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ABSTRACT The effective and accurate classification of plant diseases is an important task for agricultural
production. Therefore, some studies have utilized convolutional neural networks to identify categories of
plant diseases, which can effectively reduce the reliance on crop experts. To further improve the accuracy of
plant disease classification methods based on convolutional neural network, this paper proposes an attention
model designed for plant disease classification tasks. The proposed attention model contains bit-plane
attention and a correlation spatial attention. The bit-plane attention localizes disease areas by exploiting bit-
plane information. The correlation spatial attention enhances the weight of important areas in the feature map
by establishing the correlation between different areas. The accuracy of the proposed attention model inserted
into ResNet101 on the AI Challenger 2018 and PlantVillage datasets is 87.11% and 99.82%, respectively.
The performance is better than that of other methods studied on the public plant disease classification dataset.
Experiments show that the proposed attention model outperforms the widely used universal attention models
SE,CBAM, CA, ECA, BAM and GC. In addition, ablation experiments are conducted to verify the influences
of different variants of the proposed attention model on the results.

INDEX TERMS Image classification, plant disease classification, convolutional neural network, attention

mechanism, bit-plane attention.

I. INTRODUCTION

Food security is becoming increasingly important with the
rapid growth of the global population. Plant diseases seri-
ously affect plant yield and quality. Crop failures caused by
plant diseases have triggered food crises in many countries,
resulting in disastrous consequences. With the increase in
the number of crop species, the expansion of planting areas
and the diversity of cultivation methods, the classification
of plant diseases has become a costly and time-consuming
task. However, due to the limited number of agricultural
experts, a method for automatically classifying crop diseases
is needed. With the popularity of the internet and smart-
phones, farmers can take photos of crop diseases and utilize
offline plant disease classification software to correctly clas-
sify crop disease types. This could reduce the dependence
on crop experts and minimize food losses caused by crop
diseases.

The associate editor coordinating the review of this manuscript and
approving it for publication was Gangyi Jiang.

Plant disease recognition algorithms based on machine
learning require much prior expert knowledge, and
hand-designed feature extraction methods are used to extract
discriminant features from images and send them to the clas-
sifier. Bashish et al. [1] used K-means clustering to segment
images and input the texture features of objects into neural
network to complete classification. Qin et al. [2] combined
the K_median clustering algorithm and linear discriminant
analysis to extract texture, color and shape features from
plant images, and random forest, SVM and K-nearest neigh-
bors classifier were used to complete disease classification.
Machine learning methods require a large number of image
preprocessing operations, which can bring additional over-
head. There are many factors that affect the accuracy of the
above machine learning methods, such as lighting in complex
situations.

A convolutional neural network (CNN) makes full use of
the end-to-end learning mode, has its own feature detection
mechanism and is widely used in image detection and clas-
sification tasks. AlexNet [3] proposed by Alex Krizhevsky,
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was the champion of the ILSVRC competition. This model
uses ReLU as the activation function of the convolutional
neural network to solve the gradient dispersion problem of
deep CNNs. VGGNet [4] uses small convolution kernel and
designs a deep network structure to achieve improved classi-
fication accuracy. ResNet [5] is a landmark model in the field
of convolutional neural networks. It addresses degradation in
deep networks through residual connection. Deep learning
methods are currently replacing machine learning methods
because of their high accuracy.

At present, the classification methods of plant diseases
mainly fall into two categories: deep learning and transfer
learning. Deep learning methods need to design convolutional
neural network structures according to the characteristics of
plant disease images. Ferentinos et al. [6] introduced VGG
network to plant disease identification tasks. Amara et al. [7]
proposed a deep learning method for banana disease classi-
fication, which is based on the LeNet architecture and con-
siders lighting, background, size and resolution in complex
environments. Sladojevic et al. [8] proposed a convolutional
neural network model to identify 13 different plant diseases,
with an accuracy between 91% and 98%. Sun et al. [9] pro-
posed a model for classifying 26 plant leaf diseases based on
a convolutional neural network, which combines batch nor-
malization and global pooling, and obtained a classification
accuracy of 99.56%.

The accuracy of deep learning models depends on large
dataset, and in the field of agriculture, the diversity of
plant disease types cannot meet the modeling requirements
of deep learning. The idea of plant disease classification
based on transfer learning is to transfer knowledge from a
source domain to a target domain by relaxing the assump-
tion. Wang et al. [10] pretrained the convolutional neural
network model in PlantVillage and adjusted the neural net-
work parameters on their own dataset. The classification
accuracy of crop disease images in a small dataset reached
90.84%. Long et al. [11] first pretrained the AlexNet model
on the ImageNet dataset and then fine-tuned the camel-
lia leaf disease image, achieving an accuracy of 96.53%.
Yuan et al. [12] pretrained the VGGNet model on PlantVil-
lage and fine-tuned a small dataset through training strategies.
The experimental results showed that the accuracy reached
95.93%.

