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ABSTRACT Human activity recognition (HAR) commonly employs wearable sensors to identify and
analyze the time series data collected by them, enabling the recognition of specific actions. However,
the current fusion of convolutional and recurrent neural networks in existing approaches encounters
difficulties when it comes to differentiating between similar actions. To enhance the recognition accuracy of
similar actions, we suggest integrating the residual structure and layer normalization into a bidirectional
long short-term memory network (BLSTM). This integration enhances the network’s feature extraction
capabilities, introduces an attention mechanism to optimize the final feature information, and ultimately
improves the accuracy and stability of activity recognition. To validate the effectiveness of our approach,
we extensively tested it on three public datasets: UCI-HAR, WISDM, and KU-HAR. The results were
highly encouraging, achieving remarkable overall recognition accuracies of 98.37%, 99.01%, and 97.89%
for the respective datasets. The experimental results demonstrate that this method effectively enhances the
recognition accuracy of similar behaviors. A codebase implementing the described framework is available
at: https://github.com/lyh0625/1DCNN-ResBLSTM-Attention.

INDEX TERMS Human activity recognition, wearable sensors, attention mechanism, residual block.

I. INTRODUCTION
Human activity recognition (HAR) refers to the process of
assessing and categorizing human behavior by analyzing its
activities over a specific duration. Human activity recognition
(HAR) has several applications in sports, geriatric health
monitoring, and safety monitoring systems [1], [2] [3], [4].
It can be divided into two approaches: one focuses on
recognizing human behavior using cameras and images,
while the other involves identifying activities through wear-
able sensor devices and sensor data [5]. The advancement
of microelectromechanical systems (MEMS) has led to
progressive enhancements in their characteristics, including
improved sensitivity and reduced power consumption. As a
result, the mainstream utilization of MEMS as wearable
devices, employing inertial sensing units for human behavior
recognition, has become prevalent [6], [7].
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Human Activity Recognition (HAR), in wearable sensing
devices, involves collecting data via sensors and then
processing it to identify the activities. In recent years,
several machine learning methods have been employed
for human activity recognition, such as random forests
(RF) [8], support vector machine (SVM) [9], and k-
nearest neighbor (KNN) [2]. These methods require the
manual calculation of time-domain, frequency-domain, and
time-frequency domain features from the collected sensor
data, followed by behavioral data classification. However,
manual approaches heavily depend on the expertise of
the calculator and consume a significant amount of time.
Deep learning solves these problems by enabling automated
feature extraction. There are many researchers who study the
application of convolutional neural networks (CNNs) [10]
in the field of image recognition. Zeng et al. [11] employed
convolutional networks for human activity recognition. They
input the collected data in the form of images into the
convolutional network and observed improved recognition
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accuracy. Compared to machine learning methods such as
support vector machine (SVM) and random forest (RF).
Recurrent Neural Networks (RNNs) [12] are widely used
in the fields of natural language processing and speech
recognition. RNNs can extract time series features from
data. As a variant of recurrent neural networks, long
short-term memory (LSTM) [13] networks can capture
longer time-series features. Murad and Pyun [14] conducted
experiments on the UCI-HAR [15] dataset using the LSTM
network and achieved an accuracy of 96.7%. Following this,
Ordóñez and Roggen [16] proposed that the DeepConvLSTM
network, which combines CNN and LSTM, is a significant
improvement over single neural networks for human behavior
recognition. The Transformer [17] network was initially
applied in natural language processing and then in the
field of graphics. The Transformer network has effectively
resolved the limitation of parallel computation in recurrent
neural networks, allowing for efficient calculations that were
previously unattainable. Buffelli and Vandin [18] introduced
a multi-head attention mechanism from the transformer
to identify activity data, yielding excellent identification
results.

In the case of collected activity data, CNNs can extract
spatial features, whereas LSTM can extract time series
features. Both CNNs and RNNs possess single-feature
extraction capabilities, but relying solely on individual
networks leads to limited accuracy in activity recognition.
The Transformer’s multi-head attention computation method
consumes significant computational resources and under-
performs with small data volumes. The DeepConvLSTM,
which combines CNN and LSTM, has obvious advantages
in feature extraction, but there is a problem with unstable
activity recognition.

To address the limitations of the aforementioned
approaches, we introduce a neural network model called the
1DCNN-ResBLSTM-Attentionmodel. This model combines
the power of 1DCNN, residual bidirectional long short-
term memory (ResBLSTM), and attention mechanism. The
proposed 1DCNN-ResBLSTM-Attention model utilized a
one-dimensional convolutional network (1DCNN) to extract
spatial features from time series data. To establish a long-
distance dependence on time series data, we incorporate a
bi-directional long short-term memory (BLSTM) network.
Additionally, we enhance the performance of the BLSTM
network by integrating residual blocks, which are referred
to as ResBLSTM. These improvements contribute to the
overall performance of the network. For the acquisition
of final recognition information, we employ an atten-
tion mechanism to compute the weights of each result
during the recursive process of the ResBLSTM network.
This approach enhances the representation ability of
the final recognition information, resulting in improved
accuracy in activity recognition. To optimize network
performance, batch normalization (BN) [19] and layer
normalization (LN) [20] were introduced to the model
structure. This inclusion accelerates the convergence speed

of the network and reduces the time required for behavior
recognition.

The main contributions of this paper are as follows:
(1) Our research presents a deep learning-based behav-

ior recognition model called 1DCNN-ResBLSTM-
Attention. This model offers an automated feature
extraction capability from sensor data, making it
a versatile framework for various human behavior
recognition tasks.

(2) In order to improve the performance of the model,
we introduce a residual structure in the BLSTM
network and construct the ResBLSTM network. This
addition improves the accuracy of identification.
In addition, we employ an attention mechanism that
optimizes the final behavioral recognition features and
further improves the accuracy of the model.

