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ABSTRACT Unlike traditional phased-array only generating angle-dependent beampattern, the relatively
new frequency diverse array (FDA) produces an angle-range-dependent transmit beampattern that can
provide many new applications. However, although phased-array physical schemes and characteristics have
received much recognition, there still are many open questions about FDA physical schemes and array
design. In this paper, we propose an element locator polynomial rooting approach to design super-resolution
FDA, where the polynomial is constructed according to the pre-specified FDA levels to enable its roots
representing the element locations of the desired FDA. Furthermore, we systematically studies the designed
FDA manifold curves for detection and estimation bounds in direction finding. All theoretical results are
verified by numerical simulations, which show that FDA outperforms phased-array in terms of detection
and resolution thresholds.

INDEX TERMS Frequency diverse array (FDA), FDA design, array manifold, array design, manifold curve,
super-resolution, differential geometry.

I. INTRODUCTION
Array manifold is useful in various array signal processing
algorithms such as target localization, spectral estimation
and array design [1]. Array manifold regards the locus of
all array manifold vectors as mathematical objects embed-
ded in multidimensional complex space, which has deep
and profound geometric meanings in array applications
[2], [3], [4], [5], [6], [7], [8]. Nevertheless, existing publica-
tions about array manifold are focused on phased-array [9],
[10], [11], [12], [13], [14]. Although phased-array has various
important applications, it has only angle-dependent focusing
capability and cannot effectively control range-dependent
steering. To address this disadvantage, frequency diverse
array (FDA) has received much attention in mitigating range
ambiguity [15], range-dependent clutter suppression [16] and
range-dependent direction modulation [17].
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FDA employs a frequency offset across the array elements
to enable its steering direction to change as a function of the
space, time and frequency [18], [19], which offers an angle-
range-dependent and time-variant transmit beampattern.
FDA can be regarded as a combination of spatial diversity
and frequency diversity. Nevertheless, FDA is rather dif-
ferent from classic multiple-input multiple-output (MIMO),
orthogonal frequency diversion multiplexing (OFDM) and
frequency scanning techniques. The comparisons between
FDA and other similar array techniques such as phased-
array, MIMO, frequency scanning and time-modulated arrays
can be found inn the overview articles [18]. FDA mul-
tidimensional degrees-of-freedom (DOFs) can be used to
resolve range ambiguity and clutter suppression. It is shown
that in multipath propagation scenarios, FDA can form a
quasi-flat interference pattern for the desired range-angle
positions [20], which can be utilized to reduce signal fluc-
tuations. Owing to FDA prospective applications [21], [22],
[23], [24], [25], [26], more and more researchers have paid
attention to the FDA topic.
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However, an important issue that has been overlooked is
the investigations on FDA manifold characteristics, which
plays a fundamental role in determining the ultimate per-
formance of FDA system. Although phased-array manifold
has received much recognition, few studies about FDA man-
ifold can be found. Phased-array manifold curve and surface
have been studied in [10], [11], [12], [13], and [14]. But,
phased-array manifold only involves the array geometry and
steering direction, while FDA extends phased-array mani-
fold to a new manifold that incorporates extra parameters
including time, range and frequency offset. We investigated
the FDA manifold geometric properties via manifold curve
analysis [27] and the FDA manifold geometries for joint
angle and range estimation [28]. Nevertheless, there still is a
fundamental question: Since the geometry resolution can be
higher than the classic array aperture resolution (we call the
resolution in manifold geometry as super-resolution), how to
deign super-resolution FDA? and what are the performance
bound difference between FDA and phased-array? To address
this problem, this paper exploits the polynomial rooting
approach for phased-array [29] to design super-resolution
FDA based on the concept of ‘‘FDA element locator polyno-
mial (FDA-ELP)’’ and systematically analyzes the designed
FDA detection and estimation performance bounds though
the FDA manifold curvatures and coordinate vectors.

