υD (ϱi) − υE(ϱi)|

)
+max

(
|aD (ϱi) − aE (ϱi)| ,

|bD (ϱi) − bE (ϱi)|

)


2 +

 max
(

|ϕD (ϱi) − ϕE (ϱi)| ,

|υD (ϱi) − υE(ϱi)|

)
+max

(
|aD (ϱi) − aE (ϱi)| ,

|bD (ϱi) − bE (ϱi)|

)


≤
1
n

n∑
i=1

2 − [0 + 0]
2 + [0 + 0]

= 1.

S2) If D = E, then ϕD(ϱ) = ϕE(ϱ), υD(ϱ) = υE(ϱ),
aD(ϱ) = aE(ϱ) and bD(ϱ) = bE(ϱ) for all ϱ ∈ R.
So

σ (D, E)

=
1
n

n∑
i=1

2 −

 max
(

|ϕD (ϱi) − ϕE (ϱi)| ,

|υD (ϱi) − υE(ϱi)|

)
+max

(
|aD (ϱi) − aE (ϱi)| ,

|bD (ϱi) − bE (ϱi)|

)


2 +

 max
(

|ϕD (ϱi) − ϕE (ϱi)| ,

|υD (ϱi) − υE(ϱi)|

)
+max

(
|aD (ϱi) − aE (ϱi)| ,

|bD (ϱi) − bE (ϱi)|

)


=
1
n

n∑
i=1

2 − [0 + 0]
2 + [0 + 0]

= 1.

Otherwise, if σ (D, E) = 1, then

2 −

 max
(

|ϕD (ϱi) − ϕE (ϱi)| ,

|υD (ϱi) − υE (ϱi)|

)
+max

(
|aD (ϱi) − aE (ϱi)| ,

|bD (ϱi) − bE (ϱi)|

)


= 2 +

 max
(

|ϕD (ϱi) − ϕE (ϱi)| ,

|υD (ϱi) − υE (ϱi)|

)
+max

(
|aD (ϱi) − aE (ϱi)| ,

|bD (ϱi) − bE (ϱi)|

)


⇒ −

 max
(

|ϕD (ϱi) − ϕE (ϱi)| ,

|υD (ϱi) − υE (ϱi)|

)
+max

(
|aD (ϱi) − aE (ϱi)| ,

|bD (ϱi) − bE (ϱi)|

)


=

 max
(

|ϕD (ϱi) − ϕE (ϱi)| ,

|υD (ϱi) − υE(ϱi)|

)
+max

(
|aD (ϱi) − aE (ϱi)| ,

|bD (ϱi) − bE (ϱi)|

)


⇒

 max
(

|ϕD (ϱi) − ϕE (ϱi)| ,

|υD (ϱi) − υE(ϱi)|

)
+max

(
|aD (ϱi) − aE (ϱi)| ,

|bD (ϱi) − bE (ϱi)|

)
 = 0.
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Thus, we have |ϕD(ϱ)−ϕE(ϱ)| = 0, |υD(ϱ)− υE(ϱ)| =

0, |aD(ϱ)−aE(ϱ)| = 0 and |bD(ϱ)−bE(ϱ)| = 0. Hence,
we get D = E.

S3)

σ (D, E)

=
1
n

n∑
i=1

2 −

 max
(

|ϕD (ϱi) − ϕE (ϱi)| ,

|υD (ϱi) − υE(ϱi)|

)
+max

(
|aD (ϱi) − aE (ϱi)| ,

|bD (ϱi) − bE (ϱi)|

)


2 +

 max
(

|ϕD (ϱi) − ϕE (ϱi)| ,

|υD (ϱi) − υE(ϱi)|

)
+max

(
|aD (ϱi) − aE (ϱi)| ,

|bD (ϱi) − bE (ϱi)|

)


=
1
n

n∑
i=1

2 −

 max
(

|ϕE (ϱi) − ϕD (ϱi)| ,

|υE (ϱi) − υD (ϱi)|

)
+max

(
|aE (ϱi) − aD (ϱi)| ,

|bE (ϱi) − bD (ϱi)|

)


2 +

 max
(

|ϕE (ϱi) − ϕD (ϱi)| ,

|υE (ϱi) − υD (ϱi)|

)
+max

(
|aE (ϱi) − aD (ϱi)| ,

|bE (ϱi) − bD (ϱi)|

)


= σ (E, D) .

S4) If σ (D, Dc) = 0, then

2 −

 max
(

|ϕD (ϱi) − ϕDc (ϱi)| ,

|υD (ϱi) − υDc (ϱi)|

)
+max

(
|aD (ϱi) − aDc (ϱi)| ,

|bD (ϱi) − bDc (ϱi)|

)
 = 0

 max
(

|ϕD (ϱi) − υD (ϱi)| ,

|υD (ϱi) − ϕD(ϱi)|

)
+max

(
|aD (ϱi) − bD (ϱi)| ,

|bD (ϱi) − aD (ϱi)|

)
 = 2

|ϕD (ϱi) − υD (ϱi)| , |υD (ϱi) − ϕD(ϱi)| = 2.