The above studies have made great progress, but to further
improve the accuracy of plant disease classification, the
convolutional neural network structure should be designed
according to the characteristics of plant disease images
to further improve the accuracy. However, exploring the
optimal convolutional neural network structure is a time-
consuming process. Therefore, some work [13], [14], [15],
[16], [17] has introduced the attention mechanism into the
model of plant disease classification based on convolutional
neural networks. The introduction of an attention model can
effectively improve the classification accuracy and avoid
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the time-consuming convolutional neural network design
process.

However, the current models of plant disease classification
based on attention mechanisms usually use variations of the
universal attention model to enhance the performance of
convolutional neural networks in plant disease classification
tasks. To further improve the performance of the atten-
tion mechanism in the plant disease classification network,
we propose an attention model specifically designed for plant
disease classification to improve accuracy. We propose intro-
ducing bit-planes as auxiliary information to further improve
the ability of the attention mechanism to locate disease areas.
At the same time, we also design the correlation spatial
attention by aggregating the information of different spatial
areas. The proposed attention model can effectively improve
the accuracy of plant disease classification by embedding the
ResNet series network, which is widely used in the field of
image classification. The proposed model is verified on two
public plant disease classification datasets, and the experi-
mental results show that the performance of the proposed
attention module is superior to that of the widely studied
attention models squeeze-and-excitation (SE) [18], convo-
lutional block attention module (CBAM) [19], coordinate
attention (CA) [20], efficient channel attention (ECA) [21],
bottleneck attention module (BAM) (22), and global context
(GC) [23]. By inserting the proposed attention model into
the convolutional neural network, the accuracy of plant dis-
ease identification can be improved more efficiently, and the
time-consuming convolutional neural network design process
can be avoided. In addition, the accuracy of plant disease
classification by inserting the proposed attention model into
the ResNet101 network is better than that of previous work
studied on public disease classification datasets.

The main contributions of this paper are summarized as
follows:

o This paper introduces the bit-plane technique into the
attention model for the first time.

« An attention model specially designed for plant disease
classification task is proposed, which can improve the
classification accuracy by inserting Res-NetlO1. The
performance of this attention model is superior to that of
the current influence universal attention model in plant
disease classification task.

o Compared with existing methods studied on public plant
disease classification datasets, the proposed method
shows more efficient performance.

The rest of the paper is organized as follows: Section II pro-
vides a brief overview of existing attention models and exist-
ing work on plant disease classification based on attention
mechanism. Section III is devoted to the proposed attention
method. Section IV discusses the experiment and results.
Section V illustrates the conclusion and the work that can be
carried out in the future.
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Il. RELATED WORK

A. ATTENTION MECHANISM

The attention mechanism originated from the study of the
human brain. To make rational use of limited resources,
people selectively pay attention to the most important infor-
mation while ignoring other redundant information. When
convolutional neural network features are input into the next
layer, the network cannot suppress the redundant information
that affects the accuracy of the network. A neural network
based on an attention mechanism gives lower weight to
unnecessary information in the feature map and increases the
weight of important information, thus achieving improved
performance. SENet uses a squeeze-and-excitation mod-
ule for the adaptive reweighting of different channels. The
squeeze operation specifically compresses the feature map
size by global average pooling to emphasize the relationships
between channels. The excitation operation adaptively cali-
brates the weights of the different channels by compressing
and expanding the channels. The CBAM was proposed as
an attention mechanism that integrates channel attention and
spatial attention. The CA attention module aggregates differ-
ent spatial axis features and then encodes the feature map
into two attention maps, each of which contains the remote
dependence of the two spatial axis features. ECA as a channel
attention model uses 1D convolution instead of a full connec-
tion layer to compress channels, thus significantly reducing
the number of parameters. BAM applies spatial and channel
attentional mechanisms in parallel, and its spatial attentional
mechanism employs dilated convolution to enlarge receptive
field. The GC attention model captures global dependencies
by aggregating global context information. LMFFNet [24]
proposed the MAD module for combining multiple scale
features to generate more accurate feature maps. D2Anet [25]
proposed a difference occurrence module to calculate local
correlations between multi-level changes.

B. ATTENTION-BASED PLANT DISEASE CLASSIFICATION
METHODS

Exploring the optimal network structure is a time-consuming
task, and the introduction of an attention mechanism can
effectively improve the accuracy achieved on the image
recognition task. The SACNN [13] constructs a backbone
network to extract global features and designs a self-attention
network to extract local disease features. DCPSNET [14]
proposes a CPSA attention structure, which first detects the
position of the target in the feature map by using a position
self-attention mechanism, and a channel self-attention mech-
anism is then used to explore the interdependencies between
channels. ECA_ResNet [15] is based on ResNet as the back-
bone network and uses the dual-branch channel attention
mechanism proposed by the authors to establish the depen-
dency relationships between channels. Dual-branch channel
attention uses GAP and GMP to compress the feature map
size, and a 1D convolution filter feature independently selects
key features in the dual branches via adaptive parameters.
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Ric-Net [16] improves CBAM in its backbone to further
improve its plant disease recognition accuracy. DTL-SE-
ResNet50 [17] is based on the attention model SE and is
trained on ImageNet and additional plant disease datasets to
improve the accuracy of plant disease recognition. However,
these methods only utilize the universal attention models,
ignoring the design of attention model for plant disease tasks.