(3) In our study, we constructed ResBLSTM and BLSTM
networks with different numbers of stacked layers.
Experimental results show the effectiveness of intro-
ducing residual structure and layer normalization in
improving model performance.

(4) To evaluate the robustness and generalization ability
of our model, we conducted comparative experiments
on three public datasets: UCI-HAR, WISDM, and
KU-HAR. The recognition accuracy achieved on
these datasets was 98.37%, 99.01%, and 97.89%,
respectively, and also performs well in distinguishing
similar activities.

This paper is structured as follows: Section I is the
introduction, providing an overview of the research topic
and its significance. Section II gives an overview of current
literature. In Section III, we present an overview of the
three public datasets used in our experiments and outline
the preprocessing steps of the data. Section IV provides
a comprehensive description of the architecture and key
components of the 1DCNN-ResBLSTM-Attention model.
Section V demonstrates the effectiveness of ResBLSTM
and offers a detailed comparison of the experimental
results obtained from our proposed model across the three
public datasets. Finally, Section VI concludes this study,
summarizing the findings and discussing their implications.

II. RELATED WORK
The human activity recognition method for wearable sensors
can be categorized into two main approaches: machine
learning-based and deep learning-based methods. Early
machine learning methods required the calculation of
time domain and frequency domain features from activity
data, which were then used for activity classification.
Feng et al. [8] employed random forests to classify activities
by extracting statistical features such as mean, variance,
standard deviation, skewness, and kurtosis from sensor data.
Jain and Kanhangad [9] used gradient histograms and Fourier
descriptors based on centroid features to extract features from
acceleration and angular velocity data. They utilized two
classifiers, support vector machine and k-nearest neighbor,
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achieving an accuracy of 97.12% on the UCI-HAR dataset.
These methods focused on the global features of the activity
data. However, Aşuroğlu et al. [21] took a different approach
by using Local Binary Patterns (LPB) to extract the local
texture features from the activity data. They used k-nearest
neighbor classifiers to emphasize the importance of local
features. Subsequently, Aşuroğlu et al. [22] proposed a
method that combined the time and frequency characteristics
of accelerometer data to the LocallyWeighted RandomForest
(LWRF) machine learning algorithms. This approach demon-
strated outstanding performance for complex activities.

Traditional machine learning methods necessitate manual
feature extraction, which is constrained by the knowledge and
expertise of researchers. In contrast, deep learning offers the
advantage of automatic extraction of higher-level features.
Recent researches focused on fourmain types of sensor-based
Human Activity Recognition (HAR) deep learning methods.
The first type employs Convolutional Neural Networks
(CNNs) for spatial feature extraction. The second type uses
Recurrent Neural Networks (RNNs) to capture temporal
dependencies. The third type incorporates attention structures
like Transformer to focus on relevant information. The fourth
type combines CNN and RNN architectures.

Convolutional neural networks (CNNs) possess the ability
to automatically extract spatial features, making them highly
versatile in computer vision applications. In the context of
Human Activity Recognition (HAR), CNNs can be employed
to process preprocessed multi-channel sensing data and
extract informative features through the use of stacked
convolutional kernels. Zeng et al. [11] achieved superior
recognition accuracy in multi-sensor Human Activity Recog-
nition (HAR) by using a three-axis accelerometer. They
employed CNNs to independently extract high-level features
from each axis. By fusing these features, their approach
outperformed traditional machine learning methods in accu-
rately identifying human activities. Ronao and Cho [23]
explored multi-channel feature computation in HAR and
utilized a one-dimensional convolutional neural network
(CNN) optimized for time series data. This approach resulted
in a remarkable recognition accuracy of 90% across six
daily activities. In other variations of CNN usage for
HAR, Mekruksavanich et al. [24] employed the ResNet
network to successfully identify 18 activities with an
impressive accuracy exceeding 93%. These findings show-
case the effectiveness of CNN-based models in achieving
high accuracy and robust activity recognition in diverse
scenarios.

Human activity data captured from sensors is typically rep-
resented as time series, and to effectively capture the temporal
relationships, RNNs are commonly employed. In the domain
of HAR, various RNN variants have been utilized to process
this sequential data. One prevalent approach [14] involves
the use of Long Short-Term Memory (LSTM) networks.
These networks excel at encoding fragments of active data,
and the information is then leveraged for accurate activity
identification. Ishimaru et al. [25] adopted Bidirectional

LSTM (Bi-LSTM) networks tomonitor reading activities. Bi-
LSTM networks have the advantage of capturing information
from both past and future time steps, making them well-
suited for tasks requiring bidirectional temporal context.
To conserve computational resources while maintaining
efficient human activity recognition, Yao et al. [26] opted for
Gated Recurrent Units (GRUs) networks instead of LSTMs.
GRUs offer similar capabilities to LSTMs but are more
computationally efficient.

The Transformer model, incorporating a multi-head atten-
tion mechanism, has demonstrated remarkable success in
both Natural Language Processing (NLP) and Computer
Vision (CV). It overcomes the limitations of RNNs by
enabling parallel computation while extending the receptive
field to the global level. Buffelli et al. [18] constructed a
pure attention HAR model and utilized transfer learning
for specific user identification. Shavit and Klein [27]
employed Transformer’s encoder to extract features from
activity data, using the encoded information for activity
identification. Khan and Ahmad [28] substituted the mul-
tilayer perceptron with convolutions to create a multi-head
CNN. This modification addressed the overfitting issue of
Transformers when applied to small human activity datasets.
These variations of the Transformer model demonstrate its
adaptability and effectiveness in HAR, making it a valuable
tool for capturing complex patterns and improving activity
recognition performance.