Our contributions can be summarized as follows:
1) We propose a polynomial rooting approach to design

super-resolution FDA by jointly utilizing FDA-ELP
and FDA curvatures. In particular, the design speci-
fications in terms of performance criteria (detection
threshold, resolution threshold and Cramér-Rao lower
bound (CRLB)) to design fully symmetric FDA are
given. Note that in this paper we proposes the approach
to optimally design the FDA parameters, which is dis-
tinct from our previous paper [28] discussing mainly
joint range and angle estimation.

2) The designed FDA detection and resolution thresholds
under the FDA manifold curve framework are derived,
which validates that FDA outperforms phased-array in
detection and resolution capabilities.

The rest of the paper is organized as follows. Section II
formulates the FDA manifold curve framework.
Sections III proposes the polynomial rooting approach to
design super-resolution FDA by jointly utilizing FDA-ELP
and FDA curvatures. Next, Section IV derives the designed
FDA detection and resolution thresholds under the FDA
manifold curve framework. Finally, numerical results are
provided in Section V and concluding remarks are given in
Section VI.

II. FDA MANIFOLD CURVE FRAMEWORK
FDA modulates the same baseband waveform to slightly
different center frequency for each transmitting element.
In doing so, the mth element’s radiation frequency cen-
ter is fm = f + m1f , m = 0, 1, . . . ,M − 1, where
f and 1f denote the carrier frequency and frequency offset,

respectively. Assume a far-field point target located at the
angle-range pair (θ , r). The corresponding FDA manifold
steering vector is given by [27]

a (θ, r) = aθ (θ) ⊙ ar (r) = e
jπ
(
d+

1f
f p⊙d

)
cos(θ)

⊙ e−j
2π1f
c pr

(1)

where c is the speed of light. d = [d0, d1, . . . , dN−1]T

and p = [p0, p1, . . . , pN−1]T are respectively the element
position (in half-wavelength) vector and the frequency offset
coefficient vector, with N being the number of elements,
di being the ith element position and pi being the ith frequency
offset coefficient. ⊙ and T denote the Hadamard product and
the transpose operator, respectively.

FDA manifold steering vector traces out a surface in
the CN , but it is more complex than a curve because FDA
manifold steering vector has two free variables, i.e. (θ , r).
Through the families of parameter curves, an alternative
representation can be used to simplify the analysis of FDA
manifold. Hence, FDA manifold can be treated as families of
curves that provide a way to analyze the whole FDAmanifold
surface. A particularly important family is the FDA θ-curve,
which is defined as

9 = {a (θ, r0) , θ ∈ [0, π)} (2)

with r0 being the target range. For notational simplicity,
we use a (θ) instead of a (θ, r0). Since arc length is a natural
parameter to represent the actual physical length in CN ,
parametrization in terms of the arc length is more suitable.
Thus, the arc length lFDA (θ) of FDA manifold curve can be
defined as

lFDA (θ)=

∫ θ

0
∥ȧ (ς)∥dς =π

∥∥∥∥d +
1f
f

p ⊙ d
∥∥∥∥ (1 − cos (θ))

(3)

where ȧ (ς) denotes the derivative of a (ς) with respect to ς .
For notational convenience, we use lFDA to replace lFDA (θ),
which is the most basic feature of FDA manifold curve.
Furthermore, it is an invariant parameter. This means the
tangent vector to FDA manifold curve (expressed in terms
of lFDA) has always a unity norm.
Different from traditional phased-array, the arc length of

FDA manifold curve is a function of the angle θ , the element
position vector d , and the frequency offset coefficient vec-
tor p. Furthermore, its rate-of-change can be expressed as

l̇FDA (θ) = ∥ȧ (θ)∥ = π

∥∥∥∥d +
1f
f
p⊙ d

∥∥∥∥ sin (θ) (4)

Obviously, the rate-of-change provides a useful local property
about FDA manifold curve. Applying the chain rule, we get∥∥a′ (lFDA)

∥∥ =

∥∥∥∥da (lFDA)
dlFDA

∥∥∥∥ =

∥∥∥∥ ȧ (θ)

l̇FDA (θ)

∥∥∥∥ = 1 (5)

where a′ (lFDA) denotes the derivative of a (lFDA)with respect
to the arc length lFDA. In particular, the total arc length of this
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curve (the other important parameter) is

lmθ=2π

∥∥∥∥d +
1f
f

p ⊙ d
∥∥∥∥ (6)