lil. METHOD

A. OVERVIEW

Images with the same labels and semantics can be misiden-
tified as belonging to other categories due to differences in
the angles, lighting conditions, and positions of the object.
Attention mechanism-based models address this problem by
establishing relationships between spatial areas. Due to the
local receptive fields of convolutional neural networks, it is
difficult to establish dependence among different spatial area
features. We propose a correlation spatial attention mod-
ule, which further improves the performance of the spatial
attention mechanism by establishing relationships between
different areal features. In the attention module of existing
works, only the features extracted from the given image
are used to establish context information, but this approach
cannot further improve the accuracy of recognition due to the
smaller differences between some categories. In this paper,
we propose a bit-plane attention module, in which the perfor-
mance of the attention module is enhanced by supplementary
information according to the bit-plane information of the
image. Therefore, the proposed attention model includes cor-
relation spatial attention and bit-plane attention.

The ResNet series network consists of one convolutional
layer, several residual blocks and a full connection layer.
The number of residual blocks is determined by the depth
of the ResNet network. For example, the ResNet18 network
consists of 8 residual blocks. In the proposed attention model,
three bit-plane images need to be calculated based on the
plant disease image first, and then bit-plane information is
fused by a 1 x 1 convolution to input into each residual block,
as shown in Fig.1(a). Fig.1(b) shows the residual block struc-
ture adopted by ResNet18. The residual block of ResNet50
and ResNet101 is composed of three convolutional layers,
as shown in Figure Fig.1 (c). The calculation process of the
bit-plane image is given in chapter B. As shown in Fig.1(b),
the proposed attention model is inserted after the second
convolution layer of the residual block of ResNetl8. Due
to the deep layers of ResNet50 and ResNet101, the residual
blocks are composed of two 1 x 1 convolutions and one
3 x 3 convolution. The proposed attention model is inserted
after the second 1 x 1 convolution layer, as shown in Fig.1(c).
The attention module can be placed after the convolutional
layer to reassign weights to the features extracted from the
convolutional layer to emphasize important information.

As shown in Fig.2, the proposed attention model is differ-
ent from the universal attention models SE and CA. The SE
and CA attention modules only utilize image information,
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FIGURE 1. The embedding position of the proposed attention module. H, W, C denotes the tensor shape
height, width and depth. (a) Insert into the residual block of ResNet series Networks. (b) Inverted
residual block in ResNet18. (c) Inverted residual block in ResNet50 and ResNet101.
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FIGURE 2. Comparison of attention models. (a) The SE attention model. (b) The CA attention model. (c) The proposed attention

model.

while the proposed attention module utilizes both image
information and bit-plane information. The SE attention
mechanism is a classic channel attention model. The SE
attention model uses two convolution layers to compress and
expand channels to concentrate information and finally uses
sigmoid to calculate the weight of different channels. CA,
as a pioneering attention model in recent years, processes
the information of the width axis and height axis, fuses the
information through a 3 x 3 convolution layer, then processes
the information of the width axis and height axis through two
3 x 3 convolution layers, and finally calculates the weight of
different regions through sigmoid. The CA attention mech-
anism is a classic attention model that combines channel
and spatial attention. The proposed model deals with the
width and height axis information, respectively, but unlike
the CA attention model, the proposed model uses matrix
multiplication to recover the feature map size. The proposed
attention model is shown in Fig.2(c), which consists of two
parts: correlation spatial attention and bit-plane attention.
The proposed attention model is described in detail in the
following sections.
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B. BIT-PLANE ATTENTION

We think that the bit-plane contains unique clues regarding
the characteristics of the location of disease. Because most
of the plant leaf disease areas are black, the gradient of the
relevant area changes obviously, and the pixel value of the
area of disease in the bit-plane image varies greatly between
0 and 1, so the bit-plane information can be used to locate
the disease area. Therefore, we first propose the attention
mechanism based on bit-plane.

Before using the bit-plane information, it is necessary to
calculate the bit-plane image through the image. Let the gray
level of the pixel at location (z, y) in an image with gray levels
be represented as [26]:

o,y =ag125" +ag 227+ — +a2' + ap2°
ey
where ar, 0 < k < K—1,iseither O or 1. Let the kth-order bit-
plane image be denoted by by (x, y). For the case of an 8-bit
image, the image is composed of eight-bit-planes bg (x, y) ~
b7 (x,y) ranging from plane O to plane 7. We only use the
last three bit-planes to explore the relationships between the
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(a) Image

(b) Bit plane 7 (c¢) Bit plane 6 (d) Bit plane 5

FIGURE 3. Visualization of bit-planes 5~7.