Feature fusion networks are commonly employed in
Human Activity Recognition (HAR) to combine features
from different modalities. A popular combination approach
involves integrating Convolutional Neural Networks (CNNs)
and Recurrent Neural Networks (RNNs) to effectively
capture both spatial and temporal features, which may
not be fully achievable with a single feature extraction
network. Karim et al. [29] proposed to combined network
named LSTM-FCN, which incorporates a fully convolutional
network for spatial feature extraction and an LSTM network
for time series feature extraction. These two networks operate
in parallel, and their outputs are merged to surpass the
performance of individual CNN or RNN networks across
various datasets. Similarly, Ordóñez and Roggen [16] where
CNNs and LSTM networks are connected sequentially. The
feature data extracted by CNNs is then fed into LSTMs, and
the encoded information from LSTMs is used for activity
identification.

These approaches provide effective strategies for human
activity recognition based on wearable sensing devices.
We adopted a feature fusion strategy and proposed a 1DCNN-
ResBLSTM-Attention model, our strategy has made some
progress compared with some previous work.

III. DATASET
A. DATA PRE-PROCESSING
1) NORMALIZATION
The collected data from different sensors often exhibits non-
uniform scales, and the presence of outlier samples within
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FIGURE 1. The active data is split with a sliding window with a window
length of T, step_size overlapping parts of two action segments.

the data can lead to longer training times and potential
convergence issues. So, it is necessary to normalize the data
to a standardized range, typically [0,1]. The normalization
process can be represented as follows:

x ′
=

xi − xmin
xmax − xmin

, (i = 1, 2, . . . , n). (1)

where n is the total number of samples, and xmin and xmax are
the minimum and maximum values in the sample.

2) DATA SEGMENTATION
Data segmentation plays a crucial role in activity recognition,
as it involves dividing the time series data into smaller
segments. The length of these data fragments significantly
impacts the quality and efficiency of feature extraction.
The sliding window method is commonly used for data
segmentation and considers two main factors: window length
and window coverage. The window length typically ranges
from 0.5 to 10 seconds, as reported in current research [30],
[31]. If the window length is too long, it may result in a single
time series containing multiple actions, making it difficult to
capture the complete action. On the other hand, if the window
length is too short, it may fail to reflect the holistic nature of
the action. Fig.1 depicts the sliding window segmentation of
three-axis accelerometer data. From top to bottom, it shows
the acquisition of original sensor data for the acceleration
sensor in the x, y, and z axis. The window length is denoted
as T , and the window coverage is defined as step_size/T .

B. DATASET DESCRIPTION
Testing the proposed model on a mobile phone behavior
dataset holds significant value due to the widespread usage
and diverse applications of mobile phones as wearable
devices. To thoroughly evaluate the model’s performance and
its applicability to real-world scenarios, we utilized three dis-
tinct datasets (UCI-HAR, WISDM, KU-HAR) specifically
designed for mobile phone behavior analysis. These datasets
serve as comprehensive sources of information to assess
the model’s accuracy and effectiveness in recognizing and
classifying various mobile phone behaviors.

Among the three datasets considered, both the UCI-HAR
and KU-HAR datasets have undergone normalization and

data segmentation. Specifically, the window length for the
UCI-HAR dataset is set to T = 128 with a window coverage
of 50%, while the window length for the KU-HAR dataset is
set to T = 300 with a window coverage of 50%. However,
the WISDM dataset has not undergone preprocessing and
remains unsegmented. We follows the partitioning strategy
from [32] reference and set the window length to 128 with
a window coverage of 50%. For the WISDM dataset, the
window length is set to 128 with a window coverage of 50%.
All datasets were subjected to a train-test partitioning strategy
to create separate training and testing subsets. The detailed
descriptions of each dataset are as follows:

1) UCI-HAR
The UCI-HAR dataset [15] was collected from a group
of 30 volunteers who wore a smartphone (SAMSUNG
Galaxy S2) attached to their waist. The smartphone’s
three-axis accelerometer and gyroscope recorded data at a
frequency of 50Hz. The dataset comprises six different types
of movements, namely walking (walk), standing (stand),
upstairs, downstairs, sitting (sit), and lying (lay). To prepare
the dataset for analysis, the collected data were denoised
using the original signal. It was then divided into segments
using a sliding window approach with a window length of
128 and an overlap rate of 50%. This division resulted in
a total of 10,299 data samples, each consisting of 128 data
points. The dataset includes three types of data: three-
axis acceleration, three-axis linear acceleration, and triaxial
angular velocity. For training and testing the model, the
dataset was further split into a training set and a test set. The
training set accounts for 70% of the data, while the remaining
30% forms the test set. This division ensures a comprehensive
evaluation of the model’s performance on unseen data.

2) WISDM
The WISDM dataset [33] was collected from a group of
36 volunteers who carried a smartphone in their trouser
pockets. The smartphone’s three-axis accelerometer recorded
data at a frequency of 20Hz. The dataset consists of six
categories of activities: going upstairs (upstairs), going down-
stairs (downstairs), sitting (sit), standing (stand), walking
(walk), and jogging (jog). To facilitate analysis, the collected
data were segmented using a sliding window approach with
a window length of 128 and an overlap rate of 50%. This
segmentation resulted in a total of 17,158 data samples, each
containing 128 data points. For training and testing themodel,
the dataset was further divided into a training set and a test set.
The training set contains 80% of the data, while the remaining
20% forms the test set. This split ensures that the model
is evaluated on unseen data and can generalize well to new
instances.