With the use of (3) and (6), the angle θ can be expressed as

θ = cos−1(1 −
2lFDA
lmθ

) (7)

Then, a (θ) can be rewritten as

a (lFDA) =e
jπ
(
d+

1f
f p⊙d

)(
1− 2lFDA

lmθ

)
⊙ ejγ (8)

where γ=[γ0, γ1, . . . , γN−1]T with γi = 2πpi
(
−

1f
c r0

)
,

i = 0, 1, . . . ,N − 1. We then have

a (lFDA) = ϑ ⊙ e
jπ
(
d+

1f
f p⊙d

)(
1− 2lFDA

lmθ

)
(9)

where ϑ = ejγ . The derivative of a (lFDA) with respect to the
arc length lFDA is

u1 (lFDA) = −j81 ⊙ a (lFDA) − j82 ⊙ a (lFDA) (10)

where81=
2πd
lmθ

,82=
2π 1f

f p⊙d
lmθ

and lmθ=2π
∥∥∥d +

1f
f p ⊙ d

∥∥∥.
Furthermore, the derivative of u1 (lFDA)with respect to the arc
length lFDAθ is

u′

1 (lFDA) = −81 ⊙ 81 ⊙ a (lFDA) − 281 ⊙ 82 ⊙ a (lFDA)

− 82 ⊙ 82 ⊙ a (lFDA) (11)

Since the first curvature of FDA manifold curve at lFDAθ is
just k1−FDA =

∥∥u′

1 (lFDA)
∥∥:

k1−FDA =

∥∥∥82
1 + 28182 + 82

2

∥∥∥ (12)

where 82
1 = 81 ⊙ 81, 8182 = 81 ⊙ 82, 82

2 =

82 ⊙ 82, 81=
2πd
lmθ

and 82=
2π 1f

f p⊙d
lmθ

. Thus, the basic prop-
erties of FDA manifold curve can be evaluated by the arc
length (3), the rate-of-change of arc length (4) and the first
curvature (12).

As the curvatures of a manifold curve play an important
role in differential geometry, we derive the coordinate vectors
of FDA manifold curve and its curvatures. For an N -element
FDA, its manifold vector can be described by 2N real num-
bers. Moreover, for the FDA having symmetrical elements
with respect to its centroid, a curve with q − 1 nonzero
curvatures is embedded in the q-dimensional subspace that
is within 2N -dimensional space.

Analogous to [12], we can derive the following recursive
equations (derived in Appendix A) to obtain the coordinate
vectors and curvatures of the FDA manifold curve.

ui (lFDA) =

(j)i

⌊(
i−1
2

)
+1
⌋∑

n=1
(−1)n−1+ivi−1,n8

i−2n+2
⊙ a (lFDA)

k1−FDAk2−FDA · · · k(i−1)−FDA

ki (lFDA) =

∥∥∥∥∥∥∥
⌊(

i
2

)
+1
⌋∑

n=1
(−1)n−1+ivi,n8i−2n+3

∥∥∥∥∥∥∥
k1−FDAk2−FDA · · · k(i−1)−FDA

(13)

where

8 =
d̄∥∥d̄∥∥ (14a)

d̄ = d+
1f
f
p⊙ d (14b)∑(

d̄
)

= 0 (14c)

Note that, k1−FDA = ∥u1(lFDA)∥ =
∥∥82

∥∥, k(i−1)−FDA ̸=

0 for i ≥ 2, 8i
= 8 ⊙ · · · ⊙ 8︸ ︷︷ ︸

i

and ⌊·⌋ denotes the round

down operator. The coefficients vi,n are derived as

vi,n =

i−2n+3∑
m1=1

i−2n+5∑
m2=2+m1

· · ·

i−1∑
mn−1=2+mn−2

(
k2m1−FDA

k2m2−FDA
· · · k2mn−1−FDA

,

)
(15)

where i, n > 2, vi,1 = 1 for i ≥ 1 and vi,2 =

i−1∑
m=1

k2m−FDA for

i > 1. That is,

vi,n = vi−1,n+k2(i−1)−FDAvi−2,n−1 i > 2, n > 1 (16)

with the initial conditions: vi,1 = 1 for i ≥ 1 and v2,2 =

k21−FDA. The coefficients vi,n are functions of the FDA mani-
fold curvatures.

