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ABSTRACT Medical device failure and maintenance records are essential information, as some nations lack
dedicated systems for capturing this valuable data. In addition tomaking healthcare more intelligent and indi-
vidualized, machine learning has the potential to transform the conventional healthcare system. Optimizing
AI models in decision-making could mitigate the effects of three research issues: malfunctioning medical
devices, high maintenance costs, and the lack of a strategic maintenance framework. This study proposes a
data-driven machine-learning model for predicting medical device failure. The proposed predictive model is
developed using multimodal data of structured maintenance and unstructured text narrative of maintenance
reports to predict the failure of 8,294 critical medical devices. In developing the model, 44 varieties of
essential medical devices from 15 healthcare institutions in Malaysia are utilized. A classification problem
is addressed by classifying failure into three prediction classes: (i) class 1, unlikely to fail within the first
three years, (ii) class 2, likely to fail within three years; and (iii) class 3, likely to fail after three years from
the date of commissioning. The topic modelling and synthesis strategy: Latent Dirichlet Allocation is applied
to unstructured data in order to uncover concealed patterns in maintenance notes captured during failures.
In addition, sensitivity analysis is performed to select only the most significant parameters affecting the
failure performance of the medical device. Then, four machine learning algorithms and three deep learning
networks are evaluated to determine the best predictive model. Based on the performance evaluation, the
Ensemble Classifier is further optimized and demonstrates improved accuracy of 88.80%, specificity of
94.41%, recall of 88.82%, precision of 88.46%, and F1 Score of 88.84%. The study proves a reduction
in intervention from 18 to 8 features and a reduction in training time from 1660.5 to 901.66 seconds for
comprehensive model development.

INDEX TERMS Artificial intelligence, machine learning, medical device failure prediction, medical device
maintenance, maintenance cost.
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I. INTRODUCTION
The complexity ofmanagingmedical devices has increased in
recent years due to the equipment’s increasing sophistication
and specialization, its integration with electronic networks,
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and its reliance on outsourcing for specialized maintenance
and repair. The internet of things application has evolved by
using sensor installation in individual equipment to capture
data. However, the discrete sensor and internet coverage to all
facilities incurred a significant cost in facility management.
In addition, the compliance, safety, and reliability criteria are
always rising and undergoing rapid transformation [1].
The World Health Organization (WHO) describes pre-

market, placing on-market and post-market as the three main
stages in regulating medical device law. Malaysia, for exam-
ple, has enacted Medical Device Act 2012 (Act 737) and
Medical Device Authority Act 2012 (Act 738) and embarked
on these two regulations in Medical Device Regulatory Sys-
tem. Act 737 regulates medical devices in the industry;
meanwhile, Act 738 creates theMedical Device Authority for
law enforcement. Any apparatus or instruments used, alone or
in combination, for diagnosis, prevention, monitoring, treat-
ment, or injury are considered medical devices [2].

The maintenance strategy aims to assure medical devices’
dependability, maintainability, availability, and safety.
A WHO reported that 50% to 80% of devices are dysfunc-
tional due to the lack of maintenance culture and skills [3].
Numerous studies have found a correlation between catas-
trophic injuries and patient fatalities caused by malfunction-
ing medical devices [4], [5], [6], [7]. According to WHO
estimation, over 50% of medical devices in low-middle-
income countries are non-functional, not fully utilized and
maintained [8].

By then, failure in user handling, use of refurbished
or procurement of non-original equipment manufacturer’s
spare parts, random failure, incompetent repair technique,
and wear-out failures are among the significant causes of
equipment failures [3]. Besides, design defects and other
environmental factors and stress, such as electromagnetic
interference, high temperatures or humidity, may impact the
device’s functionality.

The market for maintaining medical devices increased
tremendously, estimated at USD 35.3 billion in 2020, and
it is anticipated to grow at a compound annual growth rate
(CAGR) of 7.9 percent from 2021 to 2027. The sophis-
ticated increase in medical device maintenance market is
driven by increasing demand for medical devices and an
increase in the market for refurbished medical devices [9].
The recent installation reported by Markets and Markets [10]
denotes a significant increase in cost with the service contract,
which demands 12% of the device’s cost to be spent yearly.
Throughout the device’s lifecycle, the overall maintenance
costs are more substantial than the device’s cost [10], [11].
The government continues the burden of the high main-

tenance costs with ageing medical devices due to limited
budget allocation for device replacement every year. The
medical device replacement policy has to be strengthened,
and the scenario worsens with unlimited maximum age for
medical device usage. For example, in Malaysia, it is stated
in Auditor’s General Report published in 2021 that 19.6% of

medical devices with more than 20 years of age and 11.5%
have reached the end of life but are still in service [11].
The value of medical devices more than 20 years in age is
equivalent to Malaysian Ringgit (MYR) 641.59 million to be
replaced and is impractical to be executed simultaneously.

There are three main types of maintenance: corrective
maintenance, preventive and predictive maintenance. Correc-
tive maintenance is performed once a failure is discovered to
return devices to their working state. In contrast, preventa-
tive maintenance is performed in a predefined interval as a
preventive action before failure, lowering the risk of medical
device breakdown or deterioration [1]. In order to minimize
future failure, predictive maintenance is performed and is a
proactive task for future failure predictions.

During the COVID-19 pandemic, the use of big data
analytics to foresee the risk of failures has garnered much
attention due to its predictive potential. In medical device
maintenance, there are two types of maintenance data: struc-
tured and unstructured [12]. An example of structured data
is the device age, while an example of unstructured data is
failure notes recorded in the log history. The majority of
extant literature employs numerical and categorical forms of
structured data. To the best of our knowledge, none of the
existing studies utilizes text narratives input inmedical device
performance prediction studies.

This research proposes an enhanced study by present-
ing multimodal data for the failure prediction of medical
devices. An example unstructured data application for mod-
elling is Latent Dirichlet Allocation (LDA). An LDA is a
topic modelling approach and one of the most effective for
text document analysis [13].
Concerning the research problems related to malfunc-

tioning medical devices, high maintenance cost and ageing
devices, a predictive model is proposed driven by the follow-
ing objectives:

• To determine medical device failure occurrence patterns
from multimodal unstructured maintenance reports.

• To integrate multimodal structured and unstructured text
narrative maintenance reports for failure prediction.

• To propose a failure predictive model based on multi-
modal data using machine learning and deep learning
techniques.

• To perform cost analysis based on a predictive medical
devices failure model.

This study provides a failure prediction for three classes
of medical devices. The article is organized as follows.
Section II discusses the related works that apply medi-
cal devices, machine learning and deep learning studies.
Section III explains the nature of the dataset, machine learn-
ing, deep learning algorithms and the technique used for
identifying significant features. The comparison of model
performances and optimization is elaborated in Section IV.
Last but not least, Section V. discusses the final model frame-
work, strategicmaintenancemanagement and describes novel
contributions before a conclusion is made in Section VI.
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TABLE 1. Medical device performance prediction studies.