Since 0 ≤ ϕD(ϱ) ≤ 1, 0 ≤ υD(ϱ) ≤ 1,
0 ≤ aD(ϱ) ≤ 1 and 0 ≤ bD(ϱ) ≤ 1 for all
ϱ ∈ R, 0 ≤ |ϕD(ϱ) − υD(ϱ)| ≤ 1 and 0 ≤

|aD(ϱ) − bD(ϱ)| ≤ 1. The latest equation is provided
when |ϕD(ϱ) − υD(ϱ)| = 1 and |aD(ϱ) − bD(ϱ)| = 1.
Hence, D is crisp set.
If D is crisp set, then

σ
(
D, Dc)

=
1
n

n∑
i=1

2 −

 max
(

|ϕD (ϱi) − ϕDc (ϱi)| ,

|υD (ϱi) − υDc (ϱi)|

)
+max

(
|aD (ϱi) − aDc (ϱi)| ,

|bD (ϱi) − bDc (ϱi)|

)


2 +

 max
(

|ϕD (ϱi) − ϕDc (ϱi)| ,

|υD (ϱi) − υDc (ϱi)|

)
+max

(
|aD (ϱi) − aDc (ϱi)| ,

|bD (ϱi) − bDc (ϱi)|

)


=
1
n

n∑
i=1

2 − [1 + 1]
2 + [1 + 1]

= 0.

S5) For any LDFSF={(ϱ,⟨ϕF(ϱ), υF(ϱ)⟩, ⟨aF(ϱ)), bF(ϱ)⟩) :
ϱ ∈ R}, ifD ⊆ E ⊆ F, then we have |ϕD(ϱ)−ϕE(ϱ)| ≤

|ϕD(ϱ) − ϕF(ϱ)|, |υD(ϱ) − υE(ϱ)| ≤ |υD(ϱ) − υF(ϱ)|,
|aD(ϱ) − aE(ϱ)| ≤ |aD(ϱ) − aF(ϱ)| and |bD(ϱ) −

bE(ϱ)| ≤ |bD(ϱ) − bF(ϱ)|. Hence, we have max
( ∣∣ϕD(ϱ) − ϕF(ϱ)

∣∣ ,∣∣υD(ϱ) − υF(ϱ)
∣∣ )

+max
( ∣∣aD(ϱ) − aF(ϱ)

∣∣ ,∣∣bD(ϱ) − bF(ϱ)
∣∣ )



≥

 max
(

|ϕD(ϱ) − ϕE(ϱ)| ,
|υD(ϱ) − υE(ϱ)|

)
+max

(
|aD(ϱ) − aE(ϱ)| ,
|bD(ϱ) − bE(ϱ)|

)


and then we get σ (D, F) ≤ σ (D, E). Similarly,
σ (D, F) ≤ σ (E, F).

This completes the proof.
Proposition 5: For any two LDFSs D and E, we have

1. σ (D, Ec) = σ (Dc, E),
2. σ (D, E) = σ (D ∩ E, D ∪ E),
3. σ (D, D ∩ E) = σ (E, D ∪ E),
4. σ (D, D ∪ E) = σ (E, D ∩ E),
5. σ (D, D ⊗ E) = σ (E, D ⊕ E),
6. σ (D, D ⊕ E) = σ (E, D ⊗ E).

Theorem 3: Let δ be a distance measure for LDFSs D
and E, then σ (D, E) = 1 − δ(D, E) is a similarity measure
between D and E.

Proof:

S1) By the Definition of distance 0 ≤ δ(D, E) ≤ 1. Thus,
we get 0 ≤ σ (D, E) ≤ 1.

S2) If D = E, then δ(D, E) = 0. Hence σ (D, E) = 1 −

δ(D, E) = 1. Otherwise, σ (D, E) = 1 ⇒ 1−δ(D, E) =

1 ⇒ δ(D, E) = 0 ⇒ D = E.
S3) Since δ(D, E) = δ(E, D), we get σ (D, E) = 1 −

δ(D, E) = 1 − δ(E, D) = σ (E, D).
S4) If D is crisp set, then σ (D, Dc) = 1 − δ(D, Dc) = 0,

by Proposition 2. Conversely, σ (D, Dc) = 0 ⇒ 1 −

δ(D, Dc) = 0 ⇒ δ(D, Dc) = 1, so D is crisp set.
S5) If D ⊆ E ⊆ F, then δ(D, F) ≥ δ(D, E) and δ(D, F) ≥

δ(E, F) for all D, E, F ∈ LDFS(R), by the definition
of distance measure. Hence σ (D, F) = 1 − δ(D, F) ≤

1 − δ(D, E) = σ (D, E) and σ (D, F) = 1 − δ(D, F) ≤

1 − δ(E, F) = σ (E, F) for all D, E, F ∈ LDFS(R).

