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ABSTRACT Medical image retrieval is essential to modern medical treatment because it enables doctors
to diagnose and treat a variety of illnesses. In this study, we present an innovative technique for selecting
the methodology of medical images by combining textural and visual information. Knowing the imaging
process behind an idea, such as a chest X-ray, skin dermatology, or breast histopathology image, may be
extremely helpful to healthcare professionals since it can aid in image investigation and provide important
information about the imaging technique used. We use deep learning-based feature engineering to do this,
using both the textural and visual components of healthcare images. We extract detailed visual information
from the images using a predefined Convolutional Neural Network (CNN). The Global-Local Pyramid
Pattern (GLPP), Zernike moments, and Haralick are also used to physically separate the pertinent parts from
the images’ other visual and factual aspects. These essential characteristics, such as image modality and
imaging technique-specific characteristics, provide additional information about the technology. We employ
a feature fusionmethod that incorporates the depictions obtained from the twomodalities in order to combine
the textural and visual elements. This fusion process, which improves the discrimination capacity of the
feature vectors, makes accurate modality classification possible. We conducted trials on a sizable dataset
consisting of various medical images to assess the effectiveness of our proposed method. The results indicate
that, in comparison to conventional methods, our technique outperforms modality retrieval, with a precision
of 95.89 and a recall of 96.31. The accuracy and robustness of the classification task are greatly creased by
the combination of textural and visual data. Through the integration of textural and visual information, our
work offers a unique method for recovering the modality of medical images. This method has the potential
to greatly improve the speed and accuracy of medical image processing and diagnosis by helping experts
rapidly and accurately identify the imaging technology being utilized.

INDEX TERMS Medical image retrieval, textural information, visual information, modality retrieval, deep
learning, feature engineering, convolutional neural network.

I. INTRODUCTION
Due to the exponential growth of medical images stored in
hospital databases, healthcare professionals are struggling
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to keep up with managing them effectively. Medical image
retrieval techniques must be successful and efficient if
they are to improve patient care, research, and develop-
ment [1], [2]. To comprehend the distinctive qualities of
particular patients that set them apart from the general patient
population, healthcare practitioners look for relevant insights
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from accumulated prior instances as well as literary data. The
diagnosis, response to therapy, and prognosis of the disease
are all tightly correlated with its radiographic phenotype. As a
result, Content-based Medical Image Retrieval (CBMIR) has
received the majority of attention in the development of
medical modality retrieval. Based on the content of medical
images, it enables the evaluation of image similarity [3].
The development of techniques to measure image simi-

larity by capturing the unstructured features of clinical data
has been the focus of the CBMIR challenge, which has
previously been thought of as a computer science issue. In a
query-by-example approach [4] CBMIR systems frequently
use an example image as the query image in a query-by-
example technique and extract a matching query vector that
encapsulates the needed information. The reference images
with the query vector’s most comparable reference vectors
are found in a database during the retrieval process. Amethod
for calculating similarity based on visual characteristics,
including aspects like color, texture, form, and spatial
interactions between regions of interest, has evolved [5], [6].
CBMIR has recently integrated deep learning [7], [8] to
efficiently fragment semantic characteristics from sample
images and generate query vectors [9]. This method reduces
the semantic gap between high-level semantic ideas and
low-level visual aspects in medical images, as stated in [10].
The goals of healthcare professionals when seeking infor-

mation are complex and go beyond the limitations of simply
using image similarity calculations. To support their clinical
judgments, healthcare practitioners frequently require access
to a variety of case types. This includes instances that
have had comparable clinical results in the same area in
the past, cases that have had similar findings in various
locations, and even cases that have had different findings
in the same location. Furthermore, it might be difficult to
start the search without a ready sample image when looking
for specific clinical findings from online medical image
archives, which have been more and more common in the
latest years [11]. In the realm of clinical medicine, uncommon
instances, including rare illnesses and clinical findings,
possess substantial reference value [12], [13], yet healthcare
professionals may face difficulties retrieving relevant images
from a database due to the scarcity of similar example images.
These challenges highlight the need for more advanced
information-seeking approaches in healthcare.

Even though image retrieval methodologies have been
thoroughly investigated for normal image retrieval jobs,
applying the retrieval methodology in medical images,
particularly radiology images, still poses a significant chal-
lenge [14], [15]. One reason for this difficulty is that medical
images are complex to examine compared to normal images
due to various factors, including intricate imaging parame-
ters, connections between various illnesses, as well as minute
differences between images with various diagnoses [6], [16].
Despite these challenges, researchers have made efforts to
evolve medical image retrieval methodlogies in present years.

Much of the literature focuses on retrieval based on features
extracted through handcrafted or shallow learning approaches
from various medical image modalities [17], [18], [19].
For retrieval systems based on shallow learning-based
characteristics, large-scale datasets present difficulties [6].
Systems based on deep learning may be functional to
successfully handle the needs of large-scale medical image
retrieval. Deep learning has, however, only been partially
used for content-based image retrieval, mostly because there
aren’t many large radiology datasets available [20]. Existing
deep learning-based methods for retrieving images from
radiology databases frequently use models that have already
been trained on data from other image databases or use
models with fewer layers that have been trained on smaller
datasets [21], [22], [23], [24], [25]

Medical images are distinct from normal images, so pre-
trained models may not serve as an ideal feature extractor in
the medical field. The prevalence of deep learning is largely
due to the accessibility of large training datasets. By training
domain-specific approaches on a well-tagged dataset of huge
images from a single modality, it is possible to fully use
the promise of deep learning approaches for medical image
retrieval applications. By using this strategy, the model is
able to grasp the nuances and distinctive traits of the medical
domain, producing retrieval results that are more precise and
effective.

The research focuses on usability and searchability issues
while discussing the drawbacks of query-by-example-based
traditional CBMIR systems. Users who need to locate
information without examples or who want to hone their
search terms depending on search results have a usability
constraint. The searchability restriction has to do with how
challenging it is to find unusual images that are scattered
across the database and distant from other images. The
research suggests the creation of CBMIR approaches that
can automatically classify and retrieve images in order to
overcome these constraints and improve clinical practice
and medical Decision Support Systems (DSS). Traditional
CBMIR methods rely on labor-intensive, ineffective human
annotation and expert tagging. The research instead high-
lights the requirement for automatic image classification and
retrieval methods that make use of computer vision models.
With the use of distance measurements like Euclidean
distance, these models calculate query images by analyzing
image qualities like color, texture, and structure in big
datasets. They do this by recognizing image features in
a high-dimensional feature space. However, the article
emphasizes that despite their importance, present techniques
frequently ignore deep learning models and linked visual
characteristics between classes [26].