II. RELATED WORKS
Machine learning (ML) studies statistical models that create
mathematical models using sample data to make predictions
and are widely used, especially during post-pandemic [14].
These models are based on probability, statistics, and algo-
rithms. Contrarily, deep learning (DL) is a subset of machine
learning which uses neural network topologies with an
input layer, an output layer, and several hidden layers as a
whole system. Like ML, DL can be classified as supervised
and unsupervised learning. Examples of supervised learning
in DL are Artificial, Convolutional, and Recurrent Neural
Networks [15].

Researchers highlight the medical device reliability topic
into three main areas, namely, i) risk management, ii) perfor-
mance prediction for medical devices usingML, and iii) med-
ical device management systems. Riskmanagement areas can
be classified into risk analysis, failure, and prioritization of
medical devices’ reliability. A combination of Failure Mode
and Effect Analysis with Fuzzy (FFMEA) technique [16],
FMEA [17], and Analytical Hierarchy Process (AHP) [18]
are among the methods discussed in the risk management
area.

Table 1 tabulates the utilization of machine learning in
predicting medical device failure. The evaluation of the per-
formance of medical devices is discussed; however, these
studies only apply to one type of equipment. Three pieces of
types of equipment involved were an infusion and perfusion
pump by Hrvat, et al. [19], an infant incubator by Spahić,
et al. [20], Kovačević, et al. [21] and a defibrillator by Bad-
njević, et al. [22].
In the mentioned studies, Kovačević, et al. [21] predicted

device functionality for infant incubators in two categories:
accurate and faulty, with a 98.5% accuracy and for decision
trees algorithm and a 100% accuracy for artificial neural net-
work algorithm [20]. Badnjevic et al. investigated mechanical
ventilators and infant incubators using a similar approach.
A defibrillator’s performance parameter value was used to

predict whether equipment would pass (positive) and faulty
(negative) inspection using a random forest classifier with
good accuracy of 100% [22].

On the other hand, Hrvat, et al. [19] achieved 98.41%
accuracy using conformity evaluation, where the results are
classified as pass or fail for infusion and syringe pumps.
These findings suggest that even if a model for perfor-
mance prediction has been developed, the model does
not apply to other categories of critical medical equip-
ment. Furthermore, there is a lack of an approach using
cost analysis that would impact the existing maintenance
programme.

Medical devices management system is an administration
point of view topic to ensure the device’s dependability.
The factors affecting the maintenance and management of
medical equipment were identified byBahreini et al. [23] and
are summarized in the following categories: human resources,
financial, resources, inspection and preventive maintenance,
physical documentation, education, service, quality control,
information bank, management, services, training and edu-
cation, design and implementation.

Moreover, prioritization is an alternative to overcome
limitations in maintenance tasks and replacement plans.
Maintenance and replacement expenses are optimized by
categorizing medical devices into several criticality cate-
gories [18]. Recently, Zamzam et al. [24] proposed three
robust models: corrective, preventive, and replacement plans
for medical equipment at health clinics. The equipment is
classified into low, medium, and high categories using the k-
means technique. The result concludes that Support Vector
Machine (SVM) outperforms other algorithms in prioritizing
medical devices, with an accuracy of 99.42% for the preven-
tive maintenance model.

There is still an opportunity for improvement where the
model can be expanded to include critical medical devices at
larger healthcare institutions that provide more comprehen-
sive clinical services. In addition, the study excludes high-end
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equipment with high maintenance costs because such equip-
ment is only available in larger facilities, such as hospitals.
The study may be improved by using unstructured data to
uncover other critical aspects of failure prevention.

The SVM approach in ML was also chosen in other
medical device studies to assess the quantity of repairs and
time-lapse to subsequent repair or failure [25]. Nevertheless,
the authors developed the model based on a single SVM
approach and limited assessment of infusion pumps and pulse
oximeter device maintenance records.

Meanwhile, from a reliability engineering point of view,
DL is used for optimal maintenance strategy in estimat-
ing Remaining Useful Life (RUL) for bearings using sen-
sors [26]. A heterogeneous sensor framework is suggested
for maintenance decisions with RUL prognostics estimation
and post-prognostics verdict [27]. Besides, a DL technique is
used to build an intelligent fault diagnosis using a gear-box
dataset and bearing dataset to validate the performance of the
machines [28], and a time-series application is applied as a
case study for a cylinder of a small trolley in the automobile
assembly line. The results benefit the manufacturing industry
in improving the existing practices [29].
None of the publishedworks utilizes DL to predict the need

for medical device maintenance. In addition, existing studies
utilize only structured numerical data, and other researchers
have not investigated the application of multimodal or nar-
rative text data. The unstructured text data contains valu-
able information regarding the primary cause of equipment
failures.

As a result, to address the shortcomings in the aforemen-
tioned studies, this researchwill investigate the following new
scientific findings:

• The existing published works on medical equipment
performance prediction are for individual devices: defib-
rillators, infusion pumps, and infant incubators [19],
[20], [22], [25]. The prediction of performance includes
faulty and accurate or pass-and-fail responses. How-
ever, comprehensive studies are still lacking, and cost
impact is not described. This study offers comprehensive
cost analysis and the development of a new predictive
model; (i) class 1, unlikely to fail in the first three years,
(ii) class 2, likely to fail in three years; and (iii) class 3,
likely to fail after three years from its commissioning
date.

• The related works analysis concludes that medical
device reliability can be classified into three distinct
areas: management system, performance prediction, and
risk assessment. In most studies, failure code analy-
sis was proposed for reliability assessments. However,
the studies still require manual human intervention
and expert personnel to perform manual and thorough
inspections.

• In addition, none of the published works demonstrates
the usage of text narrative input for medical device
performance prediction. Thus, this research proposes
a new approach to medical device failure prediction

by leveraging multimodal data. The proposed approach
integrates structured data and text narratives (unstruc-
tured data). Besides, the word cloud is used to determine
the root cause of failures to strengthen the existing rou-
tine maintenance duties.

• In accordance with the standard procedure, the cost
of scheduled and corrective maintenance for medical
equipment will be incurred following their acquisition,
regardless of when the failure may occur. Government
healthcare facilities invest significantly in high-tech
medical equipment, necessitating a contract obligation
for routine and corrective maintenance. By incorporat-
ing the prognostic aspect of AI, it is possible to antic-
ipate the failure of a device and prepare the necessary
resources.

• Besides, the proposed approach will enable data-
driven decision-making. By analyzing vast datasets,
AI-enabled predictive maintenance systems generate
valuable insight. These insights can be used to optimize
maintenance processes, refine purchasing decisions and
inform strategies or device replacement.

Therefore, by utilizing data-driven decision-making usingAI,
healthcare organizations can make more informed decisions,
streamline operations, and improve long-term planning. The
ML and DL algorithms are tested to develop the best multi-
modal predictive model. The framework will be deliberated
in the next section.

III. METHODOLOGY
This section comprehensively describes the proposed pre-
dictive models’ development and associated techniques. All
algorithms are explained, and details on the entire process of
the proposed framework are included.