For D, E ∈ LDFS(R), we have

σδ (D, E)

= 1 −
1
8n

n∑
i=1




|ϕD (ϱi) − ϕE (ϱi)|

+ |υD (ϱi) − υE (ϱi)|

+ |aD (ϱi) − aE (ϱi)|

+ |bD (ϱi) − bE (ϱi)|


+ 4max


|ϕD (ϱi) − ϕE (ϱi)| ,

|υD (ϱi) − υE (ϱi)| ,

|aD (ϱi) − aE (ϱi)| ,

|bD (ϱi) − bE (ϱi)|




.
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Now, we propose weighted similarity measures between the
LDFSs D and E as follow:

σω (D, E)

=
1
n

n∑
i=1

ωi

2 −

 max
(

|ϕD (ϱi) − ϕE (ϱi)| ,

|υD (ϱi) − υE(ϱi)|

)
+max

(
|aD (ϱi) − aE (ϱi)| ,

|bD (ϱi) − bE (ϱi)|

)


2 +

 max
(

|ϕD (ϱi) − ϕE (ϱi)| ,

|υD (ϱi) − υE(ϱi)|

)
+max

(
|aD (ϱi) − aE (ϱi)| ,

|bD (ϱi) − bE (ϱi)|

)


,

σω
δ (D, E)

= 1 −
1
8n

n∑
i=1

ωi




|ϕD (ϱi) − ϕE (ϱi)|

+ |υD (ϱi) − υE (ϱi)|

+ |aD (ϱi) − aE (ϱi)|

+ |bD (ϱi) − bE (ϱi)|


+ 4max


|ϕD (ϱi) − ϕE (ϱi)| ,

|υD (ϱi) − υE (ϱi)| ,

|aD (ϱi) − aE (ϱi)| ,

|bD (ϱi) − bE (ϱi)|




.

C. COMPARISON OF SIMILARITY MEASURES
In this subsection, we present a comparative study of the pro-
posed similarity measures and existing similarity measures
in the literature. The existing similarity measures defined by
Mohammed et al. [31] are given below.

• Jaccard Similarity Measure

σJSM (D, E)

=
1
n

n∑
i=1



ϕD (ϱi) ϕE (ϱi) + υD (ϱi) υE (ϱi)

+aD (ϱi) aE (ϱi) + bD (ϱi) bE (ϱi)(
ϕ2

D (ϱi) + υ2
D (ϱi) + a2D (ϱi) + b2D (ϱi)

)
+
(
ϕ2

E (ϱi) + υ2
E (ϱi) + a2E (ϱi) + b2E (ϱi)

)
−

(
ϕD (ϱi) ϕE (ϱi) + υD (ϱi) υE (ϱi)

+aD (ϱi) aE (ϱi) + bD (ϱi) bE (ϱi)

)


• Exponential Similarity Measure

σESM (D, E)

= e
−

{
1
4n
∑n

i=1

[(
|ϕD (ϱi)−ϕE (ϱi)|+|υD (ϱi) − υE (ϱi)|

+ |aD (ϱi)−aE (ϱi)|+|bD (ϱi) −bE (ϱi)|

)]}
.

• Cosine Similarity Measures

σCos1 (D, E)

=
1
n

n∑
i=1

cos

π

2
max


|ϕD (ϱi) − ϕE (ϱi)| ,

|υD (ϱi) − υE (ϱi)| ,

|aD (ϱi) − aE (ϱi)| ,

|bD (ϱi) − bE (ϱi)|




σCos2 (D, E)

=
1
n

n∑
i=1

cos

π

4


|ϕD (ϱi) − ϕE (ϱi)|

+ |υD (ϱi) − υE (ϱi)|

+ |aD (ϱi) − aE (ϱi)|

+ |bD (ϱi) − bE (ϱi)|




• Cotangent Similarity Measures

σCot1 (D, E)

=
1
n

n∑
i=1

cot

π

4
+

π

4
max


|ϕD (ϱi) − ϕE (ϱi)| ,

|υD (ϱi) − υE (ϱi)| ,

|aD (ϱi) − aE (ϱi)| ,

|bD (ϱi) − bE (ϱi)|




σCot2 (D, E)

=
1
n

n∑
i=1

cot

π

4
+

π

4


|ϕD (ϱi) − ϕE (ϱi)|

+ |υD (ϱi) − υE (ϱi)|

+ |aD (ϱi) − aE (ϱi)|

+ |bD (ϱi) − bE (ϱi)|




The comparison results of the existing similarity measures
and the proposed similarity measures are given in Table 2,
where all values in bold demonstrate unreasonable results.
FromTable 2, it can be seen that the similaritymeasures σJSM ,
σESM , σCos1 , σCos2 , σCot1 and σCot2 get unreasonable results
in some situations.

• The Jaccard similarity measure σJSM has found the same
result in Case 3 and Case 4. The exponential simi-
larity measure σESM produces unreasonable result in
Case 1 and has found the same result in Case 5 and
Case 6.