channels. Fig.3 shows the result of visualizing bit-planes
5~7. The higher-order bit-plane images contain more visu-
ally significant data. Among the different bit-planes, are areas
in the image with high complexity. For example, if need
convert an 8-bit RGB image in the pixel range O to 255 to a
bit-plane image. First, an RGB image needs to be converted to
a grayscale image, so K is defined as 8 in the above formula,
ao2? is the pixel value of the bit-plane image at layer 0, and
ag 12K~ is the pixel value of the bit-plane image at layer 7.
The range of the pixel value of the bit-plane image is 0 or 1.
As shown in Fig.3, plant disease-relevant areas tend to
have large color variations, so pixel values vary significantly
between 1 and 0 in bit-plane images. Therefore, the bit-plane
image can be used as auxiliary information to generate the
attention map, which makes the network focus on the areas of
the image with large gradient changes. To feed the bit-plane
image into the network, we need to aggregate the three chan-
nels of the bit-plane using a 1 x 1 convolution and then feed
the aggregated feature map into the different residual blocks.
In each residual block, a 3 x 3 convolution is used to generate
the attention map to guide the correlation spatial attention
focus to the disease area. This process can be expressed as:

BA = Sigmoid(Csx3(bit)) 2)

where bit is the bit-plane feature map, C3x3 is the 3 x 3 con-
volution, Sigmoid is the sigmoid operation, and BA is the
bit-plane attention map.

C. CORRELATION SPATIAL ATTENTION

Spatial attention focuses on areas that contain more impor-
tant information. In existing works, pooling operations were
applied to aggregate different channel information along the
channel axis to highlight areas with important information.
To focus on the areas in the given image that are more
important to the classification task, we model the correlations
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among different spatial areas. Plant leaf disease areas often
do not exist alone, and there are corresponding other disease
areas in the leaves. When the spatial attention mechanism
can establish the correlation between different disease areas,
it can improve the classification accuracy. In the proposed
spatial attention module, we use matrix multiplication to
aggregate different spatial area features to establish correla-
tions between different spatial areas.

As shown in Fig.2, the max pooling operation is applied
to aggregate the information along the width and height
axes to generate feature maps MweRC*W*! and Mh e
REXIXH " respectively. Max pooling can better retain areas
with large gradient changes without being affected by back-
ground information. To capture correlations across areas,
matrix multiplication is applied to aggregate information
from different spatial areas. The larger the dot product in the
feature map is, the smaller the included angle between the
vectors, which indicates that the correlation between the two
areas is stronger. The feature map Fmx obtained after matrix
multiplication can be expressed as:

Fmx = mm(GMP,, (x) , GMPy, (x)) 3)

where GMP,, (x) and GMP}, (x) denote global max pooling
along the width and height axes, respectively, and mm() is
the matrix multiplication operation. To enhance the weight of
important channels, it is important to capture the relationship
between channels. We utilize two 1 x 1 convolutional layers
to compress and expand the feature map channels. The com-
pression rate r is 32. In this process, we use the element-wise
product operation to further guide the spatial attention to
locate the disease location using the bit-plane attention map:

SSA = Sigmoid(C(Cy(Fmx) x BA)) )

where C; and C;, are convolution layers with different num-
bers of convolution channels and SSA is the correlation spatial
attention map.

IV. EXPERIMENTS

A. DATASETS AND IMPLEMENTATION DETAILS

The PlantVillage dataset [27] and AI Challenger 2018 dataset
are utilized to train the proposed model. The PlantVillage
dataset is an open source dataset with 54,306 images in
38 categories, which cover 24 types of diseases and 14 types
of crops. The numbers of images in different categories
are evenly distributed. The types of crops are grape, soy-
bean, blueberry, cherry, orange, peach, bell pepper, potato,
raspberry, squash, apple, strawberry, and tomato. The plant
diseases include bacterial disease, mold disease, viral disease
and mite disease. The AI Challenger 2018 dataset contains
10 crops and 27 diseases, with a total of 36,379 images
divided into 61 categories. The images of the same class of
diseases in the PlantVillage dataset are similar. Different from
those in the PlantVillage dataset, the early disease images of
crops in the Al Challenger 2018 dataset are very similar to
the healthy images and the images of the same class in Al
Challenger 2018 have larger differences, so they are more
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difficult to classify. We use all the classes in the dataset to
train our model. The ratio of the training set to the test set is
8:2 for the datasets.

The proposed method is implemented with Python 3.8.8,
PyTorch 1.10.2 and CUDA 10.2. All experiments are per-
formed on an NVIDIA RTX2080TI GPU based on Ubuntu
18.04. During the training phase, Adam with weight decay
le-4 is used to optimize the network parameters. The initial
learning rate was set to 1e-3 and reduced to le-4 in epoch 5.
The batch size is 32. We set the epoch to 50. The proposed
model is pretrained on the ImageNet dataset.