A. DATASET DESCRIPTION
In this study, we constructed a model of medical equipment
failure based on data acquired from five hospital classes
under Malaysia’s Ministry of Health hospitals in Perak. The
selected hospitals are state, major, minor, non-specialist,
and special psychiatric facilities. Perak is a state located
on the Malay Peninsula’s western coast. It shares land bor-
ders with the Malaysian states of Kedah, Penang, Kelantan,
Pahang, and Selangor to the north, northwest, east, and south,
respectively.

Perak is one of the largest states in Malaysia. As of June
2022, the population is 2,500,000.00, with a land area of
20,099 km2) [30]. 43.50% of the total 8,294 critical medical
devices included in the study are located in the Kinta area,
followed by 18.57% in the Larut Matang district and 11.4%
in the Hilir Perak district.

The Perak State hospital, as tabulated in Table 2 has
1,394 beds, two major specialist hospitals with 608 and
548 beds, two minor specialists with 305 and 250 beds, nine
non-specialist or district hospitals with 50 to 160 beds, and
an institution for specialized psychiatry with 1800 beds.
A total of 15 hospitals involved with clinical services are
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TABLE 2. Selected healthcare facilities.

managed by clustering in their respective areas, and the state
hospital delivers 15 speciality services and designated sub-
specialists based on the region. General Medicine, General
Surgery, Pediatrics, Orthopedics, Obstetrics, Ophthalmology,
ENT (Otorhinolaryngology), Emergency Medicine, Psychia-
try, Dental, Dermatology, and Nephrology.

Gigantic maintenance and device details are challenging
to manage since they are too complex and collected by the
current database management systems, namely Asset and
Services Information System (ASIS). ASIS is a data source
for the study and analysis, with data available from 1991 to
April 2021 (30 years). Even though the system can hold a
vast amount of data, challenges arose when clinical engineers
could not convert a large amount of maintenance data into a
reliable instrument where more strategic maintenance plans
could be implemented.

The Malaysia Standard (MS2058:2018) is the standard
for active medical devices deployed in healthcare facilities,
and maintenance tasks are described to prolong the device’s
useful life. In the standards mentioned above, laboratory,
diagnostic and therapeutic are the three main categories that
cover the industry’s needs. These categories are grouped
into patient support devices and critical devices. This study
focuses on critical medical devices to accommodate critical
needs; research on non-critical devices is accessible in current
knowledge.

Therefore, medical equipment under the laboratory cat-
egory is excluded and is classified as non-critical devices.
A total of 8,294 pieces of equipment with 44 types are
applied: 36.23% are infusion pumps, and 15.18% are phys-
iologic monitoring systems for acute care. Other devices
are below 10% in percentage, comprehensive of high-end
equipment. Most high-end equipment includes Magnetic
Resonance Imaging, Computed Tomography, Radiographic
or Fluoroscopic Systems, Mammographic and Angiographic
Systems.

Besides, other critical equipment such as ultrasonic, stim-
ulators, resuscitators, peritoneal dialysis units, pacemakers,
lithotripters, injectors, surgical hand drills, dental radio-
graphic, mobile radiographic/fluoroscopic, laparoscopes,
colposcopes, colonoscopes, cystoscopes, and drills bone are
also included in the dataset.

B. STRUCTURED DATA PRE-PROCESSING
The data collection is extracted fromASIS, and pre-processing
is performed to select significant input parameters, normalize
the data, and exclude the missing data. Normalization ensures
all characteristics are of the same scale and range. The
dataset’s vector-wise z − score is returned after normaliza-
tion, with a standard deviation of one and a center value of
zero [24].

The z − score is determined by measuring the separation
of each data point from the mean and standard deviation. The
z − score value is represented by x, µ is the mean, σ is the
standard deviation, and n denotes the highest probability esti-
mation of the population’s standard deviation. The standard
deviation of x and the mean of x, will be returned as a vector
and matrix, respectively. The following equation is used to
calculate the z−score of an x value after normalization, which
operates separately on each column of data using equation (1)
and (2) below:

z− score =
x − µ

σ
(1)

σ =

√∑n
i=1 (x1 − µ)2

n
(2)

C. UNSTRUCTURED DATA PRE-PROCESSING
The pre-processing process is conducted on text narrative
data to eliminate insignificant words such as a personnel
name, ‘and’, ‘for’, ‘ok’, ‘to’, ‘done’, ‘good’, ‘functioning’
etc. Other pre-processing tasks are to change to lowercase
since the capitalization has often been carried out inconsis-
tently and remove leading or trailing white space. The punc-
tuation and non-letter are removed. Any infrequent words
that occur less than two times are eliminated to simplify the
word cloud. The Bag of Words (BOW) technique generates
the word cloud by cluster using the imported text narrative
information.

The process involved treating n-grams as a specific word,
and the model was fitted using a bag-of-n-grams model. The
tokenized breaks the words into tokens, and BOW counts
the unique words. The word cloud creation tools include the
LDA for text document analysis [13], [31], as in Fig.1. The
model supposes the topic mixtures, and these topics are based
on Dirichlet distribution with concentration parameters of
α correspondingly. Besides, z represent the random variable
depicted by an integer from one through K, andwwill charac-
terize an integer from number one through the sum of words
in the entire vocabulary [32].
Thus, the LDA fusion and a perplexity modelling is gen-

erated, where θ1 to θD is the pool of D documents which is

93164 VOLUME 11, 2023



N. H. A. Rahman et al.: Medical Device Failure Predictions Through AI-Driven Analysis

FIGURE 1. Latent Dirichlet Allocation Fusion.

known as a topic mixture, and over K, number of topics. It is
depicted by the vectors of word probabilities ϕ1 to ϕK . using
equation (3) below:

p (w | α, ϕ) =

∫
θ

p(θ |α)
N∏
n=1

∑
zn

p(zn|θ )pwn|zn, ϕ)dθ (3)

D. PREDICTIVE MODELLING
The response boundary classes for Classes 1, 2 and 3 are
identified. The class is divided using an arbitrary technique
with a balance of numbers between classes based on the
pattern in the data. The features that ML and DL algorithms
apply are deliberated in this section.

1) FEATURES
After the LDA cluster is determined, the cluster data is con-
verted to numerical data and merged with structured data.
ML and DL techniques are applied to the dataset, and the
results are compared.

A total of 18 features are used to predict the time to the
first failure. There are 17 features of structured data and one
feature of unstructured data adopted frommaintenance notes.
Of the total 17 features, six categorical features are tabulated
in Table 3 consisting of various hospital codes, equipment
types, country of origin, manufacturers, brands andmore than
a thousand models in the dataset.

Meanwhile, another eleven features are converted to
numerical and are normalized to ensure the data are on the
same scale. The nature of each feature is explained in the
description column in Table 4 associated with their respective
values.

2) MACHINE LEARNING ALGORITHMS
Four supervised machine learning was utilized in this clas-
sification problem. The ML algorithms are SVM, Decision

TABLE 3. Categorical features.