The research proposed using a query-by-patch approach,
which has shown promising results in computer vision,
to address the usability and searchability difficulties. Instead
of depending exclusively on example images, this method
enables users to convey shape, location, and item attributes
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through a patch of the image. Medical image retrieval has
proven to be difficult when it comes to patching exact
anatomical information, which has prevented the technique
from being used widely. Therefore, the research promotes
the creation of a successful CBMIR system that does not
rely on intricate anatomical patches or reference images
in order to get over this constraint. In order to increase
the strength and usefulness of medical image retrieval in
diverse clinical contexts, the aim is to develop a system
that can strongly recover pertinent medical images without
the need for complex anatomical annotations. The primary
contributions of this study are summarized as:

• Development of a novel technique that combines textu-
ral and visual information to determine the modality of
medical images.

• Propose a deep learning architecture to extract in-depth
visual information from medical images, including
pretrained CNN models.

• Employing manual feature extraction methods like
Zernike moments, Haralick, and Global-Local Pyramid
Pattern (GLPP) to the images to extract key visual and
statistical characteristics.

• Propose a fusion approach to blending the textural and
visual components and improve the feature vectors’
ability to discriminate.

• Our approach has the potential to be applied in both
research and clinical settings, enabling the processing of
data and offering second opinions that closely align with
the intuitive expertise of medical professionals.

II. BACKGROUND RELATED WORK
Apart from direct diagnosis and lesion detection, the CBMIR
system is another frequently utilized approach for examining
medical images. CBMIR operates by utilizing the image
itself to conduct a search on large datasets, rather than
using keywords or database structure for queries. CBMIR
has been extensively studied for its probable in clinical
systems, including content-based approach to pathology
images, wheremedical practitioners or radiologists can locate
reference specimen slides from an actual database to make a
diagnosis, and digital mammography reading for radiologists,
where the mammogram retrieval system can provide visual
aids to aid in a simpler diagnosis [27], [28].
Our hypothesis is that a CBMIR system has the potential

to be highly beneficial in managing the pandemic situation
in healthcare by enabling almost real-time retrieval of
medical images for both doctor/radiologist examination from
vast and multi-site datasets. The CBMIR system works
by supplying images with labels that match the query
image from a database that are both aesthetically and
semantically meaningful. The matched image’s label or
diagnosis can, therefore, serve as a sign or hint for the query
sample image. Image embedding, which entails converting
images from their original domain to a more realistic,
lower-dimensional manifold, is the essential component of

a CBMIR system. Effective image representation through
embedding can improve retrieval accuracy and speed. There
have been several image embedding methods designed
specifically for biomedical images, such as kernel approaches
like hashing [29], [30], custom image filters such filter
banks [31] and SIFT [32].
The progress in deep learning has also sparked the

evolution of CBMIR architecture based on deep neural
networks [33], including convolutional neural networks
(CNN) for classification [34] and deep autoencoder [35],
which have exhibited better achievement than other methods.
Present deep learning-based methods, which explicitly train
image representations (i.e., embedding) using the correlation
underlying image characteristics and tags, might not be the
best strategy for image retrieval jobs, though.

According to [36], pair-wise contrastive error might be
more effective than cross-entropy cost, which is commonly
used in present deep learning architectures, in leveraging
label information. Consequently, CBMIR systems based
on metric learning for examining histological images have
been developed in recent years [37], [38]. Metric learning
approaches, both traditional (non-deep learning) and deep
learning-based, have also been discovered for analyzing
CT [39] and magnetic resonance imaging (MRI) images [40].
However, to the best of our knowledge, there are no studies
on metric learning for chest X-ray images in a clinical setting.

Retrieval with Clustering-guided Contrastive Learning
(RetCCL), a system that enhances the performance of
content-based Whole-Slide Image (WSI) retrieval for med-
ical diagnosis, investigation, and teaching, is introduced
by Wang et al. [41]. The framework can precisely evalu-
ate image similarity and identify comparable patches or
sub-regions in each image since it includes self-supervised
feature learning, global ranking and aggregation algorithms.
Using more than 22,000 slides, the scientists compared the
framework’s performance against other cutting-edge tech-
niques for retrieving anatomical location and cancer subtype
information. With the help of their feature representation,
they also demonstrated enhanced patch retrieval.

Reddy et al. [42] describe Content-Based Image Retrieval
(CBIR), which uses image data attributes rather than labels to
scan a library of images for images that are visually similar
to a user query. For the purpose of extracting high-level
and deep properties from images, the usage of deep learning
methodologies in particular Densenet-121-is described. The
authors provide a technique that compares training images to
the sample using a Bidirectional LSTM (BiLSTM) classifier
in order to get relevant images. Using f-measure, recall,
and accuracy measures, the method is compared to other
image retrieval methods and performs better on the publicly
accessible Corel dataset.

Singh et al. [43] explores Federated Learning (FL), which
enables organizations to create a machine learning algorithm
without sharing data, in the context of healthcare. FL entails
disclosing model inputs while maintaining data privacy.
The limitations and promise of FL are examined by the
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writers. They offer an overview of existing FL techniques
and recommend that conventional approaches to large-scale
machine learning need to be reconsidered. Future trends for
research communities are outlined in the article.

Gao et al. [44] proposed a methodology for the extraction
of Chinese architectural history using images. At Jiangmen
City, Guangdong Province, China, the project emphasizes
using deep learning to extract images of the architectural
history of the Chinese diaspora. To categorize and recover
images based on resemblance, a Convolutional Neural Net-
work Attention Retrieval Framework (CNNAR Framework)
is devised and used in two steps. Using the heritage image
datasets, the suggested technique obtains a classification
accuracy of 98.3% and a mean Average Precision (mAP)
of 76.6%. The algorithm’s findings demonstrate a strong
resemblance to the search images. Using the open datasets
Paris500K and Corel5K, the suggested system obtains
accuracy levels of 71.8% and 72.5%, respectively. The study
finds that the CNNAR Framework may be used to analyze
various topics’ datasets in an efficient manner and gives
information for further research on the cultural implications
of diaspora Chinese homeland life.