3) KU-HAR
The KU-HAR dataset [34] was collected from a group
of 90 volunteers who wore a waist bag containing a
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FIGURE 2. 1DCNN-ResBLSTM-Attention model structure.

smartphone during the data collection process. The smart-
phone’s accelerometer and gyroscope recorded data at a
frequency of 100Hz. The dataset consists of 18 different types
of actions, including standing (std), sitting (sit), talking while
sitting (talk-sit), talking while standing (talk-std), standing
up from sitting (std-sit), lying down (lay), standing up from
lying down (lay-std), picking up an object (pick), jumping
(jump), push-ups (push-up), sit-ups (sit up), walking (walk),
walking backward (walk-back), walking in a circle (walk-
circle), running (run), going upstairs (up), going downstairs
(down), and playing table tennis (table-tennis). Each action
in the dataset has a time series length of 300 data points,
corresponding to a duration of 3 seconds at a frequency of
100Hz. The data was segmented using a sliding window
approach with an overlap rate of 50%. This resulted in a total
of 20,750 data samples. To train and evaluate the model, the
dataset was divided into a training set and a test set. The
training set contains 80% of the data, while the remaining
20% forms the test set. This division allows for the model
to be trained on a majority of the data and tested on unseen
samples to assess its performance.

IV. PROPOSED 1DCNN-ResBLSTM-ATTENTION MODEL
Based on the human activity recognition of wearable sensing
devices, activity data is first collected through Bluetooth,
WiFi, radar, and other devices, and then the collected data
is preprocessed, and finally, the processed data is identified.
Current methods take a long time to identify and cannot dis-
tinguish between similar activities, such as going upstairs and

going downstairs. To solve the problems in existing models,
we propose a novel architecture called 1DCNN-ResBLSTM-
Attention. The model’s network structure, illustrated in Fig.2,
consists of three key components: 1DCNN, ResBLSTM,
and Attention. The first component, 1DCNN, is responsible
for extracting spatial features from the preprocessed data.
By controlling the step size of the convolution kernel, it effec-
tively reduces the length of the time series. This enables
the model to reduce recognition time. Next, the improved
ResBLSTM network is used to extract time series features
from the data processed by 1DCNN. By combining the
strengths of bidirectional long short-term memory (BLSTM)
and incorporating residual connections, the ResBLSTM
component enhances the model’s ability to capture long-
term dependencies in the time series data. This integration
boosts themodel’s capability to understand complex temporal
patterns and improves recognition accuracy. To further opti-
mize the final recognition features, we introduce the attention
mechanism. This mode calculates weights for the feature
information generated by the ResBLSTM network, allowing
themodel to selectively focus on themost informative parts of
the input data. By emphasizing the most relevant features, the
attention mechanism enhances the discriminative power of
the model and improves the accuracy of activity recognition.
Finally, the fully connected layer and SoftMax function
are employed to classify the behavior information. The
output of this classification process serves as the recognition
result, providing a prediction of the specific activity being
performed. In the subsequent sections, we will delve into

VOLUME 11, 2023 94177



J. Zhang et al.: Attention-Based Residual BiLSTM Networks for Human Activity Recognition

FIGURE 3. The difference between 1DCNN and 2DCNN (acc_x, acc_y, and
acc_y represent the x, y, and z axes in the accelerometer, respectively).

a detailed explanation of each component, outlining their
functionalities and contributions within our proposed model.

A. 1DCNN
CNNs have strong feature extraction capabilities in process-
ing tensor data, making them well-suited for tasks such as
image processing and human behavior recognition. In this
study, we apply the one-dimensional convolutional neural
network (1DCNN) [35] for effective feature extraction.
As shown in Fig.3, in the acquired sensing data, the
vertical axis represents the time series, and the horizontal
axis represents the multi-axis channel features acquired by
different sensors. The convolution of 2D convolution is local,
andwhen the number of sensors is large, the local convolution
will destroy the integrity of the sensor channels, while 1D
convolution is a convolution in behavioral units, and all
sensor channels are computed, so 1D convolution is chosen in
the design of the model for extracting spatial features instead
of using the traditional 2D convolution. In the calculation of
the 1D convolution, the input data are convolved with each
filter and then activated by a nonlinear activation function,
which is calculated as follows:

Xj = f

(
n∑
i=1

(
W i

· xj + bi
))

. (2)

where Xj is the activated output data, W i is the weight of the
i filter, xj represents sensing data convolved with W i, bi is
the bias of the i filter, n is the number of filters, and f is a
non-linear function.

In this paper, the convolutional layer uses the swish
function [36] as the activation function. In comparison to the
Relu [37] function, the swish function solves the lethality
problem of the negative interval and is better suited for the
sensor data. The swish function is defined as follows:

swish(x) = x · sigmoid(x). (3)

After the activation step, the pooling layer is utilized for
downsampling. In this downsampling process, the ‘‘same’’
padding is applied. Additionally, in the 1DCNN layer, the
length of time can be reduced by adjusting the stride of the

FIGURE 4. 1DCNN layer in human activity recognition structure.

pooling kernel, and the length of the time series changes as
follows:

lenout =
leninput

s
. (4)

where leninput is the input time series length, s is the pooled
kernel step size, lenout is the pooled time series length.
During the training of neural networks, the probability

distribution of input obedience in each layer undergoes
continuous changes, which can lead to the issue of vanishing
or exploding gradients. This phenomenon is known as the
intermediate covariate shift problem [38]. In 2015, Ioffe et
al [19]. introduced batch normalization (BN) as a solution
to reduce the problem of intermediate covariate shifts.
The fundamental concept of batch normalization involves
calculating the mean and variance of a batch of data and
transforming it into a new set of data with a mean of
0 and a variance of 1. By incorporating normalization into
the training process, batch normalization can accelerate
convergence during gradient descent, thereby reducing the
training time of neural networks. The calculation process is
described as follows:

x̂i,k =
xi,k − µk√

σ 2
k + ε

. (5)

where xi,k is the k-dimensional component of xi in the training
set {x}, µk is the mean of the k-dimensional component of all

samples in the training set,
√

σ 2
k + ε is the standard deviation

of the k-dimensional component of all samples in the training
set.