Trees (DT), Naïve Bayes (NB) and Ensemble Classifiers
(EC). First, the SVM algorithm seeks a separating hyper-
plane between two classes with the best performance. The
hyperplane with the most significant margin between the two
classes is the optimum hyperplane for an SVM.

Decision Trees are the next method used in creating the
model, as they are easier to interpret, have faster training,
and are less complex. This algorithm’s tweaking can be
accomplished by adjusting the maximum number of splits.
The branch is extended to the leaf node of the tree, where the
response resides.

Gaussian and Kernel Naive Bayes are two Naive Bayes
algorithm variants. The Naïve Bayes algorithm is based on
Bayes Theorem, and its applicability is contingent upon the
training data. The model is trained on four ML algorithms
above using the five k-fold cross-validation technique with
80% training and 20% testing segregation with random fold
separation, as in Fig.2.

FIGURE 2. K-Fold Cross Validation for ML.

3) DEEP LEARNING ALGORITHMS
A neural network algorithm is more complex and has harder
interpretability. Artificial Neural Networks (ANN), Con-
volutional Neural Networks (CNN) and Recurrent Neural
Networks (RNN) are frequently employed in engineering
applications. ANN algorithm is more complicated to inter-
pret. The classifier options include narrow, medium, wide,
bilayered, and trilayered and are based on a feedforward
neural network.
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TABLE 4. Numerical features and designated values.

The CNN layers execute the operations using an activation
or rectified linear unit (ReLU) layer, convolution, and pooling
layers. As for the output layers, the classification group com-
prises fully connected layers that produce a K-dimensional
vector of predicted classes (three response classes), a softmax
layer and a classification layer [33].

Meanwhile, RNN is unique due to their hidden state and
loops. A Long Short-Term Memory Network (LSTM) is the
most common type of RNN. In LSTM networks, extra gates
regulate which data from the hidden cell is sent to the output
and the subsequent hidden state. An additional to the LSTM
layer is the number of hidden units.

4) DEEP LEARNING OPTIMIZERS
Deep learning networks are developed with layers and a ded-
icated optimizer. Three optimizers are involved: Root Mean
Square Propagation (RMSProp), Stochastic Gradient Descent
withMomentum (SGDM), and AdaptiveMoment Estimation
(Adam). SGDM optimizer can oscillate along the path of
steepest descent, leading to the best result.

The SGDM update can be determined by equation (4),
with γ as the current iteration’s contribution from the pre-
vious gradient step, α representing the learning rate, ℓ as the
iteration number, θ as a parameter vector, and ∇E(θ ) is the
loss function. Besides, RMSPropmaintains amoving average
of the parameter gradients’ element-wise squares using a
mathematical computation with β2 as the moving average’s
decay rate, and ϵ denotes the added small constant to prevent
zero division as in equation (5).
Meanwhile, Adam optimizer uses a parameter update sim-

ilar to RMSProp, but with an additional momentum term.
It maintains a moving average of the parameter gradients and
their squared values using element by element approach and
gradient decay rate of β1 as shown in equation (6) [34]:

a) SGDM:

θl+1 = θℓ − α∇E(θℓ) + γ (θℓ − θℓ − 1) (4)

TABLE 5. Five metrics for evaluation.

b) RMSProp:

νℓ = β2νl−1 + (1 − β2) [∇E (θℓ)]2 (5)

c) Adam:

mℓ = β1ml−1 + (1 − β1)∇E(θℓ) (6)

E. MODEL PERFORMANCE METRIC
The accuracy of the model’s predictions depends on the stan-
dard of the input characteristics used by the algorithm. The
evaluation is performed using the confusion matrix. Diagonal
cells express correctly classified class, whereas off-diagonal
cells express the opposite. The recall indicator gauges the
reliability of the result or positive outcomes for a true positive
rate, whereas precision measures positive predictive values
with correct prediction [35]. The integration of recall and
precision is examined in the F1 Score indicator, where this
harmonic average indicates the model’s dependability.

The metrics are calculated by adding the correctly clas-
sified values divided by the total number of observations,
as illustrated in Table 5. TP represents a true positive, the
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true negative is TN, and false values are symbolized by the
letter F [24]. These values are obtained through a confusion
matrix with a 3 × 3 matrix where the x-axis is the predicted
class, and the y-axis is the true class [36].

F. SENSITIVITY ANALYSIS
A Leave-One-Out, Minimum Redundancy Maximum Rele-
vance (MRMR), Chi2, ANOVA, and Kruskal Wallis are the
techniques used in the feature selection stage. Continuous and
categorical features are supported in MATLAB and applied
to all methods. First, the leave-one-out technique is used; the
error is calculated and then divided with all feature errors to
obtain the ranking ratio [37], [38], [39]. The leave-one-out
technique is performed by removing one-by-one features and
organized in descending order to highlight the impact of the
features on the model.

The MRMR algorithm identifies the best possible set of
maximally and reciprocally different features and may accu-
rately describe the response variable. The technique increases
the relevance of a feature set to the response variable while
minimizing its redundancy; minimizesWS and maximizes VS
in equations (7) and (8) where x is the selected feature, y is the
response variable, S represent a subset of the desired feature,
and |S| is the number of features in S [40]:

maxVS =
1
|S|

6xϵS I (x, y) (7)

minWS =
1

|S|
26x,zϵS I (x, z) (8)

A Chi2 algorithm uses individual chi-square tests to deter-
mine whether each predictor variable is independent of the
response variable. Then p-values of the chi-square test statis-
tics are used to rank the features. A low p-value denotes
the predictor variable is reliant on the response variable or
is categorized as a significant feature. The score relates to -
log(p), where p is the number of predictors. A predictor with
a high score value is essential for this algorithm.

A similar approach is applied to the ANOVA algorithm
where -log(p) shows the score through a one-way analy-
sis of variance. The one-way analysis of variance is per-
formed for each predictor variable, sorted by class, and
then features are ranked using the p-values. In the mean-
time, the Kruskal-Wallis test is a nonparametric variation of
the Wilcoxon rank sum test that extends to more than two
groups. The p-value calculates the significance of the chi-
square statistic, which takes the role of traditional one-way
ANOVA [41]. All these feature selection techniques are com-
pared, and the most significant features are determined in the
result section.

IV. RESULTS
The results section portrays the overall outcomes of this
research. All algorithms’ integration and optimization stages
are described. The sensitivity analysis approach minimizes
the model complexity and shortens the training time.

A. PERPLEXITY MODEL
An extended bag of words or a topic model: LDA tech-
nique is applied for clustering and classifying the pattern on
maintenance notes or unstructured data. This topic modelling
discovers the hidden patterns and identifies the main themes
or the semantic topics. The maintenance notes are notes
written by technical personnel after attending a breakdown
event.

A perplexity graph is plotted as in Fig.3, where the graph
indicates that 15 main topics are sufficient to be analyzed
before the graph decreases. The perplexity approach reveals
how accurately a model explains the data. A better-fit model
has a lower perplexity. The imprecise number of clusters
selection will result in an inaccurate interpretation of themain
topics.