• The cosine similarity measure σCos1 has found same
result in Case 1 and Case 2.

• The cosine similarity measure σCos2 is not met condition
S1 in Definition 8 in Case 1and has obtained an unrea-
sonable result in Case 2 and has found the same result in
Cases 5 and 6.

• The cotangent similarity measure σCot1 has found same
result in Case 1 and Case 2.

• The cotangent similarity measure σCot2 has obtained an
unreasonable result in Case 1 and is not met condition
S1 in Definition 8 in Cases 2-6.

From Table 2, it can be seen that the proposed similarity
measures σ , σδ have produced reasonable results for all cases.

D. ENTROPY MEASURE FOR LDFS
Definition 9: An entropy measure ε is a mapping ε :

LDFS (R) → [0, 1], provides the following features, for
every D, E ∈ LDFS (R) ,

E1) ε (D) = 0 if and only if D is crisp set,
E2) ε (D) = 1 if ϕD(ϱ) = υD(ϱ) and aD(ϱ) = βL(x) for all

ϱ ∈ R,
E3) ε (D) = ε (Dc),
E4) ε (D) ≤ ε (E) if D is less fuzzy than E, i.e. D ⊆ E

for ϕE(ϱ) ≤ υE(ϱ) and aE(ϱ) ≤ bE(ϱ) or E ⊆ D for
υE(ϱ) ≤ ϕE(ϱ) and bE(ϱ) ≤ aE(ϱ)

Let D = {(ϱ, ⟨ϕD(ϱ), υD(ϱ)⟩, ⟨aD(ϱ), bD(ϱ)⟩) : ϱ ∈ R}

be an LDFS on reference set R. We define a mapping on
LDFS (R) as follows

ε (D) =
1
n

n∑
i=1

1 − |aD (ϱi) ϕD (ϱi) − bD (ϱi) υD (ϱi)|

1 + |aD (ϱi) ϕD (ϱi) − bD (ϱi) υD (ϱi)|
.
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TABLE 2. Comparison similarity measures.

Theorem 4: Let D be an LDFS, then ε (D) is an entropy
measure.

Proof: In order for ε (D) to be described as entropy
measure for LDFS, it must satisfy properties of Definition 9.

E1) If D is crisp set, then ϕD(ϱ) = 1, υD(ϱ) = 0, aD(ϱ) =

1 and bD(ϱ) = 0 or ϕD(ϱ) = 0, υD(ϱ) = 1, aD(ϱ) =

0 and bD(ϱ) = 1. In both case, ε (D) = 0. Conversely,
if ε (D) = 0, then

1
n

n∑
i=1

1 − |aD (ϱi) ϕD (ϱi) − bD (ϱi) υD (ϱi)|

1 + |aD (ϱi) ϕD (ϱi) − bD (ϱi) υD (ϱi)|
= 0

1 − |aD (ϱi) ϕD (ϱi) − bD (ϱi) υD (ϱi)| = 0

|aD (ϱi) ϕD (ϱi) − bD (ϱi) υD (ϱi)| = 1.

Since aD (ϱi) ϕD (ϱi) + bD (ϱi) υD (ϱi) ≤ 1 for all ϱ ∈

R, we obtain D is a crisp set.
E2) If ϕD(ϱ) = υD(ϱ) and aD(ϱ) = bD(ϱ) for all ϱ ∈ R,

then

ε (D) =
1
n

n∑
i=1

1 − |aD (ϱi) ϕD (ϱi) − bD (ϱi) υD (ϱi)|

1 + |aD (ϱi) ϕD (ϱi) − bD (ϱi) υD (ϱi)|

=
1
n

n∑
i=1

1
1

= 1.

E3)

ε (D)

=
1
n

n∑
i=1

1 − |aD (ϱi) ϕD (ϱi) − bD (ϱi) υD (ϱi)|

1 + |aD (ϱi) ϕD (ϱi) − bD (ϱi) υD (ϱi)|

=
1
n

n∑
i=1

1 − |bD (ϱi) υD (ϱi) − aD (ϱi) ϕD (ϱi)|

1 + |bD (ϱi) υD (ϱi) − aD (ϱi) ϕD (ϱi)|

=
1
n

n∑
i=1

1 − |aDc (ϱi) ϕDc (ϱi) − bDc (ϱi) υDc (ϱi)|

1 + |aDc (ϱi) ϕDc (ϱi) − bDc (ϱi) υDc (ϱi)|

= ε
(
Dc) .