III. SUPER-RESOLUTION FDA DESIGN
Assume that an element at the FDA centroid counts as a
symmetric element, recalling (13), we have∥∥∥∥∥∥

( q2 )+1∑
n=1

(−1)n−1+qvq,n8q−2n+3

∥∥∥∥∥∥ = 0 (17)

where vq,n = vq−1,n+k2(q−1)−FDAvq−2,n−1, q > 2, n > 1
with the initial conditions: vq,1 = 1 for q ≥ 1 and
v2,2 = k21−FDA. The function in (17) can be expressed as a
(q+ 1)-order polynomial:

f (φ) =

( q2 )+1∑
n=1

(−1)n−1vq,nφq−2n+3

= φq+1
− vq,2φq−1

+ vq,3φq−3
− · · · + vq,( q2 )+1φ

(18)

which is characterized by the scalar φ instead of the vector8.
Obviously, φ = 0 is always its roots. It implies that an
element at the FDA centroid does affect FDA ambiguity
properties, but has no affects on the FDAmanifold length and
curvatures. Furthermore, (18) can be rewritten as

f (φ) = φq − vq,2φq−2
+ vq,3φq−4

− · · · + vq,( q2 )+1 (19)

This expression is referred to as the FDA-ELP.
For an N -element FDA with the frequency offset coef-

ficients p, given the total arc length lmθ and all the curva-
tures

{
k1−FDA, k2−FDA, · · · , k(q−1)−FDA

}
, the locations of the
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FDA elements (and its mirror image) are then given by
(derived in Appendix B)

da/m=
lmθ

2π
xa/m ⃝

(
1+

1f
f
p
)

(20)

where xa and xm are two subsets of the roots x of the following
polynomial:

f (φ) = φq − v2φq−2
+ v3φq−4

− · · · + v( q2 )+1 (21)

where vn = vq,n, vq,n = vq−1,n+k2(q−1)−FDAvq−2,n−1, q > 2,
n > 1 with vq,1 = 1 for q ≥ 1, v2,2 = k21−FDA and

xa = −xm (22a)

xa ∪ xm = x (22b)

∥xa∥ = ∥xm∥ = 1 (22c)∑
(xa) =

∑
(xm) =0. (22d)

Note that ⃝ denotes the Hadamard (element by element)
division.

Comparing with traditional phased-array, FDA design
problem is more complicated. Since the roots of the
FDA-ELP can be partitioned into two overlapping subsets
that constitute a partially symmetric FDA, we can design the
FDA by using the specified curvatures and total arc length.
Given the first curvature k1−FDA and the total arc length lmθ

of FDA manifold curve, a symmetric FDA can be designed
as

d=
lmθ

2π
x ⃝

(
1+

1f
f
p
)

(23)

where x is the subset of the roots to the following polynomial:

f (φ) = φ5
− v2φ3

+ v3φ (24)

with v2 = −
1
2 and v3 =

1
8

(
1 − 2k21−FDA

)
.

IV. FDA DETECTION AND RESOLUTION THRESHOLDS
Similar to traditional super-resolution direction finding
phased-array, we evaluate the following FDA performance
metrics: Detection threshold, resolution threshold and CRLB
for angle estimation.

A. DETECTION THRESHOLD
For two targets with the angle-range pairs (θ1, r1) and
(θ2, r2), respectively, their powers are denoted respectively by
P1 and P2. Assume the number of snapshots L is sufficiently
large with additive noise power σ 2. Analogous to [12], FDA
detection threshold can be derived as

1θFDA−det=
1

√
2l̇FDA

(
⌢

θ
) ( 1

√
SNR1 · L

+
1

√
SNR2 · L

)
(25)

where
⌢

θ =
θ1+θ2

2 , SNR1 =
P1
σ 2 and SNR2 =

P2
σ 2 .

FIGURE 1. Rate-of-change of array manifold curve as a function of the
angle θ .