After the convolutional layer, the structures of Conv, BN,
Swish, and Maxpooling were applied, as shown in Fig.4.
In the 1DCNN section, we adopted a stacking approach to
implementing this structure across four layers.

B. ResBLSTM
Human activities are inherently temporal, and relying solely
on 1DCNN for spatial feature extraction is insufficient
for activity recognition. The temporal sequence of the
entire action must also be taken into account. RNNs
exhibit favorable capabilities for processing time series
data. However, as the time series grows, RNN models
can suffer from gradient vanishing and information loss.
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FIGURE 5. The ResBLSTM network is composed of forward and backward LSTM networks, each LSTM is added to the residual structure and LN, and the
final encoding information forward state and backward state are spliced.

FIGURE 6. The residual block in ResNet.

Hochreiter et al. [39] proposed a long short-term memory
network (LSTM). Unlike simple RNNs, LSTM is a gated-
based recurrent neural network that can effectively retain
longer-term temporal information. Moreover, it outperforms
simple RNNs in handling longer time series. Nevertheless,
behavioral data is influenced not only by preceding moments
but also by subsequent moments. Bidirectional LSTM
(BLSTM) is a two-way LSTM network that considers both
forward and backward information. Compared to the LSTM
network, BLSTM enhances time series feature extraction
by capturing bidirectional dependencies. Therefore, utilizing
a BLSTM network to extract time series features from
behavioral data is an appropriate approach.

Although the BLSTM network can extract time series
features well, it is not strong at capturing spatial features,
and with the increase in the number of stacking layers, the
problem of gradient disappearance will also occur during
training. To solve this problem of gradient disappearance,
in 2015, the Microsoft Research team built the residual
network ResNet [40]. The network reached 152 layers, and
it won the championship in ILSVRC in 2015. The specific
residual structure is shown in Fig.6. Each residual block can
be expressed as:

x i+1
= x(i) + F

(
x i,Wi

)
. (6)

The residual blocks are divided into two parts, where x i is a
direct mapping, F

(
x i,Wi

)
is the residual part.

Similarly, the structure mentioned above is also employed
in the design of the encoder component in the Transformer
model. Our research offers a residual structure based on
the BLSTM network, which builds on the benefits of
this structure. Normalization techniques can also be used
in the BLSTM network. Layer normalization (LN) [20]
is particularly advantageous for recurrent neural networks
compared to batch normalization (BN), LN is computed
similarly to BN and can be expressed as follows:

x̂(i) =
x(i) − E(x(i))√

var(x(i))
. (7)
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where x(i) represents the input vector of the i dimension,
x̂(i) represents the output after layer normalization.

In this paper, a new combination that combines residual
structure and layer normalization in a BLSTM network is
called ResBLSTM, as illustrated in Fig.5. The recursive
feature information y can be described as:

x f (i+1)
t = LN

(
x f (i)t + L

(
x f (i)t ,Wi

))
, (8)

xb(i+1)
t = LN

(
xb(i)t + L

(
xb(i)t ,Wi

))
, (9)

yt = concat(x ft , x
b
t ). (10)

where LN is layer normalization, L is the processing of
input states in the LSTM network, the subscript t in x f (i+1)

t
represents the t-th moment in the time series, the f in the
superscript represents the forward state, b represents the
reverse state, and (i+1) represents the number of stacked
layers, the encoded information yt at time t is spliced together
from the forward state and the backward state.

C. ATTENTION MECHANISM
The attention mechanism has found broad applications in
various domains of deep learning. Models based on the
attention mechanism can not only capture the positional
relationships among information but also quantify the signifi-
cance of different information features based on their intrinsic
characteristics [41], [42], [43]. When applying RNNs for
activity recognition, the typical approaches involve using
either the average of feature information C =

1
T

∑T
t=1 yt

or the final feature information C = yT for identification.
These two methods fail to consider the varying importance
of different feature information in behavior recognition,
highlighting a significant drawback. Therefore, we leverage
the attention mechanism introduced by Raffel and Ellis [44]
to enhance the accuracy of behavior prediction. As shown in
Fig.7, the calculation method for feature information C is as
follows:

et = f (yt ), αt =
exp(et )∑T
i=1 exp(ei)

, C =

T∑
t=1

αtyt . (11)

where the function f expression can be learned by backprop-
agation through the fully connected layer, and the weight
αt constantly changing during the training process, and as
the training progresses, the feature information C gradually
becomes more representational.

V. EXPERIMENTS AND EVALUATIONS
A. EXPERIMENTAL MODELS AND ENVIRONMENT
SETTING
In this experiment, the model training framework used is
TensorFlow 2.1. The testing was conducted on a computer
equipped with an i7 CPU, 16GB of RAM, and an NVIDIA
RTX3050 GPU. Table 1 summarizes the relevant parameters
of the 1DCNN-ResBLSTM-Attention model.

Our model is trained using a fully supervised approach,
where various types of samples are labeled. To measure

FIGURE 7. The attention mechanism calculates the weight of the
recursive information y generated by ResBLSTM, and the calculated
weight is α, and each weight α multiplies and sums with y to obtain the
final feature information C.

the performance, we utilize the cross-entropy loss between
predicted samples and actual samples. The Nadam optimizer
is chosen to fit the model, aiming to achieve the best perfor-
mance. For training, we set the number of epochs to 150 and
the learning rate to 0.001. Due to memory constraints on the
computer, we set the batch size to 64. In the convolution
process, we avoid changing the feature series’ dimension
through convolution. Instead, we use pooling kernels to
reduce the time series’ length. The P_Stride, which is the
step size of the pooled kernel, is set to 2 for computational
convenience. Each time the time series is pooled, its length is
halved. To prevent overfitting, dropout is incorporated in the
model. Other hyperparameters are kept relatively unchanged
to avoid consuming excessive computing resources through
excessive fine-tuning. The focus is on maintaining a balance
between model performance and computational efficiency.