B. EVALUATION METRICS

We evaluate the proposed model based on the following
metrics: accuracy, precision, recall, and F1 score. Accuracy,
as an important index of image classification, is defined as:

TN +TP
Accuracy = 5)
IN + TP + FN + FP
True negative (TN) represents the number of predicted
results that are negative and actual class that are also negative.
True positive (TP) represents the number where the predicted
result is positive and the actual class is positive. False negative
(FN) represents the number where the predicted result is
negative and the actual class is positive. False positive (FP)
represents the number of predicted results that are positive
and the actual class that is negative.
Precision is used to calculate the number of objects classi-
fied as positive that are truly positive:

. TP
Precision = —— (6)
TP + FP

Recall is used to calculate the proportion of positive sam-
ples that are correctly classified:

TP
Recall = ——— @)
TP + FN

The F1 score is used to calculate the weighted average
value of the recall and precision metrics:

2 x Recall x Precision
Flscore = — (8)
Recall + Precision

C. EXPERIMENTAL RESULTS ON THE Al

CHALLENGER 2018 DATASET

We compare the proposed attention model with the universal
attention model widely used in recent years. Table 1 shows the
results of different attention models on ResNet. As a channel
attention mechanism, SE improves the accuracy by 0.29% in
ResNet101. However, the SE attention model only enhances
the important channel weights, so it cannot make the network
accurately focus on the disease area. The CBAM attention
model uses both channel and spatial attention mechanisms.
The spatial attention mechanism makes the network focus on
the disease area by assigning higher weights to the disease
area in the feature map. The accuracy of CBAM is 0.78%
higher than that of SE. As an advanced attention model
in recent years, the CA attention model shows excellent
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performance on general tasks, and its performance in the
field of plant disease recognition also exceeds that of the
SE attention models. The ECA attention model is a channel
attention model that performs better than the SE model and
adds the fewest parameters among all the attention models.
The BAM attention model combines channel and spatial
attention, which shows excellent performance but also has
the highest number of parameters. GC attention is modeled
based on global context information, and the number of
parameters is similar to CBAM, but the performance is better
than CBAM. As an attention model specifically designed
for the field of plant disease recognition, the BCSA model
can better focus on disease areas with disease to enhance
network performance. We also compared the attention models
CAM [28] and CAE [29] that applied in other classification
tasks. The CAM and CAE have much higher parameters
than the universal attention model, while their accuracy has
not significantly improved. Compared with other universal
attention models, the BCSA attention model can improve the
classification accuracy of plant diseases more effectively, and
only a small number of parameters were added. The compu-
tational complexity of the proposed model is not significantly
different from that of other universal attention models.

We also compared our model with several other plant
disease classification models, and the results are shown in
Table 2. All the comparison methods were studied on pub-
lic plant disease classification datasets. The accuracy of the
above models was obtained by training on the AI Challenger
2018 dataset. References [6], [30], and [31] was an early
work for plant disease classification. They used a universal
image classification model to classify plant disease images.
Reference [32] improved the VGG 19 model and enhanced the
accuracy of the VGG model in plant disease recognition task.
Reference [33] introduced the attention mechanism into the
CNN model, which has only 0.7 M parameters and is suitable
for running on mobile devices. Reference [15] proposed an
improved CBAM attention model, which can significantly
improve the accuracy of plant disease recognition after being
inserted into ResNet variant models. Reference [16] used the
CBAM attention model to enhance the accuracy of CNN clas-
sification, and satisfactory results were obtained. The model
proposed by [34] and [35] achieves excellent performance
with a small number of parameters. Due to the excellent
image classification performance of ResNet101, an accuracy
of 87.11% is achieved after the insertion of the proposed clas-
sification performance of ResNet101, an accuracy of 87.11%
is achieved after the insertion of the proposed attention model,
which is also the highest accuracy among these models.

The testing error during training is shown in Fig.4. As the
number of epochs increases, the recognition accuracies of
several models increase gradually on the test set. We can
observe that ResNet101 with the SE, CBAM, CA, ECA,
BAM, GC and BCSA attention models reduces the overall
error on the test set with increasing epochs. For all models,
the test error decreases rapidly in the first 10 epochs and
becomes stable after 16 epochs. The test error of ResNet
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TABLE 1. Performance comparison among different attention models on the Al challenger 2018 dataset.