The difficulty of using cutting-edge Convolutional Neural
Networks (CNNs) on cellular gadgets that have limited
resources is covered by Zhang et al. [45]. Offline Mobile
Content-Based Image Retrieval (OMCBIR), a unique offline
retrieval framework built on a minimal neural network
model, is suggested by the authors as a solution to this
problem. At the bottleneck phase, they provide pointwise
group convolution and channel shuffle, and they suggest an
incredibly light network using attention-based tiny networks
(ALNet). For every dataset in OMCBIR, ALNet outperforms
MobileNetV2 while decreasing model parameters by more
than 62% and model size by more than 63%. To show
the effectiveness of the suggested OMCBIR architecture,
the authors undertake comprehensive experiments on five
open-source datasets.

Hashimoto et al. [46] suggests a case-based Similar
Image Retrieval (SIR) approach for histopathology images
of malignant lymphoma marked with hematoxylin and
eosin (H&E). In order to concentrate on tumor-specific
areas and use immunohistochemistry (IHC) labeling features
to establish acceptable similarity across diverse malignant
lymphoma instances, the technique uses attention-based
multiple-instance learning and contrastive distance metric
learning. In a test with 249 individuals who had malignant
lymphoma, the suggested technique demonstrated higher
assessment methods than the standard case-based SIR meth-
ods. The similarity measure was also subjectively assessed by
pathologists using IHC labeling trends, and they determined
that it was suitable for illustrating the resemblance of H&E
labeled tumor images for malignant lymphoma.

Mahmoud et al. [47] used different pre-trained CNN
models for the retrieval of COVID-19 images using different
image modalities. The high frequency of chest conditions

including pneumonia and COVID-19 is discussed in the
study, as well as the possibility of chest X-ray and
CT-scan images for diagnosing these conditions. In order to
create a functional feature descriptor, the study suggests a
content-based image retrieval technique based on pre-trained
CNN models like ResNet-50, AlexNet, and GoogleNet.
While comparing images, the system compares them using
similarity indices like City Block and Cosine. With accuracy
rates of up to 99% for COVID-19 identification, ResNet-
50 and GoogleNet are shown to outperform the best when
the suggested method is tested on chest X-ray and CT scan
datasets. Using a k-nearest neighbor classifier during voting
increases accuracy by 1% to 4%.

A CBIR system for medical images was developed by
Agrawal et al. [48], with a focus on the early identification
and categorization of lung illnesses using lung X-ray images.
Deep neural models and transfer learning are used to build
the system, and they are trained using datasets of typical
COVID-19 Chest X-ray images. When compared to previous
approaches, experimental analysis on the standard dataset
revealed a considerable enhancement in accuracy and Area
Under the Precision-Recall Curve (AUPRC) values.

In order to extract and categorize biomedical images from
sizable databases, the study proposes a CBMIR application
that uses deep learning. Three procedures are used in
the proposed Multimodal Biomedical Image Retrieval and
Classification (M-BMIRC) technique: feature extraction,
resemblance analysis, and classification. For extracting
features, the model combines a variety of deep and manually
produced features. Hausdorff Distance is used to determine
how similar two features are, and Probabilistic Neural
Network (PNN) is used to classify data. The suggested model
performs better, according to experimental experiments on
two benchmark medical datasets, in terms of a variety of
metrics, including Average Precision Rate (APR), Average
Recall Rate (ARR), F1-score, accuracy, and Computation
Time (CT) [49].

The usage of Content-Based Image Retrieval (CBIR)
methods, which search through a big dataset for related
images using visual metadata, is covered by Pradhan et al.
[50]. Education, military, agriculture, remote sensing, biolog-
ical research, clinical care, andmedical imaging are just a few
of the industries where CBIR methods are used. This study
discusses standard retrieval methods and their shortcomings
before focusing on the utilization of machine learning and
deep learning methodologies in medical image retrieval. The
contemporary retrieval methods make recommendations for
future research trajectories.

The relevance of CBIR is discussed by Raja and
Karthikeyan [51], with an emphasis on how it might be
used in agriculture. It introduces a brand-new model called
RSA-DLCBIR that measures similarity using Minkowski
distance and deep learning techniques for feature extraction.
The model performs better than other methods when
evaluated against a benchmark dataset.
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In order to handle vast amounts of data and improve
clinical decision-making, Haq et al. [52] suggest a machine-
assistedmethod for the automated retrieval of medical images
with comparable content. To extract related images, the
system combines a network community identificationmethod
with a deep learning-based feature-generating methodology.
It beat cutting-edge medical image retrieval algorithms with
an accuracy of 85%25 in retrieving identical images with
illness labels when tested on two sizable chest X-ray datasets.
It is asserted that the suggested approach is the first deep
learning-based image retrieval system on a sizable chest
X-ray database.

For extensive medical image extraction, Xu et al. [53]
suggest a unique hashing technique termed Multi-manifold
Deep Discriminative Cross-modal Hashing (MDDCH). The
low multi-manifold structure retention throughout various
modalities and the low discriminability of the hash code
are the two key problems with the cross-modal hashing
techniques now in use. By combining several sub-manifolds
created from heterogeneous data to retain association
between instances and by suggesting discriminative items to
prepare each hash code encoded by hash functions unique,
MDDCH solves these difficulties. For three benchmark
datasets, the suggested method surpasses current state-of-
the-art hashing techniques and is well-received by medical
experts.

In this research, Liu et al. [54] present a Deep Self-taught
Hashing (DSTH) algorithm that trains hash functions
employing discriminative deep models and creates pseudo-
labels for datasets lacking tags. Both supervised and unsu-
pervised situations are supported by DSTH, which also
lowers the time complexity without sacrificing accuracy. The
scientists conducted comprehensive tests to evaluate DSTH
with state-of-the-art approaches in six publically accessible
datasets using two distinct deep learning architectures to learn
the hash functions. They found that DSTH outperformed the
others methodologies in all databases.