B. EVALUATION INDEXES
For binary classification problems, evaluation can be done
with accuracy, precision, recall, and the F1-score. Accuracy
refers to the proportion of all samples that are correctly classi-
fied, and higher accuracy means a better classification effect.
To measure the overall classification ability of the system for
all categories. Precision represents the proportion of samples
that truly belong to a category among all samples identified as
a category and measures the system’s classification accuracy
for a category. The recall rate represents the proportion of
all samples of a class that are correctly identified as that
category and measures the system’s comprehensiveness of
classification for a class. The F1-score is a harmonic mean of
precision and recall,that measures the average classification
performance of the system for a category. They are expressed
as follows:

Accuracy =
TP+ TN

TP+ FP+ TN + FN
. (12)

Precision =
TP

TP+ FP
. (13)

Recall =
TP

TP+ FN
. (14)

F1 − score =
2 × precision× recall
precision+ recall

. (15)

94180 VOLUME 11, 2023



J. Zhang et al.: Attention-Based Residual BiLSTM Networks for Human Activity Recognition

TABLE 1. 1DCNN-ResBLSTM-Attention model parameters.

where TP means the number of true positives, TN means
the number of true negatives, FP means the number of false
positives, and FN means the number of false negatives.

For multi-category problems, it is necessary to use macro-
averaging, which involves calculating the accuracy, recall,
and F1-score for each category and then calculating the
arithmetic mean. The macro-averages of accuracy, recall, and
the F1-score are calculated as follows:

M_Precision =
1
N

N∑
i=1

Precisioni. (16)

M_Recall =
1
N

N∑
i=1

Recalli. (17)

M_F1 − score =
1
N

N∑
i=1

2 × Precisioni × Recalli
Precisioni + Recalli

. (18)

where N is the total number of categories, i denotes the i-th
category.

C. EXPERIMENTAL RESULTS AND ANALYSES
1) COMPARISON OF RESBLSTM TO BLSTM
We constructed ResBLSTM by incorporating the residual
structure and layer normalization techniques from ResNet
and Transformer. We experimented with different numbers of
stacked layers (3, 5, and 7) for both BLSTM and ResBLSTM

TABLE 2. Comparison of ResBLSTM networks and BLSTM networks at
Layer 3, Layer 5, and Layer 7.

on the UCI-HAR dataset. A comparison is made on the
UCI-HAR dataset, and the results are shown in Table 2.
Similar to convolutional networks, increasing the number
of stacked layers enhances the feature extraction capability.
For both BLSTM and ResBLSTM, as the number of layers
increased, the recognition accuracy improved. Specifically,
the recognition accuracy of BLSTM increased from 91.99%
to 92.63% when the number of layers went from 3 to 7,
while ResBLSTM improved from 95.86% to 96.36%. This
demonstrates the benefit of layer stacking for feature
extraction. Furthermore, compared to BLSTM, ResBLSTM
achieved significantly higher recognition accuracy, with an
increase of 3.87% for 3 layers, 3.8% for 5 layers, and
3.73% for 7 layers, along with notable improvements in other
metrics. Based on these experimental results, the addition
of residual structure and layer normalization to the BLSTM
network proves to be highly effective. Therefore, we adopt
the ResBLSTM network as the time series feature extraction
network in our overall network design, and we anticipate its
applicability in various fields.

2) ABLATION STUDY
This study aims to evaluate the effectiveness of each
section using accuracy, precision, recall, and F1-score as
the evaluation criteria. Table 3 provides an overview of the
results obtained from testing the three datasets using the
1DCNN and ResBLSTM methods separately. The results
show that when the time series length is 128, the recognition
accuracy of 1DCNN is significantly higher than that of
ResBLSTM in all three datasets. However, when the time
series length is 300, the recognition accuracy of both
methods becomes similar. This suggests that for shorter
time series, spatial features such as numerical values play
a more important role in behavior recognition, while as the
time series length increases, the significance of temporal
features becomes more prominent. Therefore, combining
1DCNN with ResBLSTM allows for capturing both spatial
and temporal features. When comparing the performance
of 1DCNN+ResBLSTM with ResBLSTM alone, the accu-
racy rates on the UCI-HAR, WISDM, and KU-HAR
datasets improve by 1.46%, 1.55%, and 0.61%, respectively.
Similarly, when compared to 1DCNN alone, the accuracy
rates improve by 0.25%, 0.3%, and 0.95%, respectively.
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TABLE 3. Ablation experiments on three publicly available datasets to verify the effectiveness of each plate.

Table 3 indicates that the addition of the attention mechanism
results in an increase in recognition accuracy of 1.33%,
0.38%, and 0.97% on the UCI-HAR, WISDM, and KU-HAR
datasets, respectively. Similar improvements are observed
in precision, recall, and F1-score. Overall, these findings
highlight the effectiveness of combining 1DCNN and Res-
BLSTM;at the same time, combined with the attention
mechanism, the accuracy and performance of behavior
recognition on the test data set can be enhanced.

In addition to accuracy, efficiency is also an important
factor to consider. In this study, the recognition time of
individual actions is used as a criterion for efficiency
evaluation. Utilizing the parallel operation capability of the
GPU, the one-dimensional convolution operation for a single
behavior takes only 4ms. On the other hand, ResBLSTM
is a recurrent neural network, and its calculation time is
dependent on the length of the time series. With a time
series length of 128, the recognition time for a single action
using ResBLSTM is 15ms. When the time series length is
300, the recognition time increases to 29ms. This highlights
the drawback of ResBLSTM’s relatively long recognition
times. To address the issue of lengthy recognition times in
ResBLSTM, the combination of 1DCNN and ResBLSTM,
denoted as 1DCNN+ResBLSTM, provides a solution. When
applied to a time series length of 128, the recognition time
for a single action is reduced from 15ms to 5ms. Similarly,
when applied to a time series length of 300, the recognition
time decreases from 29ms to 6ms. It is worth noting that
the addition of an attention mechanism slightly increases
the recognition time. However, the increase in accuracy
compensates for this small trade-off, making it an acceptable
trade-off. The combination of 1DCNN and ResBLSTM,
along with the incorporation of an attention mechanism,
not only improves accuracy but also enhances efficiency
by significantly reducing the recognition time of individual
actions on both short and long-time series.