FIGURE 3. Number of Topics for Perplexity Model.

The 15 clusters illustrate the pattern in the unstructured
data, and the word clouds are developed. The 15 clus-
ter groups are summarized into six important labels by
removing the duplicates, and the clusters are mapped back
to the dataset. After clustering, the data is labelled into
six groups: repair, replace, visual inspection, vendor, and
beyond economic repair. The repetitive groups are simplified
from all the clusters, and six top clusters are established as
follows:

1) Zero failure: Maintenance notes not available or action
taken is not specified.

2) Repair: Inclusive of calibration work and major trou-
bleshooting

3) Replace: Maintenance work performed that involves
changing parts or components in the device

4) Visual Inspection: Physical inspection or only minor
troubleshooting is required during the assessment

5) Vendor: Unrepairable failures by the maintenance team
are returned to the vendor. This cluster includes devices
under warranty.

6) BER: The term used in the ASIS for devices exceeding
their lifespan, reaching the end of life, or an unre-
pairable failure and proposed for disposal.
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B. TIME TO FAILURE PREDICTION
Classes 1,2, and 3 are identified based on the time to the first
failure event. Class 1 is defined as unlikely to fail within the
first three years from the purchase date, while Class 2 is for
devices that are likely to fail within three years. Class 3 is
for devices likely to fail more than three years after purchase.
This section compares four ML techniques in Table 6, ANN
in Table 7, CNN in Table 8 and LSTM in Table 9 using all
18 features of multimodal data.

The result for ML in Table 6 concludes EC algorithm
denotes the highest accuracy and recall of 87.90%, 88.21%,
93.95%, and 88.06% for precision, specificity, and F1 Score,
respectively. The DT and SVM algorithms achieve 85.00%
and 82.80% accuracy, and the performance is slightly lower
than the EC algorithm.

TABLE 6. Performance evaluation for ML.

As for the ANN network in DL, the model performs the
best with 81.80% accuracy, as shown in Table 7. However,
the specificity performance for ANN reaches 90.90% com-
pared to 93.95% for the EC model. Like ML algorithms, the
ANN network requires significant training time to deploy the
model.

TABLE 7. Performance metrics for ANN.

The CNN network performance is tabularized in Table 8,
with the SGDM optimizer achieving the best performance
with 80.77% accuracy compared to RMSProp and Adam
optimizers. SGDM requires a moderate training time of
44 seconds, slightly higher than RMSProp. Adam optimizer
demands the longest training time for the CNN network. The
CNN network appears to have less complexity and less time
consumed.

A small difference in performance is observed for the
LSTM network in Table 9 compared to CNN. Both CNN
and LSTM networks share the characteristic that SGDM
achieves the highest levels of performance in comparison to
RMSProp and Adam optimizers. The application of optimiz-
ers in DL suggests that CNN performs better than LSTM.
Although both accuracies are closed, CNN performs better

TABLE 8. Performance metrics for CNN.

TABLE 9. Performance metrics for LSTM.

in a training time of 44 seconds compared to 135 seconds
using LSTM. Additionally, DL requires significantly less
time spent training, one of its primary advantages. DL fin-
ishes the training procedure in 44 seconds for CNN, while it
takes ML 1660.5 seconds for EC to complete.

C. MODEL OPTIMIZATION
The parameter tuning is performed on the model to introduce
a unique identity and maximize accuracy. The tuning options
are distinctive for every algorithm and are conducted using
possible parameters until the optimal results are obtained.

Table 10 indicates the hyperparameter tuning conducted
for four ML algorithms. For DT, adjusting the maximum
number of splits increased the training time but improved
the accuracy. Similarly, the kernel tuning option for NB and
SVM increased the time to produce a higher accuracy. The
decreased number of splits to 20 increased the training time

TABLE 10. Optimization for ML.
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and accuracy for EC. ML optimization usually increases the
training time and growth of the model complexity.

The optimization for ANN algorithm is demonstrated in
Table 11. Optimizing the layer sizes reduces the model
intricacy and training time. The hyperparameter tuning is
conducted to all first, second and third layers before the best
model is deployed. The finest accuracy for ANN is 81.80%
after optimization.

TABLE 11. Optimization for ANN.

The optimization for CNN models varies by application
of mini-batch size (MBS) and epochs. Fig.4 exhibits the
result for the CNN network using the RMSProp optimizer.
The application of 300 MBS produces the greatest accuracy
of 79.14%.

FIGURE 4. Optimization for CNN with RMSProp Optimizer.

As for SGDM and Adam optimizers, smaller sizes, which
are 200 and 100, are required accordingly. The 200 MBS and
epochs of 60 for SGDM in Fig.5 produce the highest accuracy
of 80.77%.

FIGURE 5. Optimization for CNN with SGDM Optimizer.

Besides, an Adam optimizer requires a lower number of
MBS. The setting of 100MBSwith 20 and 60 epochs in Fig.6

FIGURE 6. Optimization for CNN with Adam Optimizer.

produces the same accuracy. The Adam optimizer denotes
an accuracy of 78.08%, the lowest compared to SGDM and
RMSProp optimizers. The result concludes the optimal val-
ues for CNN networks are 60 epochs with RMSProp (MBS
300), SGDM (MBS 200), and Adam (MBS 100).

In the meantime, the LSTM setting parameters are tuned
by changing the number of hidden units in the network. Fig.7
shows the impact on the accuracy when the number of hidden
units varies for the SGDM optimizer. The increased value of
200 to 300 for hidden units in the network raises the accuracy
from 76.53% to 80.60%. However, more than 300 hidden
units will continue to reduce the performance in accuracy.

FIGURE 7. Number of Hidden Unit Optimizer in LSTM.

Comparing all three optimizers in LSTM, Fig.8 describes
the impact of varying MBS on the networks. During opti-
mization, various MBS slightly differ in training and val-
idation accuracy. The highest accuracy is found when the
epoch is set to 60. By applying 60 epochs in the networks, the
SGDM optimizer has the highest accuracy of 80.60% when
the MBS is set to the value of 100. For Adam and RMSProp,
MBS of 400 gives the best result in accuracy, equivalent to
79.46% and 78.57%, respectively. The result concludes an
optimal value for LSTM networks is 60 epochs, 300 hidden
units with SGDM (MBS 100); Adam and RMSProp (MBS
400) to produce the best result.

D. SENSITIVITY ANALYSIS RESULT
The Ensemble Classifier model achieves the best accuracy
of 87.90% after optimization compared to other DL tech-
niques. Thus, the sensitivity analysis for ML is conducted
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FIGURE 8. Mini Batch Size for LSTM.

using five techniques. Every technique requires a different
analysis before the final significant features can be listed. The
techniques applied to the ML algorithm are Leave-one-out,
MRMR, Chi2, ANOVA, and Kruskal Wallis.

The leave-one-out method by a ranking ratio is illustrated
in Table 12. The analysis requires eliminating one by one
features, and the ratios are determined by calculating the
error obtained from the confusion matrix. The 18 features
are excluded individually, and the ratios are calculated to
determine the significant features.