A novel unsupervised deep learning-based hashing
technique for massive image retrieving is proposed by
Deng et al. [55]. An encoder network, a generator network,
and a discriminative network make up the generative
adversarial framework used in the proposed technique. The
model builds a semantic similarity matrix, which directs the
hash code training steps, using both feature and neighbor
comparisons. The suggested technique may train the encoder
network to learn effective hash codes by adversarially training
these networks. The empirical findings on three benchmarks
demonstrate that the suggested approach beats a number of
cutting-edge unsupervised hashing techniques and operates
on par with well-known supervised hashing techniques.

Feng et al. [56] proposed a concept for the extraction
of encoded images from distant servers is referred to in
the article as encrypted image retrieval (EIR). Currently
used methods include end-to-end deep learning models or
manual feature extraction. These methods do, however, have

shortcomings. The authors suggest a not-end-to-end EIR
technique dubbed DHAN that encrypts DCT coefficients and
uses deep attention networks to recover images in order to
overcome these problems. Compared to previous techniques,
investigations on two datasets confirm that DHAN offers
good image security and enhances retrieval performance.

The Li et al. [57] covers the information loss and lack of
sorting knowledge caused by binary hash coding’s limitations
in image retrieval. The authors provide an ensemble deep
neural network for retrieving images that combines rating
data through weighted voting and learns small hash codes.
On three benchmark datasets, the approach is evaluated, and
it produces comparable results.

Fang et al. [58] suggest a study of a deep metric
learning approach with mirror attention to improving the
distinguishing characteristics of tiny and scattered lesions in
fundus images. By offering analogous situations, this frame-
work can aid ophthalmologists in making evidence-based
medical decisions. The suggested strategy uses a fine triplet
loss to enhance the ranking efficiency of successful items
while encoding the lesions into image characteristics. Using
the biggest fundus dataset for the diagnosis of Diabetic
Retinopathy (DR), the suggested technique outperforms
competitors in terms of precision, particularly when it
comes to enhancing the indexing quality of DR grades
that contain microaneurysms and hemorrhages. To provide
highly discriminative image descriptors, the suggested mirror
attention may be used for backbones purchased off-the-shelf
and learned successfully from beginning to end for additional
medical images.

In order to help in diagnosis, Jiji and Raj [59] suggest
a content-based image retrieval approach for skin lesion
images. The suggested architecture retrieves images and the
name of the illness classification from an image database
by extracting aspects from the image, such as form, texture,
and color. The suggested technique retrieves extensive
referencing materials for diagnostic purposes using a feature
vector and a classification and regression tree. The studies
produced high specificity of 97.25% and sensitivity of
91.24%, demonstrating the strong impact of the suggested
design on a computer-aided diagnosis of skin lesions.

Sucharitha et al. [60] proposed a unique methodology to
ameliorate medical image retrieval systems by addressing
the semantic gap using a consolidation of texture and
shape features constructed from Relative Directional Edge
Binary Patterns (RDEBP) and complex Zernike moments.
The DBSCAN algorithm is used to cluster the features,
and images are acquired from the coterminous cluster
using a correlation metric. Experiments on two databases
depict that the proposed technique surpasses other state-
of-the-art methods with a 2-5% increase in accuracy. They
suggest a technique for retrieving biological images utilizing
global and local properties of an image and a short feature
vector. A novel approach called Local Directional Edge
Binary Pattern (LDEBP), which analyzes inputs from every
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conceivable direction for each pixel, is used to extract
the local characteristics. Lower-order Zernike moments are
utilized to extract both the global and form aspects. In bench-
mark datasets like Emphysema-CT and OASIS-MRI, the
integration of shape and texture descriptors outperformed
state-of-the-art methods in biomedical image retrieval.

Patil et al. [61] discovered a unique architecture for
effective image retrieval from repositories utilizing shape
characteristics as CBIR. The methodology uses Support
Vector Machine (SVM) as a classifier and region-based
descriptors like Hu’s seven moments and Zernike moments
for feature extraction. The effectiveness of several distance
metrics, including Euclidean, Chebyshev, Cityblock, Can-
berra and Standardized Euclidean (Seuclidean), is assessed
in this article on a medical database with six classes,
each of which contains 100 images. The research confirms
that the suggested approach successfully retrieves images
from the database, and the outcomes are evaluated against
those of alternative approaches using accuracy and recall
criteria.

Pandian and Balasubramanian [62] discovered a texture
fusion strategy for T1 and T2 weighted MRI scans. The
method involves extracting texture and shape features
from brain tumor images, selecting features using Genetic
Algorithm and Particle Swarm Optimization (PSO), and
classifying brain tumors using Deep Neural Network and
Extreme Learning Machine (ELM). The method is efficient,
and effective, and reduces retrieval time while improving
retrieval accuracy. The study shows the optimal classification
accuracy findings utilizing DiCom images.

Baji et al. [63] discuss the challenge of classifying brain
tumors in MRI scans and propose a technique to improve
accuracy. The authors use k-means clustering to isolate the
images into clusters and then analyze the texture features of
each cluster. The bilateral symmetry measure is then used to
calculate which cluster comprises the tumor, and connected
component labeling is used to confirm the target cluster. The
proposed technique is tested on 30 MRI images and attains
an accuracy of 87%.

Sut et al. [64] proposed a novel concept to accu-
rately detect diseases of the adrenal glands, and a novel
machine-learning technique has been created. Preprocessing,
scaling, feature extraction utilizing a Center-Symmetric
Local Binary Pattern (CS-LBP), and feature selection using
Neighborhood Component Analysis (NCA) are all part
of the suggested technique. To create the best-performing
model, the chosen characteristics were categorized using the
K-Nearest Neighbor (kNN), Support Vector Machine (SVM)
and Neural Network (NN) classifiers. Using kNN, SVM,
and NN classifiers, the suggested technique has accuracy
rates of 99.87%, 99.21%, and 98.81%, respectively. The new
technique may be utilized to test for many kinds of adrenal
gland diseases using CT scans.

Ma et al. [65] enhanced the complementarity of multi-level
heterogeneous features through the proposal of an adaptive
multi-feature fusion approach for image retrieval. Initial

correlation scores of the search image to the objective
dataset are computed after numerous low-level and high-level
semantic characteristics based on deep learning are retrieved.
The suggested technique uses statistically elaborated regions
derived from cross-entropy normalization to allocate the
merging weights of each element in an adaptable manner.
The suggested technique outperforms existing methods,
according to tests on three publicly available benchmark
datasets, increasing the metrics mAP and N-S.