Models Settings Param GFlops Precision Recall F1 score Accuracy
ResNet18 - 11.20 M 35.70 G 81.81% 79.91% 80.85% 84.82%
ResNet18 +SE 11.28M 3572 G 83.34% 81.20% 82.26% 85.04%
ResNet18 +CA 11.26 M 3574 G 83.47% 81.80% 82.63% 85.24%
ResNet18 +CBAM 11.28M 3573 G 83.85% 82.02% 82.92% 85.52%
ResNet18 +ECA 11.20M 3571G 83.89% 82.08% 82.98% 85.69%
ResNet18 +BAM 11.39M 36G 83.96% 82.34% 83.14% 85.76%
ResNet18 +GC 11.29M 3572 G 83.82% 82.03% 82.92% 85.59%
ResNet18 +CAM 11.98 M 3586 G 83.78% 82.01% 82.89% 85.47%
ResNet18 +CAE 12.58 M 40.06 G 83.92% 82.26% 83.08% 85.72%
ResNet18 +BCSA 11.24M 3576 G 84.73% 82.90% 83.81% 86.66%
ResNet50 - 23.63M 83.94 G 83.10% 80.18% 81.61% 84.95%
ResNet50 +SE 26.11 M 84.05 G 83.44% 81.70% 82.56% 85.21%
ResNet50 +CA 2549 M 84.29 G 83.52% 81.95% 82.73% 85.38%
ResNet50 +CBAM 26.16 M 84.08 G 83.92% 82.33% 83.12% 85.72%
ResNet50 +ECA 23.63M 84.01 G 84.02% 82.49% 83.25% 85.87%
ResNet50 +BAM 28.86 M 84.17G 84.19% 82.51% 83.34% 86.03%
ResNet50 +GC 26.17M 84.05 G 83.76% 82.25% 83.00% 85.62%
ResNet50 +CAM 46.34 M 85.11G 83.84% 82.26% 83.04% 85.66%
ResNet50 +CAE 63.86 M 221.84 G 84.15% 82.49% 83.31% 85.98%
ResNet50 +BCSA 24.88M 84.38 G 84.91% 83.05% 83.97% 86.76%
ResNet101 - 42.62 M 161.94 G 83.52% 81.85% 82.68% 85.27%
ResNet101 +SE 4735M 162.13 G 83.76% 82.15% 82.95% 85.53%
ResNet101 +CA 46.20 M 162.59 G 84.04% 82.37% 83.20% 85.77%
ResNet101 +CBAM 4740 M 162.17 G 84.42% 82.62% 83.51% 86.31%
ResNet101 +ECA 42.63 M 162.08 G 84.62% 82.72% 83.66% 86.54%
ResNet101 +BAM 5250 M 16232 G 84.72% 82.91% 83.81% 86.65%
ResNet101 +GC 4743 M 162.13 G 84.55% 82.65% 83.59% 86.42%
ResNet101 +CAM 85.55M 163.85 G 84.33% 82.55% 83.43% 86.22%
ResNet101 +CAE 118.55 M 446 G 84.64% 82.78% 83.70% 86.44%
ResNet101 +BCSA 4499 M 162.45 G 85.23% 83.45% 84.33% 87.11%

TABLE 2. Performance comparison among different work on the Al challenger 2018 dataset.

Study Year Network Param Accuracy
Ferentinos [6] 2018 VGG 138 M 82.57%

Too et al. [30] 2019 DenseNet §M 84.25%
Kamal et al. [31] 2019 MobileNet 0.5M 83.74%
Chen et al. [32] 2020 VGG19 variant 41M 83.61%
Ramamurthy et al. [33] 2020 CNN-attnetion 0.7M 78.12%
Ronghua Gao et al. [15] 2021 ResNet18 variant +attention S51IM 86.09%
Zhao et al. [16] 2022 CNN-attention S9M 84.91%

Li et al. [34] 2023 CNN 4M 85.73%
Singh Thakur et al. [35] 2023 VGG variant 6M 85.37%
Our 2023 ResNet101+attention 45M 87.11%
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FIGURE 4. Loss curve of the attention model in the test set.
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FIGURE 5. Visualization of the disease classification process.

without attention is higher than that of the attention model
after epoch 13. Our model achieves the highest accuracy with
almost no fluctuation.
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We use class activation mapping (CAM) [36] to visualize
the model disease recognition process. As shown in Fig.5, the
red part represents the part concerned by the model, the blue
part represents the part ignored by the model, and the yellow
part represents the attention between the above two colors.
The ability to accurately focus on disease areas in an image is
the key to measuring the performance of an attention model.
The SE attention can only enhance the weight of important
information channels but not the weight of important spatial
areas, so it is difficult to accurately focus on plant disease
areas. The ECA and GC attention models are also susceptible
to interference from unrelated regions. The CBAM, BAM
and CA attention combine channel and spatial attention
mechanisms, so they can focus more accurately on the area
where the disease is located, but they are also disturbed by
irrelevant areas. As an attention model specially designed for
plant disease recognition, the proposed attention model can
accurately focus on the disease area and is not easily disturbed
by irrelevant areas.

D. EXPERIMENTAL RESULTS ON THE PLANTVILLAGE
DATASET

The images of different classes of the PlantVillage dataset are
more obvious. As shown in Table 3, the accuracy of ResNet
in the PlantVillage dataset can achieve nearly 99%. The
channel attention model SE can only improve the accuracy
by 0.09% on ResNet101, while the CBAM, BAM and CA
models combining channel and spatial attention improve the
accuracy by 0.38%, 0.52% and 0.21%, respectively. The ECA
attention model improved accuracy by 0.37% with almost no
additional parameters. The accuracy of the global attention
model GC was improved by 0.44% after it was plugged into
the ResNet101 network. Although the accuracy of the ResNet
series model reached 99% on the PlantVillage dataset, the
accuracy of classification continued to be improved after
the insertion of the attention model. The performance of
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TABLE 3. Performance comparison among different attention models on the plantvillage dataset.