E4) If D ⊆ E, for ϕE(ϱ) ≤ υE(ϱ) and aE(ϱ) ≤ bE(ϱ),
we get ϕD(ϱ) ≤ ϕE(ϱ) ≤ υE(ϱ) ≤ υD(ϱ), aD(ϱ) ≤

aE(ϱ) ≤ bE(ϱ) ≤ bD(ϱ). If E ⊆ D, for ϕE(ϱ) ≥ υE(ϱ)
and aE(ϱ) ≥ bE(ϱ), we get ϕD(ϱ) ≥ ϕE(ϱ) ≥ υE(ϱ) ≥

υD(ϱ), aD(ϱ) ≥ aE(ϱ) ≥ bE(ϱ) ≥ bD(ϱ). In both
cases, we have

ε (D) =
1 − |aD (ϱi) ϕD (ϱi) − bD (ϱi) υD (ϱi)|

1 + |aD (ϱi) ϕD (ϱi) − bD (ϱi) υD (ϱi)|

≤
1
n

n∑
i=1

1 − |aE (ϱi) ϕE (ϱi) − bE (ϱi) υE (ϱi)|

1 + |aE (ϱi) ϕE (ϱi) − bE (ϱi) υE (ϱi)|

= ε (E) .

Theorem 5: Suppose δ is a distancemeasure of LDFSs and
σ is a similarity measure of LDFSs, for D ∈ LDFS (R), then
ε (D) = σ (D, Dc) = 1 − δ (D, Dc) is the entropy measure
of LDFS D.

Proof: The proof is obvious.
For D ∈ LDFS (R), we have

εσ (D) = σ
(
D, Dc)

=
1
n

n∑
i=1

2 −

[
max (|ϕD (ϱi) − υD (ϱi)|)

+max (|aD (ϱi) − bD (ϱi)|)

]
2 +

[
max (|ϕD (ϱi) − υD (ϱi)|)

+max (|aD (ϱi) − bD (ϱi)|)

] ,

εδ (D) = σδ

(
D, Dc)

= 1 − δ
(
L,Lc

)
= 1

−
1
4n

n∑
i=1


(

|ϕD (ϱi) − υD (ϱi)|

+ |aD (ϱi) − bD (ϱi)|

)
+2max

(
|ϕD (ϱi) − υD (ϱi)| ,

|aD (ϱi) − bD (ϱi)|

)
 .

IV. THE PROPOSED ENTROPY-BASED VIKOR METHOD
FOR LDFSS
The VIKOR method is utilized for obtaining the best alter-
native based on measuring closeness to ideal solutions. The
significant advantage of using the method of VIKOR is
its ability to provide a compromise solution. The proposed
VIKOR method procedure is presented as follows:
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V1: Construct the decision matrix M =
[
mij
]
m×n with the

help of LDFN N = (⟨ϕR, υR⟩, ⟨aR, bR⟩) as:
V2: Establish the normalized decision matrix M∗

=[
m∗
ij

]
m×n as follows:

m∗
ij =

{
mij, for Benefit criteria (BC)(
mij
)c

, for Cost Criteria (CC)

where
(
mij
)c

= ⟨υRij , ϕRij⟩, ⟨bRij , aRij⟩ denotes the comple-
ment of mij.

V3: Calculate the weight of criteria by using entropy mea-
sure as follow:

ωj =
1 − εj∑n

j=1
(
1 − εj

)
where εj is entropy of jth criteria. Here, we use the following
entropy measure ε:

ε (D) =
1
n

n∑
i=1

1 − |aD (ϱi) ϕD (ϱi) − bD (ϱi) υD (ϱi)|

1 + |aD (ϱi) ϕD (ϱi) − bD (ϱi) υD (ϱi)|
.

V4: Determine the Linear Diophantine Fuzzy Positive
Ideal Solution (Pj) and Linear Diophantine Fuzzy Negative
Ideal Solution (Nj) as follow:

ϕ+

Nj
=

max
i

ϕNij , for BC

min
i

ϕNij , for CC

υ+

Nj
=

min
i

υNij , for BC

max
i

υNij , for CC

a+

Nj
=

max
i
aNij , for BC

min
i
aNij , for CC

b+

Nj
=

min
i
bNij , for BC

max
i
bNij , for CC

ϕ−

Nj
=

min
i

ϕNij , for BC

max
i

ϕNij , for CC

υ−

Nj
=

max
i

υNij , for BC

min
i

υNij , for CC

a−

Nj
=

min
i
aNij , for BC

max
i
aNij , for CC

b−

Nj
=

max
i
bNij , for BC

min
i
bNij , for CC

and then define Pj =

(
⟨ϕ+

Rj
, υ+

Rj
⟩, ⟨a+

Rj
, b+

Rj
⟩

)
, Nj =(

⟨ϕ−

Rj
, υ−

Rj
⟩, ⟨a−

Rj
, b−

Rj
⟩

)
, j = 1, 2, . . . , n.

V5: Compute the utility measure Ui and regret measure Ri
as follow:

Ui =

n∑
j=1

ωj
δ
(
Pj,mij

)
δ
(
Pj, Ij

) ,

Ri =

(
ωj

δ
(
Pj,mij

)
δ
(
Pj, Ij

) )
for i = 1, 2, . . . ,m. In this step, we use proposed distance (δ)
measure formula as follow.