III. DATA AND MATERIALS
This section describes the datasets that were used in the study.
The repository is composed of three primary medical image
modalities: chest x-ray from NIH, Skin lesion from ISIC and
breast tumor from BreakHis.

A. DATASET
For the purposes of this investigation, chest X-ray
datasets were used. The National Institutes of Health
(NIHChestX-ray8)’s dataset, which includes approximately
112,000 frontal-view X-ray images taken between 1992 and
2015 from more than 30,000 individuals, was the first dataset
to be utilized. Each X-ray image in the collection may contain
more than one positive illness diagnosis since it is multi-
label. There are 16,630 male and 14,175 female patients in
the collection, which comprises 67,310 PA view images and
44,810 AP view images [66].
Around 9,000 histopathological images of breast can-

cer tissue samples, separated into benign and malignant
categories, are included in the BreakHis collection. The
images were obtained through a microscope at different
magnification settings and developed by Professor Gloria
Bueno and her colleagues at the University of Castilla-La
Mancha in Spain [67].
Around 33,000 skin lesion images gathered from diverse

sources make up the ISIC 2020 skin lesion dataset, which is a
publicly accessible resource. It contains binary categorization
labels of ‘‘benign’’ or ‘‘malignant,’’ as well as details
particular to the lesion. The dataset was produced in order
to brace the creation of computer-aided diagnosis algorithms
for melanoma and other kinds of skin cancer [68].

B. TEXTURAL FEATURE EXTRACTION
Haralick features are a set of texture features that are
used for feature extraction in medical image retrieval.
These features are based on the gray-level co-occurrence
matrix (GLCM), which is a matrix that captures the joint
probability distribution of pairs of pixels with a specific
spatial relationship in the image.

The Haralick features are calculated from the GLCM using
the following equations:

• First, the GLCM is calculated by enumeration of the
number of times each pair of pixel intensity values
occurs with a specific spatial relationship. The GLCM
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is defined by the equation:

P(i, j, d, θ)

=

N∑
x=1

M∑
y=1

I (x, y)I (x + d cos(θ ), y+ d sin(θ)) (1)

where P(i,j,d,θ) is the element of the GLCM at (i,j) for a
spatial relationship defined by a distance d and an angle
θ , I(x,y) is the pixel intensity at location (x,y), and N and
M are the dimensions of the image.

• Haralick features calculation: These features are calcu-
lated from the GLCM using various statistical measures.
Some of the most commonly used Haralick features
include:

• Angular Second Moment (ASM): analyze the homo-
geneity of the image

ASM =

N∑
i=1

M∑
j=1

P(i, j)2 (2)

• Contrast: finds the local variations in the image

Contrast =

N∑
i=1

M∑
j=1

(i− j)2P(i, j) (3)

• Correlation: To quantify the linear dependency between
the gray levels of neighboring pixels

Correlation =

∑N
i=1

∑M
j=1(i− µ)(j− µ)P(i, j)

σ 2 (4)

where σ and µ are the standard deviation and mean of
the GLCM.

• Energy (E): measures the total amount of gray-level
co-occurrences in the image

E =

√√√√√ N∑
i=1

M∑
j=1

P(i, j)2 (5)

• Entropy (En): measures the randomness or complexity
of the image

En = −

N∑
i=1

M∑
j=1

P(i, j) log2(P(i, j)) (6)

We used this Haralick features eqs. (1) to (6) for various
medical image modality retrieval and compared using
similarity metrics such as Euclidean distance or cosine
similarity.

Zernike moments (ZMs) are a set of orthogonal complex
polynomial functions that are used for shape representation
and feature extraction in image processing. In the context
of medical image retrieval, ZMs are utilized to extract
shape-based characteristics from medical images such as
X-rays, MRI scans, and CT scans.

The Zernike polynomials are defined over a unit circle or
disk and have the form:

Znm(r, θ) = Rnm(r) exp(imθ) (7)

where n and m are non-negative integers with n≥m, r is the
radial distance from the center of the disk, θ is the polar angle,
and i is the imaginary unit.

The radial part of the Zernike polynomial, Rnm(r), is given
by:

Rnm(r) =

n−m
2∑

k=0

(−1)k
(n− k)!

k!
( n+m

2 − k
)
!
( n−m

2 − k
)
!
rn−2k (8)

where ! denotes the factorial function. To calculate the ZM
coefficients of an image, the image is first converted to
grayscale and normalized. A circular or elliptical Region
of Interest (ROI) is then defined around the object of
interest. The ZMs are calculated by projecting the normalized
gray-level image onto a set of orthogonal Zernike polynomi-
als that describe the shape of the ROI.

The ZM coefficients are given by:

Anm =
n+ 1

π

∫∫
ROI

Znm(r, θ)I (r, θ)r, dr, dθ (9)

where I(r,θ ) is the normalized intensity function of the ROI.
The ROI’s shape information is represented by the com-

puted ZMcoefficients, which are characteristics for retrieving
medical images. These qualities may be compared to features
gathered from other medical images using similarity metrics
like Euclidean distance or cosine similarity. Zernikemoments
equations employ orthogonal complex polynomial functions
to describe an object’s shape in a image. We employ eqs. (7)
to (9) to retrieve and analyse shape-based data from medical
photos.

The Global-Local Pyramid Pattern is a brand-new method
for feature extraction in medical image analysis that was
suggested by [69]. Building a multi-scale representation of
a image is necessary, with each scale capturing a different
degree of information, ranging from the overall organisation
of the image to regional patterns and textures. Applying a
sequence of spiral filters to the original image in escalating
sizes is the core concept. The filters capture bigger and wider
receptive fields at each iteration, enabling the network to learn
properties that are more and more global in scope. But as
the filters become bigger, their sensitivity to minute details
decreases, making it challenging to record regional patterns
and textures.