TABLE 12. Sensitivity analysis using leave-one-out for ML.

Out of the 18 features in ML, four features are not con-
sidered with less than 1.000 values: alternative backup, asset
condition, frequency maintenance requirement and model.
After eliminating the four insignificant features, the analysis
is repeated for the remaining 14 features. All 14 features
are selected having a ratio greater than 1.000. As a result,
the accuracy of ML algorithm is increased from 87.90%
to 88.30%.

In addition, for MRMR technique in Table 13, eight fea-
tures are identified as the most important since the increased
number of inputs will reduce the accuracy. Similarly, for
Chi2 and Kruskal Wallis, six features are listed as substan-
tial before the accuracy drops, with the highest accuracy
of 87.80%. Meanwhile, ANOVA technique has eight most
significant features with 88.00% accuracy.

Among all techniques, MRMR outperforms other methods
with an accuracy of 88.80% compared to 87.90% before
the analysis. The best MRMR model listed the eight most
significant features: total downtime, maintenance complex-
ity, maintenance notes, maintenance cost, age, purchase date,
type description, and country.

The MRMR algorithm denotes the highest performance
by identifying the best possible set of maximally and recip-
rocally different features to portray the response. The abil-
ity of the MRMR to minimize redundancy among features
decreased eighteen to eight features, shortening the training
time from 1660.5 to 901.66 seconds.

A predictivemodel using an Ensemble Classifier algorithm
is proposed, and MRMR is the best technique for feature
selection. The proposed model using MRMR increased per-
formance: slightly higher thanwhen all features were applied.
The performance after the MRMR technique improved its
percentage to 94.41%, 88.82%, 88.46%, and 88.84% for
specificity, recall, precision and F1 Score as tabulated in
Table 14. The final model optimization involves 20 max-
imum splits, 30 learners and a 0.1 learning rate to reach
901.66 seconds.

V. DISCUSSION
This section discusses the characteristics of the best classifier,
including the parameter settings and receiver operating char-
acteristics curves. A long-term benefit of the proposed model
is discussed in this section, with the associated cost impact
for the proposed model.

A. BEST CLASSIFIER CHARACTERISTICS
Receiver operating characteristics (ROC) curves show the
performance of the multi-class classification model. A ROC
curve compares the true positive rate (TPR, or sensitivity)
to the false positive rate (FPR, or 1-specificity) for various
classification score thresholds.

The one-versus-all coding design is used to identify the
ROC curve for each class in this multi-class classification
task. The technique views a multi-class classification prob-
lem as a collection of binary classification problems, wherein
each binary problem assumes one class is positive and others
are negative.

Therefore, the area under curve (AUC) measured the clas-
sifier performance where a good model has AUC close to 1.
Three different ROC curves are plotted based on classes, as in
Fig.9. The plotted curve is for the best Ensemble Classifier
model with 88.80% accuracy and 94.41% for specificity. The
shaded area around the three ROC curves demonstrates the
95% confidence interval for the model.
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TABLE 13. Features ranking results using four techniques.

TABLE 14. Comparison between EC and MRMR tuning.

FIGURE 9. ROC Curves for the Best Classifier Model.

This confidence interval is obtained by bootstrapping the
data using a specific function. The bootstrapping function
is specified as a nonnegative scalar, and it uses the number
of bootstrap samples to calculate the pointwise confidence
intervals. The graph denotes a 95% certainty that the true
parameter value lies within this interval. It can be seen that
Class 1 has the best area under curve values of 99.57%,
followed by 90.08% and 89.43% for Class 3 and Class 2.

TABLE 15. Classes description.

B. STRATEGIC MAINTENANCE MANAGEMENT
An arbitrary technique is used to distinguish the devices into
three classes. Classes 1, 2, and 3 are segregated based on the
time to the first failure event. Class 1 is defined as unlikely to
fail within the first three years from the purchase date, while
Class 2 is for devices that are likely to fail within three years.
Class 3 is for devices likely to fail more than three years
after purchase. A strategic replacement plan should be in
place to ensure efficient cost management and optimal budget
utilization.

In the current practice, all 44 types of critical medical
devices are included in a long comprehensive contract, and
the monthly fees depend on the device’s fee rate. The annual
fee is calculated by multiplying the purchase cost by the
mentioned fee rate. The fee rate is based on device critical-
ity, which is 4.95%, 6.60%, 7.15%, 11.55%, 13.75%, and
19.25%. A higher rate is allocated for imaging devices due
to its high maintenance cost and complexity. For improving
and utilizing MLwith a new comprehensive strategic mainte-
nance management, the fee rate shall depend on the criticality
of the classes.

Table 15 tabulates the class criticality into low, medium
and high, representing time to the first failure. Class 2 should
have a higher maintenance rate because it requires more
rigorous maintenance than other classes and indicates the
highest number of failures. Moreover, the services contract
fee will not begin until the 4th year, and a substantial cost
impact will be realized.
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TABLE 16. Planned preventive maintenance plan for classes 1, 2 and 3.

The criteria are separated into three classes in Table 16.
This approach is proposed in lieu of the present practise of
paying for scheduled maintenance after purchasing devices.
The existing data indicate that Class 3 will fail after three
years; hence a fourth-year service contract is recommended.
As for Class 2, an extended warranty should be suggested,
along with Planned Preventive Maintenance (PPM) and Cor-
rective Maintenance (CM), and a service contract should be
scheduled to begin in the fourth year.

The replacement plan is also strategized considering the
number of ages and faulty equipment. With a high rate of fail-
ures throughout their lifespan, 57.19% of Class 2 equipment
has been used for over ten years, as tabulated in Table 17.
Replacement with new units should be considered to reduce
maintenance costs due to ageing factors and significant fail-
ure events.

In a situation similar to Class 2, Class 3 has 65.18% of
the equipment used for more than ten years and should be
replaced after Class 2. Therefore, a comprehensive replace-
ment plan policy shall consider both criteria, such as mainte-
nance cost by service contract reaching the purchase cost and
the priority for Class 2 replacement.

Furthermore, the Class 2 characteristic of first failure
within three years after purchase, Class 2 has 173 devices over
20 years with 11-30 failures events, compared to 151 devices
in Class 3. Similarly, 115 devices with more than 31 failures
are observed for Class 2, compared to 29 devices in Class 3
equipment. The study proves that Class 2 has the highest
priority for replacement based on age and number of failures
compared to Classes 1 and 3.

Based on the overall analysis, Fig.10 demonstrates
the sub-framework for Ensemble Classifier, which is
the best predictive model after comparing ML and DL.

TABLE 17. Failure events based on classes.

The sensitivity analysis technique listed eight significant fea-
tures for Ensemble Classifier with MRMR attained the finest
after all approaches are compared. The sensitivity analysis
reduced the model complexity and training time by minimiz-
ing the redundancy between features to achieve the objective.

Moreover, Fig.11 recaps the main outline of the model
framework using multimodal from raw dataset to the integra-
tion of structured and unstructured data. The model optimiza-
tion is conducted, and the model is evaluated before a final
model is proposed.