δ (D, E) =
1
8n

n∑
i=1




|ϕD (ϱi) − ϕE (ϱi)|

+ |υD (ϱi) − υE(ϱi)|
+ |aD (ϱi) − aE (ϱi)|

+ |bD (ϱi) − bE (ϱi)|


+ 4max


|ϕD (ϱi) − ϕE (ϱi)| ,

|υD (ϱi) − υE(ϱi)| ,
|aD (ϱi) − aE (ϱi)| ,

|bD (ϱi) − bE (ϱi)|




.

V6: Determine the index value Qi as follow:

Qi = ρ

[
Ui − U+

U− − U+

]
+ (1 − ρ)

[
Ri − R+

R− − R+

]
for i = 1, 2, . . . ,m. Here U+

= min
i
Ui, U−

= max
i
Ui,

R+
= min

i
Ri and R−

= max
i
Ri. The coefficients ρ and 1−ρ

is identified as a weight for maximum group utility Ui and
individual regret Ri. In this study, ρ is assumed as 0.5.

V7: Establish the rank of the alternatives X1,X2, . . . ,Xm
according to Qi, Si, and Ri (i = 1, 2, . . . ,m) in decreasing
order.

V8: Determining the best or comparison solution.

(a) If Q
(
X (2)

)
− Q

(
X (1)

)
≥

1
m−1 where the alterna-

tive X (1) is first position and the alternative X (2)

is second position in the ranking list of Q, and m
represent the number of alternatives.

(b) The alternative X (1) should also put in order first
in the ranking lists U or/and R.

If one of the conditions (a) and (b) is not satisfied, then a
compromise solution set can be proposed.

(i) If the condition (b) is not satisfied,X (1),X (2) are
the compromise solutions.

(ii) If the condition (a) is not satisfied, X (1), X (2),
X (3),. . . , X (t) will be a set of compromise solu-
tions where X (t) is determined by the following
equation

Q
(
X (t)

)
− Q

(
X (1)

)
<

1
m− 1

for maximum t .

In the next Section, we give an application of the proposed
entropy based LDF-VIKOR with the help of an illustra-
tive example. We compared our results using all proposed
entropies and different distance measures.
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TABLE 3. Original decision matrix (M = [mij ]).

V. AN APPLICATION ON HOSPITAL-BASED PAC-CVD
To illustrate the applicability of the proposed LDF-VIKOR
method, we apply it to anMADMproblem. Iampan et al. [63]
generated the original dataset and accomplished LDF Ein-
stein aggregation operators on it. In this work, we conducted
a more inclusiveMADM application.We analyzed the results
obtained by using distinct entropies and distance measures to
demonstrate more suitable information measures.

V1: The accumulated views of decision makers are repre-
sented by LDF decision matrix M =

[
mij
]
5×6 given Table 3.

V2: The normalized decision matrix M∗
=

[
m∗
ij

]
5×6

is
determined and it is shown in Table 4.
V3: We denote by Cj(1 ≤ j ≤ 6) the criteria. The weights

of criteria are obtained by using entropy measure ε. The
entropy value of the criteria C3 is calculated as follows:

ε (C3) =
1
5



1 − |0.79 ∗ 0.56 − 0.15 ∗ 0.71|
1 + |0.79 ∗ 0.56 − 0.15 ∗ 0.71|

+
1 − |0.71 ∗ 0.16 − 0.31 ∗ 0.81|
1 + |0.71 ∗ 0.16 − 0.31 ∗ 0.81|

+
1 − |0.11 ∗ 0.79 − 0.21 ∗ 0.33|
1 + |0.11 ∗ 0.79 − 0.21 ∗ 0.33|

+
1 − |0.21 ∗ 0.52 − 0.56 ∗ 0.71|
1 + |0.21 ∗ 0.52 − 0.56 ∗ 0.71|

+
1 − |0.33 ∗ 0.32 − 0.56 ∗ 0.89|
1 + |0.33 ∗ 0.32 − 0.56 ∗ 0.89|


= 0.6418.

Similarly, the entropy values of other criteria are
ε (C1) = 0.4710, ε (C2) = 0.6110, ε (C4) = 0.6033,

ε (C5) = 0.5815 and ε (C6) = 0.7460. Then the weight of
C3 is computed as follows:

ω3 =
1 − 0.6418

6 −

(
0.4710 + 0.6110 + 0.6418

+0.6033 + 0.5815 + 0.7460

) = 0.1527.

The weights of criteria are ω1 = 0.2256, ω2 = 0.1658, ω3 =

0.1527, ω4 = 0.1691, ω5 = 0.1784, and ω6 = 0.1083.
V4: Positive and Negative Ideal Solutions are depicted in

Table 5.
Step 5-6: The utility measure Ui, regret measure Ri and

index value Qi are calculated based on proposed distance is
shown in Table 6.
Step 7: The ranking of all alternatives according to Ui,

Ri and Qi in increasing order based on proposed distance
is displayed in Table 7. According to the proposed LDF-
VIKORmethod,X5 andX1 alternatives with first and second
position in the ranking list of U , R and Q, respectively. Also
X1 − X5 = 0.4236 − 0.000 = 0.4236 ≥

1
4 = 0.25.