The Global-Local Pyramid Pattern additionally includes a
series of ‘‘local’’ convolutions that are executed in parallel
with the global spiral at each size to get around this restriction.
Smaller receptive fields of these local spirals enable them
to pick up more local patterns and fine-grained features.
The Global-Local Pyramid Pattern is able to capture a
comprehensive collection of characteristics that we employed
for extracting various modalities from the medical image
repository by combining these global and local features at
various sizes.

The eq. (10) is a mathematical representation of the
Global-Local Pyramid Pattern.

Gi = fg(I , θ (i)g ) + fl(I , θ
(i)
l ) (10)
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where Gi is the feature map at the i-th scale, fg is the global
convolution operation, fl is the local convolution operation,
I is the source image, θ

(i)
g and θ

(i)
l are the sets of learnable

parameters for the global and local convolutions, respectively.
The global convolution operation fg(I , θ

(i)
g ) applies a set

of filters with a large receptive field to the input image I,
which captures global features such as the overall structure
of the image. The finding of this calculation is a feature
map that captures these global features. The local convolution
operation fl(I , θ

(i)
l ) applies a set of filters with a smaller

receptive field to the input image I, which captures local
patterns and textures in the image. The outcome of this
computation is also a feature map that captures these local
features. The final feature map Gi at the i-th scale is obtained
by adding together the feature maps from the global and local
convolutions.

C. VISUAL FEATURE EXTRACTION
Convolutional Neural Networks (CNN) have demonstrated
substantial success in visual feature extraction tasks for
medical image retrieval. CNN is a deep learning architecture
commonly used for building visual features from images. The
CNN design, which comprises a number of convolutional
layers succeeding by pooling layers, enables it to understand
intricate information in a hierarchical fashion. Next, depend-
ing on their resemblance, these learned characteristics may
be utilized to categorize images or fetch images.

Large datasets of healthcare images and their related
labels, such as the NIH Chest X-ray, BreakHis for breast
tumors and the ISIC skin lesion dataset, are used to train
CNNs for medical image retrieval. In order to categorize
or retrieve medical images, the CNN must learn to extract
pertinent aspects from the images, such as texture, geometry,
and edges. Using a distance measure, such as Euclidean
distance or cosine similarity, the CNN may be trained to
extract characteristics from medical images that can then be
compared to other images.

The mathematical equation for the convolutional layer of a
CNN is represented as eq. (11):

Hi,j,k = σ (
M∑
m=1

N∑
n=1

L∑
l=1

Wm,n,l,k Ii+m−1,j+n−1,l + bk ) (11)

where Hi,j,k is the outcome of the k th feature map at position
(i, j), Wm,n,l,k is the weight parameter of the k th feature map
for the mth row, nth column, and l th channel of the input
image I , bk is the bias term for the k th feature map, σ is the
activation function, and M , N , L are the dimensions of the
filter. The finding of the convolutional layer is downsampled
using a CNN’s pooling layer. The widely used pooling
procedure is known as max-pooling, which has the following
mathematical representation as eq. (12).

Hi,j,k =

p∑
m=1

q∑
n=1

H(i−1)p+m,(j−1)q+n,k (12)

where Hi,j,k is the outcome of the k th feature map at position
(i, j) after max-pooling, p and q are the dimensions of the
pooling filter. The fully connected layer of a CNN is used
to produce the final output of the model. Mathematically
represented as eq. (13).

y = σ (
N∑
i=1

wixi + b) (13)

where y is the outcome of the fully connected layer, N is the
number of neurons in the layer, wi and xi are the weight and
input of the ith neuron, respectively, b is the bias term, and σ

is the activation function.

IV. PROPOSED METHODOLOGY
The CBMIR model proposed in this study follows a series
of developmental procedures as depicted in figs. 1 and 3.
Initially, handcrafted features were extracted from Harlick,
Zernike moments and Global-Local Pyramid Patter (GLPP)
and deep features were also derived using Deep Convo-
lutional Neural Networks (DCNN) containing Separable
Convolution block as depicted in fig. 2 from the input
image(s). The test image is utilized to determine related
images using a similarity measure based on Hausdorff
Distance and retrieve them. Subsequently, the retrieved
images were processed using the SVM method to determine
their corresponding class labels.

Haralick features are statistical measures that capture
several facets of texture information in an image. They
are also known as texture features or texture descriptors.
In image processing and analysis, especially medical image
analysis, these characteristics are often employed. Based on
the gray-level co-occurrence matrix (GLCM) of an image,
the Haralick features are calculated. The GLCM accurately
depicts the spatial connection in the image between pixel
pairs with respect to distance and orientation. Different pixel
pairs are counted together with their respective locations.
We use the following procedures to extract the relevant
characteristic from various medical image modalities, such as
histopathological images of breast cancer, MRI or CT scans
of brain tumors, and dermoscopic images of skin lesions.
Denoising and image enhancement techniques are used
during preprocessing to change the quality of low-contrast
or noisy images. The effect of noise or artifacts on the
ensuing feature extraction procedure must be reduced as
much as possible. Following preprocessing, we quantized
the data to lower the number of grey levels, which aids in
lowering the computational cost of the GLCM. It converts
the pixel intensities into a more condensed range of distinct
grey tones. We locate the GLCM to examine the spatial
relationships between pairs of pixels in the quantized image.
Each component of this square matrix, which indicates the
frequency of a certain pair of pixels occurring at a given
distance and direction, is a pair of pixels. The Haralick
features are a set of statistical measurements that we compute
from the GLCM. It records several texture information
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FIGURE 1. Feature extraction from multiple medical image modalities and fusion for classification.

FIGURE 2. Separable Convolution block for our proposed CNN model.

FIGURE 3. Integration of manual feature techniques from multiple
medical image modalities for classification’’.

properties, including contrast, homogeneity, entropy, energy,
and correlation. These features can gather crucial data
on texture patterns from the spatial relationships between
pixel pairs, which are helpful for a number of medical
image processing tasks including tumor classification, tissue
segmentation, or illness detection.

We employ Zernike moments in our second manual feature
extraction strategy. The form and textural properties of
objects in medical image modalities are described by a
collection of mathematical attributes. It is founded on a set of
orthogonal polynomials called Zernike polynomials, defined
on a spherical domain. A full and orthogonal basis set for
describing any shape or texture within a circular area is
provided by these polynomials.