C. COST IMPACT
Based on the literature findings, none of these nations uses
ML to forecast the annual maintenance budgets. For exam-
ple, life cycle cost estimation is applied in Saudi Arabia.
A life cycle cost analysis in decision-making is based
on total expenses rather than a device’s initial purchase
price [42]. In Turkey, they categorize medical devices into
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FIGURE 10. The Ensemble Classifier Model with MRMR Significant
Features.

FIGURE 11. The Overall Proposed Framework of Multimodal Ensemble
Classifier Model for Failure Prediction.

technological development groups such as low, medium, high
and simple technology groups to determine the ratio for cost
expenditure [43].

The replacement budget per year in the UK country is
calculated based on total stock divided by lifetime. Fixed and
operating costs are used in Nepal for financial management.
Outsourcing is reported as the most cost-effective approach
compared to in-house maintenance. For instance, the facil-
ity will anticipate average annual replacement expenses of
one-tenth of the purchase cost if the equipment has a lifespan
of ten years [44].

In New Delhi, cost expenditure is measured through the
maintenance cost index, obtained from maintenance cost
divided by capital cost [45]. The United States uses the

TABLE 18. Cost impact.

cost-of-service ratio by dividing the annual maintenance cost
total by the starting cost values. It serves as guidance for
performance improvement, and the cost-of-service ratio in
the United States ranges from 5% to 10%.

Meanwhile, at the national level of Ethiopia in Africa, only
49.2% of hospitals had reported having a dedicated budget
for purchasing new equipment [46]. Consequently, based on
the findings, ML, DL and technological advancement are not
currently utilized in maintenance and expenditure planning.

Implementing manufacturer suggestions on maintenance
frequencies and procedures will not guarantee minimal fail-
ure. PPM requires USD 300million per year to accommodate
the needs of US hospitals. Yet, it is not promising uptime is
guaranteed even though the PPM intervals are according to
manufacturer recommendations [47].

The Joint Commission investigated the required practice
maintenance instead of executing manufacturers’ recommen-
dations on procedures and frequencies [48]. The study con-
cludes that even though the users differ in the procedures
andmaintenance frequencies, there is no evidence themethod
could negatively impact users and patients in American hos-
pitals. Adaptability in scheduling and planning maintenance
tasks is crucial when using predictive maintenance on medi-
cal equipment.

Due to the usage of patients and external control fac-
tors, planned maintenance tasks are frequently challenging to
carry out at an appropriate time. It is a common event when
the users are unable to release the equipment when it is in
use or misplaced at another location. It impacted the PPM
frequency and differed from the initial schedule. Reducing
the frequencywith regards to the necessitymay accommodate
the user and equipment needs for maintenance.

It is suggested to distinguish the budget for PPM and
CM [49]. More accurate financial tracking between PPM
and CM shall be established by segregating this. The
price of a service contract can be negotiated with exter-
nal service providers. These services can be obtained on
a time and material basis or by entering a fixed-fee con-
tract for a predetermined amount of time. The expense must
be anticipated and included in relevant budgets in both
scenarios.
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TABLE 19. Root cause of failures for therapeutic equipment.

The human resources cost can be reduced by minimiz-
ing the PPM schedule from bi-annually to annually for
Classes 1 and 3. A specific percentage is set up for PPM
and CM, with a higher allocation of 80% for corrective
maintenance and another 20% for PPM [50]. Previous study
concludes PPM demands 10% to 30% more of the overall
budget than CM. A similar concept is proposed here where if
the PPM is scheduled once yearly, a 20% budget allocation is
proposed for PPM, and another 80% is allocated for CM.

Meanwhile, if the PPM is scheduled bi-annually, the por-
tion is segregated to 70%CMand 30%PPM instead. Bymak-
ing this percentage as said, it is expected to achieve significant
cost savings due to reduced resources required when the PPM
frequency is reduced.

For Class 1, MYR199,256.45 is calculated as a cost-saving
if the PPM frequency is reduced, as illustrated in Table 18.
The fee rate for Class 1 shall be reduced due to its low com-
plexity, and PPM can be replaced with a routine inspection
where necessary. A service contract cost shall start from the
4th year or later for Class 1 as the devices have recorded
zero failures. Additionally, this equipment category requires
a minimal budget for a loaner and rental fees during failure.

The most stringent class and has a higher severity is
Class 2. The PPM schedule is suggested to remain as the
manufacturer indicates since these devices are considered
critical and can fail anytime after purchase. Since the failure
of the purchased devices is expected to occur at any time,
backup plans or the use of rented equipment must be arranged
for an improved service.

Therefore, a higher budget should be allocated to Class 2
than Class 1 and 3. Besides, an extended three-year warranty
is suggested to accommodate the needs of PPM and CM
for Class 2. An extended warranty will eliminate the service
contract cost in the first three years.

Devices under the Class 3 group are expected to fail
after three years from their commissioning date. Hence,
the approximate cost saving of MYR127,074.43 per year is
expected to be achieved if the PPM schedule is reduced from
bi-annually to annually. A service contract obligation shall be
eliminated for the first three years for Class 3 since the failure
is expected to occur after three years.

Consequently, an extended warranty of three years inclu-
sive of PPM is adequate to cater to the needs of this
group. Despite recommendations to reduce PPM frequency

for Class 1 and 3, technical personnel shall intensify PPM
duties to meet demands before the following PPM schedule
and guarantee useful life of the devices is not compromised.
According to IEC60601 and related standards, the func-
tionality and safety of medical devices should be ensured
during PPM.

This study predicts Classes 1, 2, and 3 represent time to the
first failure. By categorizing devices into these classes using
machine learning in decision-making, a new maintenance
strategy is proposed using multimodal data for intelligent
healthcare engineering. In the existing literature, Kovačević,
et al. [21] explores the study of infant incubator devices
where a different response or output is highlighted, which are
accurate and faulty classes with a model obtain an accuracy
of 98.5%.

A different device is utilized using a Random Forest clas-
sifier with the ultimate objective of predicting positive and
negative responses representing passed inspection and faulty
devices for defibrillator [22]. This study obtains a perfect
accuracy of 100%; however, the study is only limited to a
defibrillator.

In addition, Hrvat, et al. [19] used a conformity assessment
approach and attained an accuracy of 98.06% to predict a
fail and pass response for syringe pumps. Therefore, a new
approach is proposed in this research where 44 types of
critical medical equipment are utilized using multimodal data
to predict three classes. Data analysis saves a cost if the
framework is implemented in healthcare services. To the best
of our knowledge, this is the first comprehensive model that
utilizes 44 types of critical medical equipment with structured
and unstructured multimodal data to predict the time to first
failure event.

D. STRENGTHEN MAINTENANCE TASKS
By utilizing the LDA techniques, the maintenance task for
medical equipment can be strengthened to prevent future fail-
ures. Themaintenance team shall investigate the components’
conditions during routine maintenance. The components’
root cause analysis is acquired by plotting the word cloud
using the bag of words approach. Every equipment has its
unique word cloud for analysis purposes.