FIGURE 2. Comparisons of detection threshold versus angle θ .

We have proved in [28] that, for an N -element arbi-
trary linear array with the frequency offset coefficient
pi ≥ 0, i = 0, 1, . . . ,N − 1 and at least one of pi > 0,
we have

l̇FDA (θ) > l̇phased−array (θ) (26a)

k1−FDA l̇FDA (θ) > k1−phased−array l̇phased−array (θ) (26b)

where l̇phased−array (θ) and k1−phased−array denote the rate-of-
change of phased-array manifold curve and the first curvature
of phased-arraymanifold curve, respectively. Thus, it is easily
proved that FDA has smaller detection threshold than phased-
array, i.e.,

1θFDA−det < 1θphased−array−det (27)

This implies that FDA outperforms phased-array in detection
threshold.
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FIGURE 3. Comparisons of detection threshold versus: (a) SNR and (b) number of snapshots.

B. RESOLUTION THRESHOLD
Similarly, Analogous to [12], the corresponding FDA resolu-
tion threshold can be derived as

1θFDA−res =
1

l̇FDA
(

⌢

θ
) ·

4√2

4

√(
k̂21−FDA −

1
N

)
·

(
1

4
√
SNR1 · L

+
1

4
√
SNR2 · L

)
(28)

where k̂1−FDA = k1−FDA sin (χ (lFDA)) and χ (lFDA) =

̸ [u1 (lFDA) , u2 (lFDA)]. To analyze FDA resolution thresh-
old, we rewrite (28) as

1θFDA−res =

4√2

4

√
l̇4
FDA

(
⌢

θ
) (

k̂21−FDA −
1
N

)
·

(
1

4
√
SNR1 · L

+
1

4
√
SNR2 · L

)
(29)

Note that, for a large enough N , we have k̂21−FDA −
1
N ≈

k̂21−FDA. Then, (29) can be simplified to

1θFDA−res =

4√2

4

√
l̇2
FDA

(
⌢

θ
) (

l̇FDA
(

⌢

θ
)
k1−FDA

)2
·

(
1

4
√
SNR1 · L

+
1

4
√
SNR2 · L

)
(30)

Due to the fact (26), the following relationship can be
obtained:

1θFDA−res < 1θphased−array−res (31)

This indicates that, for an N -element arbitrary FDA with
pi ≥ 0, i = 0, 1, . . . ,N − 1 and at least one of
pi > 0, the FDA offers smaller resolution threshold than
phased-array.

C. CRLB
In single and two-target scenarios, the corresponding FDA
CRLB can be derived as [27]:

CRLB1[θ1]FDA =
1

2SNR1 · L · l̇2FDA (θ1)

CRLB2[θ1]FDA =
1

SNR1 × L

·
2

l̇2FDA (θ1) (1l)2
(
k̂21−FDA −

1
N

) (32)

where 1l = l̇FDA
(

⌢

θ
)

1θ , θ̂ = θ1 +
1θ
2 and 1θ =

θ1−θ2. It shows that FDA outperforms phased-array in angle
estimation.

Finally, the performance of FDA and phased array with
respect to the detection, resolution and CRLB is summarized
as Table 1.

V. SIMULATION RESULTS
To evaluate the performance between FDA and phased-array,
we provide numerical examples to examine the theoretical
results.

A. FDA DESIGN EXAMPLE
Assuming L = 50 snapshots and SNR = 2 dB, we design
a five-element FDA with the following parameters: 1) For
a single-target located at θ1 = 30◦, the FDA provides
CRLB1 = 0.0012◦. 2) For two target scenario, another
uncorrelated equipower target is located at θ1 = 34◦, the FDA
exhibits CRLB2 = 0.0015◦.
Recalling (13), the total FDA arc length and the

first curvature are calculated as lmθ = 49.1508 and
k1−FDA = 0.5200, respectively. Accordingly, the FDA-ELP
is f (φ) = φ5

− 0.5φ3
+ 0.0573φ. Its roots are 8 =

[−0.5670,−0.42262, 0, 0.4226, 0.5670]T . Suppose p =

[2, 1, 0, 1, 2]T and ρ = 0.005. The element positions of the
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TABLE 1. Performance comparison between FDA and phased-array under manifold curve framework.