Models Settings Param GFlops Precision Recall F1 score Accuracy
ResNet18 - 1120 M 35.70 G 98.25% 98.14% 98.19% 98.62%
ResNet18 +SE 11.28 M 3572 G 98.49% 98.32% 98.40% 98.77%
ResNet18 +CA 11.26 M 3574 G 98.70% 98.59% 98.64% 98.91%
ResNet18 +CBAM 11.28 M 3573 G 98.71% 98.64% 98.67% 99.12%
ResNet18 +ECA 11.20M 3571G 98.82% 98.67% 98.84% 99.18%
ResNet18 +BAM 11.39M 36G 98.79% 98.69% 98.94% 99.21%
ResNet18 +GC 11.29M 3572 G 98.75% 98.62% 98.88% 99.16%
ResNet18 +CAM 11.98 M 3586 G 98.67% 98.57% 98.62% 99.06%
ResNet18 +CAE 12.58 M 40.06 G 98.77% 98.72% 98.74% 99.18%
ResNet18 +BCSA 11.24M 35.76 G 99.12% 99.02% 99.07% 99.36%
ResNet50 - 23.63M 83.94 G 98.56% 98.40% 98.48% 98.84%
ResNet50 +SE 26.11 M 84.05 G 98.61% 98.56% 98.59% 98.92%
ResNet50 +CA 2549 M 84.29 G 98.72% 98.61% 98.66% 98.98%
ResNet50 +CBAM 26.16 M 84.08 G 98.75% 98.57% 98.66% 99.02%
ResNet50 +ECA 23.63M 84.01 G 98.88% 98.62% 98.72% 99.16%
ResNet50 +BAM 28.86 M 84.17 G 98.83% 98.67% 98.75% 99.15%
ResNet50 +GC 26.17M 84.05 G 98.81% 98.68% 98.74% 99.08%
ResNet50 +CAM 46.32 M 85.11 G 98.77% 98.45% 98.61% 98.96%
ResNet50 +CAE 63.90 M 221.84 G 98.76% 98.64% 98.70% 99.04%
ResNet50 +BCSA 2488 M 84.38 G 99.24% 99.07% 99.15% 99.52%
ResNet101 - 42.62M 161.94 G 98.67% 98.52% 98.59% 98.95%
ResNet101 +SE 4735M 162.13 G 98.77% 98.53% 98.65% 99.04%
ResNet101 +CA 46.20 M 162.59 G 98.85% 98.64% 98.74% 99.17%
ResNet101 +CBAM 4740 M 162.17 G 99.11% 98.98% 99.04% 99.33%
ResNet101 +ECA 42.63M 162.08 G 99.05% 98.92% 98.98% 99.32%
ResNet101 +BAM 5249M 16232 G 99.13% 98.97% 99.05% 99.47%
ResNet101 +GC 4743 M 162.13 G 98.77% 98.83% 98.80% 99.29%
ResNet101 +CAM 85.55M 163.85G 99.08% 98.87% 98.97% 99.25%
ResNet101 +CAE 118.60 M 446.16 G 99.12% 98.92% 99.02% 99.42%
ResNet101 +BCSA 4499 M 162.45 G 99.44% 99.28% 99.36% 99.82%

TABLE 4. Performance comparison among different work on the plantvillage dataset.
Study Year Network Param Accuracy

Ferentinos [6] 2018 VGG16 138M 97.32%

Too et al. [30] 2019 DenseNet 8§M 98.16%

Kamal et al. [31] 2019 MobileNet 0.5M 97.18%

Chen et al. [32] 2020 VGG19 variant 41 M 98.24%
Ramamurthy et al. [33] 2020 CNN-+attnetion 0.7M 97.86%
Ronghua Gao et al. [15] 2021 ResNet18 variant +attention 51M 99.41%

Zhao et al. [16] 2022 CNN-+attention S9M 98.76%

Li et al. [34] 2023 CNN 4M 98.49%
Singh Thakur et al. [35] 2023 VGG variant 6M 98.72%
Our 2023 ResNet101+ attention 45M 99.82%
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FIGURE 6. Loss curve of the attention model in the test set.

CAM attention model is lower than that of CBAM attention
model. The CAE attention model has higher accuracy than
the CAM attention model, but the number of parameters also
significantly increases. By applying the proposed attention
model, the accuracy of ResNetl01 is improved by 0.87%,
and the number of parameters is only increased by 2.4 M.
Experimental results on the PlantVillage dataset also show the
effectiveness of the proposed attention model in plant disease
classification tasks.

We also compared our method with other plant disease
classification models on the PlantVillage dataset. The accu-
racy of most models is close to 99%, as shown in Table 4.
Reference [6] used the VGG16 network to classify plant
diseases. The accuracy of this model is 97.32% in the
PlantVillage dataset. References [30] and [31] also used the
universal image classification model to classify plant dis-
eases, with accuracies of 98.16% and 97.18%, respectively.
References [32] and [35] improved the VGG16 model, with
improved accuracy compared to [6]. Reference [34] designed
a CNN network for the characteristics of plant diseases.
Because it has fewer model parameters, it is more suitable
to run on mobile devices. Due to the performance of ResNet
in image classification, both the proposed method and [15]
achieve satisfactory accuracy. The number of parameters in
the proposed model is lower than that in [15], and the accu-
racy increases by 0.41%.