This implies that conditions (a) and (b) is satisfied. Hence
the alternative X5 is the best solution. The ranking of all
alternatives is X5 ≻ X1 ≻ X2 ≻ X4 ≻ X3 according to
the U and Q.

VI. COMPARISON ANALYSIS
To show the accuracy of the proposed approach, the rankings
of the alternatives were compared by applying two differ-
ent distance measures. For this analysis, the LDF-VIKOR

M =
[
mij
]
m×n =


(
⟨ϕR11 , υR11⟩, ⟨aR11 , bR11⟩

)
· · ·

(
⟨ϕR1n , υR1n⟩, ⟨aR1n , bR1n⟩

)
...

...
...(

⟨ϕRm1 , υRm1⟩, ⟨aRm1 , bRm1⟩
)

· · ·
(
⟨ϕRmn , υRmn⟩, ⟨aRmn , bRmn⟩

)


VOLUME 11, 2023 95537



A. Aydoğdu: Novel LDF Information Measures Based Decision Making Approach

TABLE 4. Normalized decision matrix (M∗ = [m∗

ij ]).

TABLE 5. Positive ideal solutions (Pj ) and negative ideal solutions (Nj ).

TABLE 6. The values of Ui , Ri and Qi based on proposed distance.

approach was performed with the Euclidean and Hamming
distance measures introduced by Mohammad et al. [31]. The
utility measure Ui, regret measure Ri and index value Qi
are calculated based on Euclidean and Hamming distance
measures and the rankings of all alternatives according to Ui,
Ri and Qi in increasing order are displayed in Table 8-9.

In accordance with the LDF-VIKOR method based on
Euclidean distance measure, X5 and X1 alternatives with
first and second position in the ranking list of U , R and Q,
respectively. Also X1 − X5 = 0.3646 − 0.000 = 0.3646 ≥

1
4 = 0.25. This implies that conditions (a) and (b) is satisfied.
Thus, the alternative X5 is the best solution. The ranking of
all alternatives is X5 ≻ X1 ≻ X2 ≻ X3 ≻ X4 regarding to
the Q.

According to the LDF-VIKORmethod based on Hamming
distance measure, the condition (b) is not satisfied. Hence
the alternative X5 and X1 are the compromise solution. The
ranking of all alternatives is X5 ≻ X1 ≻ X2 ≻ X3 ≻ X4
according to the Q.
As seen, the best solution is obtained by using the proposed

approach and the LDF-VIKOR method based on Euclidean
distance measure. The LDF-VIKOR method based on Ham-
ming distance measure determined a compromise solution.
Also, the first three of alternatives are in the same order in
the rankings of all alternatives according toQ, is displayed in
Figure 1. In proposed method, only the alternatives X4 and
X5 has different order from LDF-VIKOR method based on
Euclidean and Hamming distance measures.

The same problem is solved with the LDF extension of
TOPSIS based on Euclidean andHamming distancemeasures
was proposed by Gül and Aydoğdu [32]. All the values are
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TABLE 7. The ranking of alternatives based on proposed distance.

TABLE 8. The values of Ui , Ri and Qi and ranking of alternatives based on Euclidean distance.

TABLE 9. The values of Ui , Ri and Qi and ranking of alternatives based on hamming distance.

FIGURE 1. The rankings of all alternatives according to Q.

summarized in Table 10. It seen that the alternative X5 is
the best solution according to the LDF-TOPSIS and LDF-
VIKOR except the LDF-VIKOR method based on Hamming
distance measure. The compromise solution set acquired
via the Hamming distance is included the alternative X5.
Besides the ranking of alternatives according to index values
remained the same except only one.

VII. SENSITIVITY ANALYSIS
To illustrate the accuracy, stability, and validity of our pro-
posedmodel, we applied a sensitivity analysis. In the sensitiv-
ity analysis, the weights of the criteria were re-determined by
using different entropies. Then, the effect on the final ranking
was analyzed. In Table 11, we gave the weights of criteria by
using the entropies ε, εσ , εδ , εGA1 and εGA2 .

TABLE 10. Comparison rankings of all alternatives based on proposed
distance (δ), euclidean distance (δE

M ) and hamming distance (δH
M ).

TABLE 11. The weights of the criteria according to different entropies.

The change in the weights of criteria is shown in Figure 2.
The ranking of all alternatives according to Ui, Ri and

Qi in increasing order based on proposed, Euclidean and
Hamming distance measures with entropy εσ is displayed
in Table 12-14. According to the LDF-VIKOR methods,
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TABLE 12. The values of Ui , Ri and Qi based on proposed distance with entropy measure εσ .