FIGURE 4. Comparisons of detection threshold versus angle θ .

required FDA (measured in half-wavelength) are then given
by d = [−4.3915, −3.2895, 0, 3.2895, 4.3915]T .
It is important to note that, under the same conditions,

a standard five-element FDA has the following CRLB: 1) In
single-target scenario, we haveCRLB1 = 0.0019◦. 2) In two-
target scenario, then CRLB2 = 0.0030◦.

B. PERFORMANCE COMPARISON BETWEEN FDA AND
PHASED-ARRAY
In order to gain insight into the performance between FDA
and phased-array, we compare their the rate-of-change of arc
length, detection threshold, resolution threshold and CRLB.
For fair comparisons, we use the same reference frequency,
i.e.f = 1GHz. Note that ρ =

1f
f is defined for notational

convenience. Note that, when the parameter ρ =
1f
f equals

to zero, it is just the phased-array.
Firstly, we analyze the rate-of-change of the arc length of

FDA manifold curve. Assign the element position (measured
in half-wavelength) vector d = [1, . . . , 8]T and the fre-
quency offset coefficient vector p = [0, 1, . . . , 7]T . Figure 1
shows that the arc length of FDA manifold curve has larger

FIGURE 5. Comparisons of resolution threshold versus: (a) SNR and
(b) number of snapshots.

rate-of-change than that of a phased-array, which is consistent
with theoretical analysis. It also indicates that its rate-of-
change increases with ρ.
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FIGURE 6. Comparisons of CRLB for angle estimation versus angle θ in
single-target scenario.

Secondly, the detection threshold is analyzed. We consider
an 11-element linear array with the following parameters:
SNR1 = 8 dB, SNR2 = 2 dB, the number of snapshots
L = 50, d = [1, 2, 4, 6, 7, 9, 10, 12, 17, 20, 25]T and
p = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]T . Figure 2 depicts the
detection threshold with respect to θ . It is seen that FDA
outperforms phased-array in detection threshold. With the
increase of ρ, this difference between FDA and phased-array
becomes more obvious. Additionally, we test the detection
threshold 1θFDA−res versus SNR and the number of snap-
shots. Assume SNR1 = SNR2 = SNR with the same
other remaining parameters. Note that, in this simulation, the
number of snapshots is 50 for Figure 3 (a) and SNR is 5 dB
for Figure 3(b). Figure 3 shows that the detection threshold
will become smaller with the increase of SNR or number of
snapshots. Both Figure 2 and Figure 3 indicate the detection
performance can be improved by increasing the angle θ .
Next, we simulate the resolution threshold with the

following parameters: SNR1 = 8 dB, SNR2 = 2 dB,
L = 50, d = [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 14]T and p =

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]T . As shown in Figure 4, similar
to the detection threshold, FDA produces better resolution
threshold than phased-array. It verifies our theoretical results.
Furthermore, assume SNR1 = SNR2 = SNR with the same
other remaining parameters. Let the number of snapshots
L = 50 for Figure 5(a) and SNR = 5 dB for Figure 5(b).
Figure 5 indicates that the resolution threshold can be
improved by increasing the SNR or the number of snap-
shots. These results validate that both FDA and phased-array
provide finer resolution threshold for a larger θ . More
importantly, FDA achieves better resolution threshold than
phased-array.

Furthermore, the CRLB for angle estimation is simulated
and analyzed. For the single-target scenario, we consider
a 5-element standard FDA with element position vector

FIGURE 7. Comparisons of CRLB for angle estimation versus: (a) angle θ

and (b) angle difference in two-target scenario.

d = [0, 1, 2, 4]T and frequency offset coefficient vector
p = [0, 1, 2, 3, 4]T . Let the number of snapshots be L =

50 and SNR = 8 dB. In this situation, Figure 6 shows
that, for angle estimation, FDA provides lower CRLB than
phased-array. The performance difference between FDA and
phased-array increases with ρ.