3) COMPARE EACH BEHAVIOR
Distinguishing similar actions poses a significant challenge
in action recognition, as the data patterns of these actions

are often similar and difficult to differentiate. To validate the
effectiveness of the proposed model, we conducted a thor-
ough analysis of its performance on each action. To evaluate
the model’s performance on each action, we utilize the F1-
score as a balanced evaluation metric. The F1-score takes into
account both precision and recall, providing a comprehensive
measure of performance that considers false positives and
false negatives. The WISDM dataset is to put the mobile
phone in the trouser pocket and use the mobile phone’s
triaxial accelerometer to collect data.In this dataset, there
are three sets of actions that are highly similar: upstairs and
downstairs, standing and sitting, and walking and jogging.
Since the mobile phone is placed in the pants pocket, the leg
movements during jogging exhibit more obvious frequency
and amplitude compared to walking. Similarly, for the actions
of standing and sitting, the amplitude of leg movement is
reversed. Both ResBLSTM and 1DCNN achieve recognition
accuracies of over 98% for these two sets of movements.
However, in the case of going upstairs and going downstairs,
the leg movements exhibit smaller changes in amplitude
and frequency. The recognition accuracy of ResBLSTM
for this set of similar movements is less than 90%(showed
in Fig.8(a)). Conversely, 1DCNN outperforms ResBLSTM
significantly in recognizing these movements, indicating that
1DCNN can capture subtle changes in data amplitude more
effectively. The combination of 1DCNN with ResBLSTM
shows a slight improvement in the performance of each
action, highlighting the importance of considering both
spatial and temporal characteristics in action recognition. The
results suggest that the joint utilization of spatial and temporal
features can enhance the model’s ability to distinguish similar
actions accurately.

The UCI-HAR dataset involves placing the mobile phone
on the waist and collecting data using the accelerometer
and gyroscope. For the actions of standing and sitting,
the changes in waist amplitude are smaller compared to
leg movements. As illustrated in Fig.8(b), the recognition
accuracy of a single feature extraction model, whether it is
1DCNN or ResBLSTM, is significantly reduced for these
actions. However, in comparison to the WISDM dataset, the
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FIGURE 8. (a) , (b), (c) are the F1-scores for each action of the four models in the WISDM, UCI-HAR, KU-HAR data, respectively.

recognition accuracy for upstairs and downstairs movements
improves in the UCI-HAR dataset. This improvement can be
attributed to the important role played by the angle changes
captured by the gyroscope in these particular actions. For the
actions of standing and sitting, the combination of 1DCNN
and ResBLSTM proves effective. After combining with
ResBLSTM, the F1-score increases by 2.24% and 2.58%,
respectively, compared to using 1DCNN alone. However,
in the case of walking and going upstairs, the performance
of the combined model is not as good as that of 1DCNN
alone. The addition of the attention mechanism leads to
a significant improvement in recognition accuracy. When
compared to 1DCNN+ResBLSTM, the F1-score increases
by 4.58% and 4.28%, respectively. This indicates that the
attention mechanism is highly effective in calculating the
weights of feature information.

The KU-HAR and UCI-HAR datasets have similar data
acquisition methods, with a time series length of 300 for
a single behavior. However, these datasets differ from
WISDM and UCI-HAR in that they contain more similar
and transitional actions. Actions such as stand, sit, and
stand-sit share a lot of similarities (shown in Fig.8(c)).
In these actions, ResBLSTMdemonstrates higher recognition
accuracy compared to 1DCNN, highlighting the advantages
of temporal features in capturing action sequences of
length 300. The combined recognition accuracy of 1DCNN
and ResBLSTM improves for these actions, although the
combination exhibits some instability in certain actions like
talk-stand and walk-circle. However, the addition of the
attention mechanism enhances the stability of the overall
model. For 10 out of the 18 actions, the highest recognition
accuracy is achieved, and the remaining 8 actions have an F1-
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TABLE 4. Classification confusion matrix on WISDM.

TABLE 5. Classification confusion matrix on UCI-HAR.

TABLE 6. Classification confusion matrix on KU-HAR.

TABLE 7. Comparison between the proposed algorithm and the existing algorithm in UCI-HAR, WISDM, and KU-HAR dataset.

score of over 98%. These results indicate that the combination
of 1DCNN, ResBLSTM, and Attention is highly effective in
distinguishing similar and transitional actions. It improves
the stability of the model and enables accurate recognition
of actions that are otherwise challenging to differentiate.

4) CONFUSION MATRIX ON PUBLIC DATASETS
The confusion matrix provides insight into the recognition
results of each action, where the horizontal axis represents
the predicted results and the vertical axis represents the true
labels. Table 4 shows the confusion matrix of the WISDM
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test set, consisting of 3432 data samples. The dataset has a
relatively larger proportion of walking and jogging actions.
Among the 1284 walking actions, only 7 were misclassified,
and among the 1097 jogging actions, 6 were misclassified,
resulting in recognition accuracies exceeding 99.4%. The
recognition accuracy for standing and sitting actions reached
99.9%. As analyzed in the previous section (compare each
behavior), the prediction errors were primarily concentrated
in the upstairs and downstairs actions. Specifically, 10 down-
stairs actions were misclassified as upstairs, and 6 upstairs
actions were misclassified as downstairs. Despite these
errors, the overall recognition accuracy still reached 99.01%.