We use the same preprocessing phase to extract Zernike
moments, which we previously explained while extracting
Haralick features. We employ filtering, normalization, and
other image-specific preparation methods. After preprocess-
ing, we separate the lesion patch or other item or feature
of interest from the background and extract the Region
of Interest (ROI) containing it. In order to divide pixels
or pixels depending on their intensity values, thresholding,
region growing, and level set methods are used. The border

of the segmented object is recovered using edge detection
algorithms and other contour extraction techniques during
the segmentation of skin lesions or foot ulcers. The retrieved
boundary points are normalized to fit inside a unit circle
throughout the normalization phases, which is necessary
for the computation of Zernike moments. It guarantees that
the features are scale, rotation, and translation invariant.
After normalization, the Zernike moments are revealed.
By integrating the intersection of the Zernike polynomials
over the circular domain with the normalized boundary
points. Each Zernike moment represents a distinct form
or texture feature and correlates to a certain sequence and
repetition. The results of Zernike moments provide a feature
vector (1D) that describes the lesion or tumor’s shape
and texture in the medical image. In order to effectively
extract features for tasks like classification, segmentation,
registration, and anomaly detection in medical images,
it provides a concise representation of shape and texture
information.

We employ our suggested technique, Global-Local Pyra-
mid Pattern (GLPP), to examine the spatial pattern of pixel
intensities in a small neighborhood. Using clockwise and
anticlockwise rotation, GLPP is able to extract important
characteristics frommanymedical imagemodalities. By eval-
uating each pixel’s intensity value in relation to its immediate
surroundings, we get a binary code for each pixel in an
image. When creating the code, a value of 1 is assigned if
the neighbor’s intensity is more than or equal to the center
pixel and a value of 0 if it is lower. The identical process
is carried out anticlockwise, and the binary codes are then
translated to decimal values and the higher number is chosen
to create the GLPP image. We must specify parameters
such as the size of the local neighborhood (neighbor), the
number of neighboring pixels (often written as P), and the
central value for GLPP computation when extracting relevant
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features using GLPP. We extract relevant information from
the produced GLPP images using a variety of methods,
including histogram analysis and statistical metrics (such
as mean and variance). These characteristics can help
with tasks like tissue characterization, lesion identification,
or disease classification by offering insights into the patterns,
abnormalities, and textural aspects that are present in medical
images.

A. FEATURE FUSION
A highly effective approach for thorough and reliable feature
representation in medical image analysis uses the combina-
tion of manual features such as Haralick features, Zernike
moments, and Global-Local Pyramid Pattern features with
auto-features generated by Convolutional Neural Networks
(CNN). It makes it possible to combine manually created fea-
tures that capture certain traits with automatically discovered
features that collect more intricate and abstract data. In order
to measure the texture aspects of an image and capture
statistical data regarding pixel intensity connections, we first
compute Haralick features. By examining the fluctuation in
pixel intensities inside circular areas during the calculation
of Zernike moments, it is possible to capture shape and
texture information. Extraction of relevant features utilizing
the global-local pyramid pattern, which uses pyramidal
decomposition and analysis to gather information on several
scales and levels of texture. We preprocess the medical
images (e.g., normalization, scaling) for compliance with
the CNN model after manually extracting the features.
We present a custom-designed model to automatically extract
features from the medical images and use pre-trained
CNN architectures like VGG, ResNet, Inception, Xception,
and DenseNet for auto-feature extraction. In order to
get high-level feature representations, we freeze the final
classification layers from the CNN. We integrate the manual
features (Haralick, Zernike moments, Global-Local Pyramid
Pattern) with the auto-features acquired from the CNN after
feature extraction through CNN. As depicted in figs. 1 and 3,
we concatenate or combine the feature vectors to provide a
single feature representation for each image. We employ the
fused feature representation as source to a machine learning
method, such as Support Vector Machines (SVM), K-Nearest
Neighbour (KNN), and Decision Tree for classification and
analysis tasks on the fused feature vectors. These classifiers
are trained using labeled training data, and their effectiveness
is assessed using test data. To evaluate the results and
efficiency of the fusion technique, we use relevant assessment
measures including Precision, Recall, F1-Score, Sensitivity,
and Specificity.

B. CLASSIFICATION OF FUSED FEATURES
Depending on the various medical image modalities, the
classification outcomes utilizing conventional machine learn-
ing classifiers like SVM, KNN, and Decision Tree on
fused features (Haralick, Zernike moments, GLPP) with
auto-features generated by CNN might vary. We employ

traditional machine learning classifiers like SVM, KNN,
and Decision Tree to categorize these fused features. The
SVM classifier is a well-liked one because it can handle
high-dimensional data and nonlinear decision limits. SVM
can successfully learn the intricate patterns and connections
between the manual and automatic features when applied to
fused features. The objective is to identify the best hyperplane
in the feature space that best separates the various classes.
The results of classification using SVM on fused features
can provide an optimal separation and accurate classification,
especially when the classes are well-discriminated in the fea-
ture space. Another popular classification algorithm is KNN.
It is a non-parametric classifier that assigns a class label
to a data point based on the labels of its nearest neighbors
in the feature space. We apply to the fused features, KNN
can capture the local structure and relationships between
the manual and auto-features. The results of classification
using KNN on fused features may heavily depend on the
choice of the number of neighbors (K=3) and the distance
metric (Manhattan or Euclidean) used. It performs well when
the classes exhibit distinct clusters in the feature space.
The third classifier is the decision Tree, it is a tree-based
classifier that builds a hierarchical structure of decisions
based on the features. We apply to the fused features,
Decision Tree can capture the interdependencies between
the manual and auto-features and learn a set of rules for
classification. The results of classification using a Decision
Tree on fused features can provide interpretable decision
boundaries and rule-based classification.We experiment with
different classifiers, tune their hyperparameters and analyze
the performance using appropriate evaluation measurements
such as accuracy, precision, recall, or F1-score to determine
the best classifier for a specific classification task.

V. RESULTS AND DISCUSSIONS
To discuss the results of different classifiers, we highlight
several key aspects to consider. We analyze the performance
of each classifier using accuracy and other relevant perfor-
mance measurements such as Accuracy depicted in eq. (14),
Precision, Recall depicted in eq. (15), F1-score, or Area
Under the ROC curve (AUC) and Mean Average Precision
(MAP) depicted in eq. (16).