Finally, we consider FDA CRLB in two-target scenario.
Assume that an array with the element position vector
d = [0, 1, 2, 3, 4]T and the frequency offset coefficient
vector p = [0, 1, 2, 3, 4]T , SNR1 = SNR2 = SNR = 8 dB,
the number of snapshots L = 50. Note that, Figure 7 (a)
1θ = 5◦ and Figure 7 (b) the angle of the first target
θ1 = 45◦. Figure 7 (a) implies that FDA still outperforms
phased-array in DOA estimation. Figure 7(b) gives the CRLB
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for angle estimation with respect to the angle difference 1θ .
It implies that FDA CRLB will decrease with the increase
of 1θ . Moreover, as shown in Figure 7, FDA CRLB will
decrease with the increase of ρ. That is, FDA provides better
performance in CRLB as the increasing of ρ in two-target
scenario. In this situation, the CRLB gap between FDA and
phased-array also increases. Thus, its advantage is more
obvious.

In conclusion, from the perspective of performance, FDA
provides better performance bounds including detection
threshold, resolution threshold and CRLB for DOA estima-
tion than conventional phased-array.

VI. CONCLUSION
As an emerging array technique, FDA has received much
attention in radar and communication societies, but FDA
manifold curve has not been systematically investigated.
In this paper, the curvatures and coordinate vectors of
FDA manifold curve were studied systematically. Further-
more, their recursive equations were given, which lead to
the FDA-ELP concept. Furthermore, the polynomial root-
ing approach to super-resolution FDA design was proposed,
which is constructed according to the pre-specified FDA per-
formance levels to enable its roots representing the element
locations of the desired FDA. Note that the polynomial root-
ing approach is not limited for the FDAwith super-resolution,
it also is suitable for other arrays. The FDA performance
bounds were also analyzed, which indicates that FDA has
better performance than phased-array in detection, resolution
and estimation performances. This paper provides a theo-
retical framework to analyze FDA performance and gives a
method to design super-resolution FDA.

APPENDIX A
Considering the reformulated manifold steering vector
expressed in (8), the first coordinate vector of FDA manifold
curve can be derived as

u1 (lFDA) = a′ (lFDA)

=−jπ
(
d+

1f
f0
p⊙d

)
sin (θ)⊙da (lFDA)·

(
l̇FDA

)−1

=

−jπ
(
d+

1f
f0
p⊙ d

)
sin (θ) ⊙ a (lFDA)

π

∥∥∥d +
1f
f p⊙ d

∥∥∥ sin (θ)

= − j8 ⊙ a (lFDA) (33)

where 8=
d̄

∥d̄∥
with d̄=d+

1f
f p⊙ d . Its first curvature is

k1−FDA =
∥∥u′

1 (lFDA)
∥∥ =

∥∥∥82
∥∥∥ (34)

where 8i
= 8 ⊙ · · · ⊙ 8︸ ︷︷ ︸

i

.

Then, the second coordinate vector is

u2 (lFDA) =
u′
1 (lFDA)
k1−FDA

=

(
−j8⊙

(
−jπ

(
d+

1f
f p⊙d

))
sin (θ)⊙a (lFDA)

)
π

∥∥∥d +
1f
f p⊙ d

∥∥∥ sin (θ) k1−FDA

=
−82

⊙ a (lFDA)
k1−FDA

(35)

We then have

k2−FDA =
∥∥u′

2 (lFDA) + k1−FDAu1 (lFDA)
∥∥

=

(
−

82

k1−FDA
⊙ ȧ (lFDA)

)
·
(
l̇FDA

)−1

+ k1−FDAu1 (lFDA)

=

∥∥∥∥j 83

k1−FDA
⊙ a (lFDA) +k1−FDA (−j8 ⊙ a (lFDA))

∥∥∥∥
=

1
k1−FDA

∥∥∥83
− k21−FDA8

∥∥∥ (36)

In the same manner, the third coordinate vector of FDA
manifold curve is derived as

u3 (lFDA) =
u′
2 (lFDA) + k1−FDAu1 (lFDA)

k2−FDA

=j

(
83

− k21−FDA8
)

k1−FDAk2−FDA
⊙ a (lFDA) (37)