Table 5 represents the confusion matrix of the UCI-HAR
test set, consisting of more than 400 samples for each action.
The data distribution in this dataset is relatively uniform. Out
of the total 2947 action data samples, 2926 were correctly
classified, resulting in an accuracy rate of 98.38%. Unlike the
WISDM dataset, the majority of misclassifications occur in
the standing and sitting actions, with recognition accuracies
of 96.13% and 94.92%, respectively. A significant portion
of these recognition errors can be attributed to the mutual
misclassification between these two actions. The reason
behind these errors is that when the smartphone is placed
on the waist, the difference between the standing and sitting
actions becomes less pronounced, leading to higher confusion
between the two actions.

Table 6 displays the confusion matrix of the KU-
HAR dataset, which consists of a richer variety of action
types. Despite the increased complexity, the combination
of 1DCNN+ResBLSTM+Attention is still able to effec-
tively identify actions with higher discriminability. The
recognition errors are mainly concentrated on three actions:
stand, sit, and talk-stand. Among these three actions,
a total of 40 mutual recognition errors occur. It is worth
noting that for these similar actions, the performance of
1DCNN+ResBLSTM+Attention is relatively poor com-
pared to other actions. However, even in these challenging
scenarios, the model still achieves a recognition accuracy of
more than 93%.

D. COMPARISON OF PROPOSED ALGORITHM WITH
PREVIOUS
To demonstrate the superior performance of our proposed
model, we conducted a comparative analysis with existing
algorithms that have been tested on the WISDM and UCI-
HAR datasets in recent years. In Table 7, we present the
comparison results using the same evaluation metrics to
ensure the reliability and fairness of the comparison. From
Table 7, it is evident that our proposed model outperforms
the existing algorithms on both the WISDM and UCI-HAR
datasets. The performance metrics such as accuracyand F1-
score demonstrate that ourmodel has achieved the best results
among the evaluated algorithms. These findings validate the
effectiveness and superiority of our proposedmodel for action
recognition tasks on these public datasets.

The KU-HAR dataset, which was constructed in 2021,
has a limited number of existing methods available for
comparison. In Table 7, we compared the performance
of our proposed model with a few other approaches that
have been tested on the KU-HAR dataset. The evaluation
metrics utilized for comparison demonstrate that our model
exhibits superior accuracyand F1-score compared to the other
methods. This indicates that our proposed model is highly
effective in accurately recognizing actions on the KU-HAR
dataset.

VI. CONCLUSION
In this paper, we propose a human activity recognition model
that combines three key components: a one-dimensional
convolutional neural network (1DCNN), an improved bidi-
rectional long short-term memory network (ResBLSTM),
and attention mechanisms. The proposed model aims to
improve the accuracy and stability of activity recognition
by effectively capturing both spatial and temporal features
of the input data. To begin with, the model utilized a
one-dimensional convolutional neural network to extract
the spatial features of the input data. The 1DCNN applies
convolutional operations to capture patterns and structures
in the data, and a pooling layer with an appropriate step
size is employed to reduce the length of the time series
while preserving relevant information. Next, the improved
ResBLSTM network is employed to extract temporal features
from the data. The bidirectional nature of the ResBLSTM
allows it to effectively model the dependencies and dynamics
of the sequential data. By considering information from
both past and future time steps, the ResBLSTM captures
important temporal patterns and context in the activity
sequences. Finally, the attention mechanism is incorporated
into the model to calculate the weights of different feature
information in the final recognition process. The attention
mechanism assigns higher weights to more informative
features, thereby enhancing the discriminative power of the
model and improving the accuracy and stability of activity
recognition. By combining the strengths of the 1DCNN,
ResBLSTM, and attention mechanisms, our proposed model
aims to overcome the limitations of existing approaches and
achieve improved performance in human activity recognition
tasks.

The ResBLSTM network, proposed in this study, exhibits
superior feature extraction capability and training stability
when compared to the BLSTM network. By combining
the 1DCNN and ResBLSTM models, we enhance the
feature extraction methods, enabling better identification of
similar human activities. Furthermore, the incorporation of
an attention mechanism enhances the representation ability
of the final recognition information, further improving the
model’s ability to distinguish between different actions.

In the UCI-HAR public dataset, we constructed Res-
BLSTM and BLSTMnetworks with different stacking layers.
The ResBLSTM network achieved a significant improve-
ment of approximately 3.6% in the F1-score compared
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to the BLSTM network. Additionally, we evaluated the
performance of our proposed 1DCNN-ResBLSTM-Attention
model on three public datasets: UCI-HAR, WISDM, and
KU-HAR. The overall recognition accuracy obtained was
98.37%, 99.01%, and 97.89%, respectively. Ablation exper-
iments were conducted to assess the effectiveness of each
component in our proposed model. These experiments
compared the F1-scores of different actions across the three
datasets. The results clearly demonstrated that our proposed
model excelled at distinguishing similar actions, providing
evidence of its efficacy.

The research has two primary limitations: (1) Insufficient
discussion about the optimal combination of convolutional
and Res-BLSTM layers for different datasets, and the impor-
tance of fine-tuning other hyperparameters for achieving
better results. (2) Higher algorithmic complexity compared
to LWRF and local binary methods, leading to increased
computing resource consumption in HAR. Additionally, the
method’s recognition performance may decrease when test
data contains singular values.

In this study, all experiments were conducted using human
activity datasets collected from mobile phones. As part of
future research directions, we plan to extend our experiments
to include different wearable sensing devices. Additionally,
we aim to explore methods to reduce the computational
requirements of the model and minimize hardware power
consumption.
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