Top-N Accuracy =
Number of relevant images among top N

N
(14)

P =
Number of relevant retrieved images
Total number of retrieved images

(15)

R =
Number of relevant retrieved images
Total number of relevant images

(16)

MAP =
1
Q

Q∑
q=1

APq (17)
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FIGURE 4. Retrieval results for the different medical image modalities: Query image is depicted in the first column and Retrieved images are depicted in
remaining columns based on class prediction percentage.

Compare the performance of the classifiers in terms of
these metrics to determine which one performs better on
the given task. fig. 7 and fig. 9 depicts the findings of
different classifiers and SVM gives us plausible results as

compared to other classifiers such as KNN and Decision
Tree. We explain the interpretability and explainability of
the classifiers. Decision trees are inherently interpretable,
as they can provide insights into the decision-making process.
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FIGURE 5. Receiver Operating Characteristic (ROC) curves of different pre-trained CNN models compared with our proposed model.

FIGURE 6. Precision and Recall comparison of different pre-trained CNN models with our proposed approach.

On the other hand, SVM and KNN may be less interpretable
but can provide accurate predictions. We highlight the
trade-off between interpretability and achievement based
on the specific requirements of medical image retrieval.
We ensure the robustness of the classifiers to noisy and outlier
data points. Decision Trees, for instance, is sensitive to noise
and may over-fit the training data. SVM, with its ability to

find an optimal hyperplane, may handle noisy data better.
Discuss the performance of each classifier in the presence of
noise or outliers.

Three different runs were averaged to provide the stated
results for the test set. fig. 6, which shows precision and recall
at various rankings, respectively. The discounted cumulative
gain is shown in fig. 8, the ROC-AUC is shown in fig. 5, and
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TABLE 1. Training accuracy, F1-Score, Specificity, Precision and Sensitivity on different medical images modalities such as skin lesion, chest X-ray and
Breast histopathological images using our proposed approach and different pretrained CNN models such as VGG, ResNet, Inception, Xception and
DenseNet.

FIGURE 7. Receiver Operating Characteristic (ROC) curves of our
Proposed approach with different Machine Learning Classifiers such as
Decision Tree, KNN and SVM.

FIGURE 8. Discounted Cumulative Gain (DCG) of traditional Machine
Learning Classifiers such as Decision Tree, KNN and SVM.

the MAP score is shown in fig. 9. With whiskers extending
to points within 1.5 times the interquartile range of the lower
and upper quartile, the boxplot displays the results’ quartile
values, including extreme values.

Using our suggested method, we discuss the findings and
outcomes of our study comparing several pre-trained CNN
models for CBMIR. The retrieved samples have a defined
range and threshold, and any samples outside of this range
are handled differently and independently. Several examples
of images that were retrieved using various pre-trained CNN
models and our suggested method are shown in fig. 4.
It implies that the suggested method is applied to get
pertinent images depending on the given query. The fig. 4
reported in this study demonstrates that the discovered
architecture surpassed the various pre-trained CNN models
in the experiment. This suggests that, when compared to

FIGURE 9. Mean Average Precision (MAP) scores of machine learning
classifiers.

pre-trained models, our suggested strategy is more successful
in retrieving pertinent images.

In this study, we have shown that obtaining diagnostically
comparable images using Convolutional Neural Network-
based CBMIR, a functional tool for radiologists, is possible.
Not all CBMIR techniques, it is crucial to remember,
are suitable for analyzing medical images. In this specific
instance, the similarity of the recovered images must take into
account both the lesions’ visual qualities and their closeness
to the F1 score. We compare our proposed approach,
which outperforms various pre-trained CNN models by
including visual appearance and textural features extracted
via Zernike moments, Haralick, and GLPP features, to pre-
trained CNN models, which traditionally emphasize visual
appearance. fig. 4 shows how, by obtaining more pertinent
image samples, the proposed approach beats the pre-trained
CNN models. These two ways of learning are what set
them apart from one another. While the pre-trained models
may be able to infer this information indirectly from the
medical images, the proposed approach training method
expressly takes advantage of the diagnostic similarities. The
CBMIR outcome is used to create a classifier for predicting
the diagnosis of the pathology displayed in the image, the
performance gap between the two approaches is further
demonstrated. The diagnostic prediction ROC-AUC values
are shown in fig. 5 and it demonstrates an increase from
0.52 to 0.69 of VGG, and then to 0.76. The outcomes
show how our proposed approach may be expanded to
include and integrate different manual features, which
improves performance more than the single auto-extracted
features. Notably, the ROC-AUC increased from 0.88 to
0.97 comparing the without integrating manual features using
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only the chest X-ray and integrating manual features with our
proposed approach.

In order to assess our proposed deep learning approach
for medical image retrieval, we conducted a comparison
with existing systems used for this task. However, a direct
comparison was not feasible due to the unavailability of a
standard medical dataset that could serve as a benchmark
for the retrieval system. Therefore, we employed two
criteria for the comparison. The first criterion involved
classification accuracy, average precision, and average recall
for classification, as presented in table 1. The second criterion
was mean average precision (mAP) for retrieval, as shown
in table 1. While our proposed approach achieved a higher
mAP value, it is important to note that our approach focused
solely on different modalities. In contrast, pre-trained CNN
models are designed to handle multimodal data, which
enhances their applicability and versatility.

VI. CONCLUSION
To improve Content-Based Medical Image Retrieval
(CBMIR) architecture, we introduce a novel CNN model
based on Fusion that combines manually created and
automatically generated features. This adaptable framework
anticipates and finds images that are diagnostically important
across several medical modalities. It is quite versatile and
works for a variety of diagnostic imaging activities. In con-
clusion, fusion-based CBMIR provides a workable method
for combining data sources and foretelling comparable
images in medical applications. By adding attributes from the
classification outcomes of the retrieved images, integrating
a Computer-Aided Diagnosis (CAD) system with CBMIR
improves classifiers and facilitates AI interpretability. Future
research should evaluate the clinical efficacy of CBMIR for
radiologists through observer studies. The idea is also used
to medical image segmentation, utilizing CBMIR findings to
improve deep learning frameworks. The accuracy of picture
segmentation can be improved by this fusion.
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