The third curvature can be expressed as

k3−FDA =
∥∥u′

3 (lFDA) + k2−FDAu2 (lFDA)
∥∥

=

∥∥ϕ4
−
(
k21−FDA + k22−FDA

)
ϕ2
∥∥

k1−FDAk2−FDA
(38)

Similarly, we get

u4 (lFDA) =
u′
3 (lFDA) + k2−FDAu2 (lFDA)

k3−FDA

=

(
84

−
(
k21−FDA + k22−FDA

)
82
)

k1−FDAk2−FDAk3−FDA
⊙ a (lFDA)

(39)

k4−FDA =
∥∥u′

4 (lFDA) + k3−FDAu3 (lFDA)
∥∥

=

∥∥∥∥∥∥85
−

(
k21−FDA + k22−FDA
+k23−FDA

)
83

+(k1−FDAk3−FDA)28

∥∥∥∥∥∥
k1−FDAk2−FDAk3−FDA

(40)

Then, we assume that

ui−1 (lFDA) =
(−j)i−1

k1−FDAk2−FDA · · · k(i−2)−FDA

·

⌊(
i−2
2

)
+1
⌋∑

n=1

(−1)n−1vi−2,n8
i−2n+1

⊙ a (lFDA)

(41)
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and

ki−1 =

∥∥∥∥∥∥∥
⌊(

i−1
2

)
+1
⌋∑

n=1
(−1)n−1vi−1,n8

i−2n+2

∥∥∥∥∥∥∥
k1−FDAk2−FDA · · · k(i−2)−FDA

(42)

where vi−1,n are given by (15).
To obtain the ith curvature, we estimate the term

u′
i−1 (lFDA):

u′
i−1 (lFDA)

=
(−j)i

k1−FDAk2−FDA · · · k(i−2)−FDA

·

⌊(
i−2
2

)
+1
⌋∑

n=1

(−1)n−1vi−2,n8
i−2n+2

⊙ a (lFDA) (43)

We then have

ui (lFDA) =
u′
i−1 (lFDA) + k(i−2)−FDAui−2 (lFDA)

k(i−1)−FDA

=
1

k1−FDAk2−FDA · · · k(i−1)−FDA

· (−j)i

⌊(
i−1
2

)
+1
⌋∑

n=1

(−1)n−1vi−1,n8
i−2n+2

⊙a (lFDA)

(44)

ki =
∥∥u′

i (lFDA) + k(i−1)−FDAui−1 (lFDA)
∥∥

=
1

k1−FDAk2−FDA · · · k(i−1)−FDA

·

∥∥∥∥∥∥∥∥
⌊(

i
2

)
+1
⌋∑

n=1

(−1)n−1+ivi,n8i−2n+3

∥∥∥∥∥∥∥∥ (45)

The (13) can then be derived now.

APPENDIX B
Assume that xa and xm are two subsets of the roots xm of the
following polynomial [29]:

f (φ) = φq − v2φq−2
+ v3φq−4

− · · · + v( q2 )+1 (46)

Note that its coefficients are functions of the curvatures of
FDAmanifold curve. Because it only has the even powers, its
roots always occur in pairs of opposite signs. For fully asym-
metric and partially symmetric FDA, its roots represent two
FDA that are mirror images of each other but whose manifold
curvatures are identical. Thus, xa and xm must satisfy

xa= − xm. (47)

Note that, for fully symmetric FDA, since the FDA and
its mirror image are identical, the roots form a single array.
Moreover, obviously, xa and xm must satisfy

xa ∪ xm=x. (48)

Recalling (14a), it implies that xa and xm must be normal.
That is

∥xa∥ = ∥xm∥ = 1. (49)

Besides, (14c) indicates∑
(xa) =

∑
(xm) =0. (50)

From (6), (14a) and (14b), we have

d̄a/m = xa/m

∥∥∥∥d+
1f
f
p⊙ d

∥∥∥∥=
lm
2π

xa/m. (51)

Therefore, the locations of the elements of the FDA are
then given by

da/m=
lm
2π

xa/m ⃝

(
1+

1f
f
p
)

. (52)
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