Fig.6 illustrates the error on the test set during train-
ing. In the first four epochs, the error of all models
decreases rapidly, and the fluctuation of all models from
epoch 4 to epoch 16 is drastic. Since all models in the
PlantVillage dataset can achieve high accuracy, the error
stable value is reached from epoch 16 to epoch 50. The
convergence performance of ResNet101 with attention is
stronger than that of ResNetl0l, and the experimental
results show that the attention model has better convergence
performance.
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E. ABLATION EXPERIMENTS FOR THE PROPOSED
ATTENTION MODEL

The previous experiments have proven the effectiveness of
the proposed attention model on plant disease classification
tasks. We also designed several experiments to verify the
effects of different components of the proposed attention
model on the results.

To verify the effectiveness of the proposed bit-plane atten-
tion module, we design an ablation experiment to verify the
performance improvement brought by the bit-plane module.
As shown in Table 5, ResNet101 with the addition of the
bit-plane attention module has 0.58% and 0.3% improve-
ments on the Al Challenger 2018 and PlantVillage datasets,
respectively. That is, after adding the bit-plane attention mod-
ule, the attention can further locate the defect area according
to the bit-plane information, thereby improving the accuracy
of the model. Applying the bit-plane attention module will
not add too many parameters to the model.

To demonstrate the performance of the proposed cor-
relation spatial attention, we conduct a series of ablation
experiments. As shown in Table 6, after adding correla-
tion spatial attention, the ResNet101 network has 0.7% and
1.53% improvement on the PlantVillage and AI Challenger
2018 datasets, respectively.

Overall, there were multiple disease areas in the same
leaf, and the correlation spatial attention can aggregate the
different disease area information to establish correlations to
improve the performance of the model. Experimental results
show that when the correlation spatial attention module is
inserted, the accuracy of plant disease recognition tasks can
be improved.

We also tested the effect of the pooling operation in the
correlation spatial attention module on the results. We can
observe from Table 7 that the maximum performance can be
achieved when the correlation spatial attention module aggre-
gates different spatial axis information using max pooling.
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TABLE 5. Evaluation results of variations in the bit-plane attention module on the plantvillage and Al challenger 2018 datasets. the backbone of the

network is ResNet101.

Setting Param PlantVillage Al Challenger 2018
w/o bit-plane attention 44.99 M 99.52% 86.53%
+ bit-plane attention 4499 M 99.82% 87.11%

TABLE 6. Evaluation results of the correlation spatial attention module on the plantvillage and Al chal-lenger 2018 datasets. the backbone of the network

is ResNet101.

Setting Param PlantVillage Al Challenger 2018
w/o correlation spatial attention 42.62M 99.12% 85.58%
+ correlation spatial attention 44.99 M 99.82% 87.11%

TABLE 7. Evaluation results of pooling in the correlation spatial attention module on the PlantVillage and Al Challenger 2018 datasets. The backbone of

the network is ResNet101.

Setting PlantVillage Al Challenger 2018
max pooling 99.82% 87.11%
avg pooling 99.26% 86.69%

TABLE 8. Evaluation results of ratio r in the correlation spatial attention module on the PlantVillage and Al Challenger 2018 datasets. The backbone of

the network is ResNet101.

Setting Param PlantVillage Al Challenger 2018
4 61.59 M 99.12% 85.34%
8 52.10M 99.59% 86.52%
16 4736 M 99.49% 86.78%
32 44.99 M 99.82% 87.11%
64 43.80 M 99.45% 86.66%

This is because max pooling can retain the texture and color
change information in the feature map and eliminate the inter-
ference of irrelevant information. Therefore, we utilize max
pooling to aggregate the different spatial axis information
to subsequently establish the correlation between different
areas. Table 8 shows the influence of different ratios r in the
correlation spatial attention module on the results. We set
different ratios r to observe the performance change. The
larger the ratio r value is, the fewer the model parameters.
When the r value decreases, the model parameters increase
accordingly. The best performance can be achieved by set-
ting an appropriate value of r. We can observe that the best
performance is achieved when the value of r is 32.

V. CONCLUSION

In this paper, an attention model designed specifically for
the task of disease classification is proposed to enhance the
accuracy of the plant disease classification task and reduce
the time-consuming convolutional neural network design pro-
cess. A bit-plane attention mechanism has been proposed to
use bit-plane information to locate disease locations. This is

93862

also the first time that bit-plane technology has been intro-
duced into the attention mechanism. The correlation spatial
attention enhances the attention performance by matrix mul-
tiplication to establish the correlation of diseases in different
areas. After the proposed attention model is inserted into
the ResNet101 network, the accuracy of the test set on the
Al Challenger 2018 and PlantVillage datasets is 87.11%
and 99.82%, respectively. The performance of our method
is better than that of the model that studies on the public
plant disease classification dataset. Experimental results on
two public plant disease datasets show that the proposed
attention model inserted into the ResNet can enhance the
accuracy of plant disease classification and that the proposed
attention model outperforms the widely used SE, CBAM,
CA, ECA, BAM, and GC attention models. In addition,
we also design ablation experiments to verify the influence
of different variants of the proposed attention model on the
results. In future work, researchers can continue to improve
the attention model proposed in this paper and insert it into
their own CNN model to improve the accuracy of plant dis-
ease classification. In addition, researchers can further study
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the bit-plane attention mechanism to improve its performance
and extend it to other image processing tasks.
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