TABLE 13. The values of Ui , Ri and Qi based on euclidean distance with entropy measure εσ .

TABLE 14. The values of Ui , Ri and Qi based on hamming distance with entropy measure εσ .

TABLE 15. The values of Ui , Ri and Qi based on proposed distance with entropy measure εδ .

TABLE 16. The values of Ui , Ri and Qi based on euclidean distance with entropy measure εδ .

the condition (a) is not satisfied. Consequently, the alter-
natives (X5,X1) are the compromise solutions according
to the LDF-VIKOR method based on proposed distance
measure. Similarly, it seen that the alternatives (X5,X1,X2)

are the compromise solutions according to the LDF-VIKOR
methods based on Euclidean and Hamming distance
measures.

Considering the values of Ui, Ri and Qi that are shown
in Table 15-17, the condition (a) is not satisfied according
to the LDF-VIKOR method based on proposed, Euclidean
and Hamming distance measures with entropy εδ . Hence, the
alternatives (X5,X1) are the compromise solutions according
to the LDF-VIKORmethod based on proposed distance mea-
sure and the alternatives (X5,X1,X2) are the compromise

solutions according to the LDF-VIKOR methods based on
Euclidean and Hamming distance measures.

The values of Ui, Ri and Qi, which are obtained the
LDF-VIKOR method based on proposed, Euclidean and
Hamming distance measures with entropy εGA1 , are shown
in Table 18-20. It seen that the condition (a) is not sat-
isfied so the alternatives (X5,X1) are the compromise
solution according to the LDF-VIKOR methods based on
proposed and Euclidean distance measures, and the alterna-
tives (X5,X1,X2) are the compromise solutions according
to the LDF-VIKOR method based on Hamming distance
measure.

Analyzing the values of Ui, Ri and Qi that are shown
in Table 21-23, the condition (a) is not satisfied. Thus, the
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TABLE 17. The values of Ui , Ri and Qi based on hamming distance with entropy measure εδ .

TABLE 18. The values of Ui , Ri and Qi based on proposed distance with entropy measure εGA1
.

TABLE 19. The values of Ui , Ri and Qi based on euclidean distance with entropy measure εGA1
.

TABLE 20. The values of Ui , Ri and Qi based on hamming distance with entropy measure εGA1
.

TABLE 21. The values of Ui , Ri and Qi based on proposed distance with entropy measure εGA2
.

TABLE 22. The values of Ui , Ri and Qi based on euclidean distance with entropy measure εGA2
.

compromise solution obtained by LDF-VIKOR method
based on proposed and Euclidean distance measures with
entropy measure εGA2 is the alternatives (X5,X1), and

the alternatives (X5,X1,X2) are the compromise solutions
according to the LDF-VIKOR method based on Hamming
distance measure.
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TABLE 23. The values of Ui , Ri and Qi based on hamming distance with entropy measure εGA2
.

FIGURE 2. The criteria weights.

VIII. CONCLUSION
In this paper, the VIKOR method is extended for LDF
sets. Firstly, we gave information measure for LDFS are
introduced and studied some properties of these measures.
In addition, the applicability of proposedmeasures inMCDM
problems has been demonstrated. The LDF-VIKOR method
is successfully applied to a healthcare decision-making prob-
lem. Firstly, the solutions of the LDF-VIKOR method based
on the proposed distance measure were compared with the
results obtained by using the Euclidean and Hamming dis-
tance measures. In extended VIKOR method with the pro-
posed entropy measure ε, the best solution was obtained via
the proposed distance measure δ and the Euclidean distance
measure δEM . When using the Hamming distance measure δHM ,
a compromise solution was determined. Then, to show the
validity of the extended VIKOR method, the solutions were
compared with results of the LDF-TOPSIS method, which is
the only extension of MCDMmethods into the LDF environ-
ment. To demonstrate the effect of different entropy measures
on the solutions of the LDF-VIKOR method, a sensitivity
analysis was given. It has been observed that the entropy
measures used in determining weights of the criteria have
a significant effect on obtaining the best and compromise
solutions in the LDF-VIKORmethod. Therefore, the effect of
the preferred entropy measure on the decision makers’ deter-
mining of the solution closest to the ideal is undeniable in the
objective weighting method. The model will provide mathe-
matical model to solve for many decision-making problems

including AI, robotics, machine learning, medical analysis,
engineering, economics, etc. by finding more effective and
accurate results in the LDF sets according to the decision
makers’ preference. As a future work, the presented measures
can be adapted to different MCDM models such as TODIM,
CODAS, MULTIMOORA, MABAC methods.

Although the LDF-VIKOR some unique characteristics,
the method used in this paper need some advancements.
The proposed model can be extended to multi-criteria group
decision-making models in which the DMs’ weights are
determined by the objective weighting method. Models can
be developed in which experts can assign membership and
non-membership degrees and reference parameters in linguis-
tic terms instead of specifying crisp numbers in the range
of [0, 1].
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