The root cause of failures for therapeutic equipment is
listed in Table 19. The frequent failure events are listed in the
table based onword cloud information depending on the type.
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TABLE 20. Root cause of failures for diagnostic and imaging equipment.

By knowing these parts, the technical team shall prioritize
maintenance works by examining these parts’ condition and
replacing the components during routine maintenance before
failures occur.

Similarly, the root cause of failures for diagnostic and
imaging equipment is tabulated in Table 20. Most failure
components are related to maintenance wear and tear parts
that can be made available beforehand. Thus, such proactive
action can reduce waiting time and improve service delivery.
This analysis is also beneficial for procurement and parts
inventory tracking. The maintenance team can prepare ade-
quate numbers of these components stock at their facility to
accommodate the repair work, and parts replacement shall be
executed immediately to prevent prolonged downtime.

E. LONG TERM BENEFIT OF THE PROPOSED MODEL
This research introduced the long-term benefit of a compre-
hensive model to predict the first failure event and enable the
industry to prepare resources accordingly. AsDL applications
have evolved, this study enhances the method with a com-
parison to ML. The research gap is improved by introducing
a failure prediction model comprised of 44 types of critical
equipment with a comprehensive cost analysis.

The proposed model is based on thirty years of actual
datasets from Government Hospitals in Malaysia. A compre-
hensive model is more robust than an individual model and
will contribute to advancing knowledge in the field. To the
best of our knowledge, no analogous study on predicting the
performance of medical devices using multimodal data has
been conducted since 2010. The conventional way of calcu-
lating mean time to failure (MTTF) is executed by dividing
the total operating time (hours) by the number of failures [51].

For example, this subsection selects an intensive care ven-
tilator for MTTF calculation. This type is selected due to
its criticality, and functionality is essential, especially during

TABLE 21. MTTF manual calculation for intensive care ventilator.

outbreaks such as the COVID-19 pandemic. The situation
is challenging and worsens when the existing ventilator is
malfunctioning.

A manual calculation of MTTF is shown in Table 21,
where the manual intervention requires two parameters: total
operating time and number of failure events. Although a
simple analysis could obtain the MTTF result in hours, the
calculation did not consider other important elements in every
device application.

In addition, MTTF is typically computed assuming con-
stant failure rates and does not consider complex failure
modes or degradation patterns. It may not be suitable for sys-
tems with non-linear failure behaviors, intermittent failures,
or fluctuating operational conditions. AI predictive mainte-
nance can handle more complex scenarios by capturing and
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analyzing diverse data sources to identify nuanced failure
patterns and degradation trends.

Other important parameters in a real industry also influ-
ence the time to the failure event. Manual MTTF analysis
does not consider other important features contributing to
equipment failures, such as age, service support, asset condi-
tion, frequency maintenance requirement, maintenance com-
plexity, operations or utilization, maintenance cost, model
specification, etc.

MTTF is a reactive maintenance strategy which focuses
on failures that have already occurred. It does not provide
proactive insights or early warnings about potential malfunc-
tions, which can result in unanticipated delays and expensive
repairs. By leveraging machine learning and data analysis,
AI predictivemaintenance can detect patterns, anomalies, and
early failure indications, allowing for timely interventions
and preventative measures.

This research offers the application of the stated features
in the model development for a comprehensive model frame-
work. The model is able to predict future failure taking into
consideration all the necessary parameters. The ML and DL
applied in model development can supersede manual calcu-
lation and replace it with AI computation.

The LDA is another branch of AI under Natural Language
Processing accessible in this study. The technique discovers
hidden patterns on the maintenance notes captured during
failures, which is impossible using simple analysis. Never-
theless, simple analysis using MTTF may be applicable for
small-scale applications. Besides, integrating structured and
unstructured data in this work improves the model’s accuracy
and differs from the current work. The ML model has better
accuracy than DL; however, a longer time is required. In addi-
tion, a comprehensive cost analysis is proposed to improve
the current budget utilization.

Currently, the service contract cost will be incurred as soon
as the equipment is purchased, even though it is unneces-
sary. The study concludes Class 2 in Fig.12 should have a
higher maintenance fee rate because it requires more rigorous
maintenance than other classes. The service contract fee shall
start in the 4th year for all Classes. It is recommended to
purchase equipment with three years warranties for Class 2,
including routine and correction maintenance; therefore,
the service contract cost for the first three years shall be
reduced.

In addition, the root cause of components failures for
critical equipment is listed based on types to prevent reoc-
currence and contribute to better service delivery. Improving
the common failures components during routine tasks and
maintaining inventory tracking is expected to reduce future
failures and shorten the waiting time.

As for Class 3, extended three-year warranties for routine
maintenance shall accommodate the actual needs since the
equipment is expected to fail after three years. Similarly,
service contract costs for the first three years can be reduced.
The total approximate cost saving of MYR326,330.88/year is
in Fig.13.

FIGURE 12. Long-term Maintenance Strategies for CM.

FIGURE 13. Cost Saving Estimation for Classes 1 and 3.

The cost saving for Classes 1 and 3 shall benefit the health-
care system when the model is embarked in the field. The
cost saving is obtained by reducing the PPM frequency for
Class 1 and Class 3 from bi-annually to annually, as shown
in Fig.14. The Class 2 PPM frequency remains and will not
involve cost-saving estimation in this paper.

A framework in Fig.15 is proposed for developing a
replacement plan policy. In order to ensure that equipment is
replaced before the maintenance cost surpasses the purchase
cost, a thorough study of the service contract cost and pur-
chase cost is discussed. Based on the likelihood of failure and
class severity, Class 2 is prioritized for replacement, followed
by Classes 3 and 1.

Three different problems are addressed compared to the
present: malfunctioning medical equipment, high main-
tenance cost and ageing equipment and availability of
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FIGURE 14. Long-term Maintenance Strategies for PPM.

FIGURE 15. Long-term Replacement Plan.

replacement plan policy. Hence, this research contributes
to reducing medical equipment failures, decreasing mainte-
nance costs and proposing a replacement plan for hospital
management as a long-term strategy.

VI. CONCLUSION
Medical equipment maintenance and replacement are the
most expensive aspects of providing healthcare in any coun-
try. The proposed predictive model is developed based on
multimodal to predict the failure of 8,294 critical medical
devices. This paper provides a model to forecast the time
until the first failure and classifies Class 1, Class 2, and
Class 3. Each paper’s section discusses the thorough pro-
cess, including model optimization and detailed analysis. The
final framework is concluded after ML and DL models are
compared.

Among all algorithms, Ensemble Classifier performs best
after sensitivity analysis with MRMR listed eight signif-
icant features, achieving 88.80% accuracy, 94.41% speci-
ficity, 88.82% recall, 88.46% precision, and 88.84% F1
Score. Instead of using simply structured data, LDA capac-
ity to discover failure hidden patterns increases the model’s
potential and dependability. The analysis is limited by data

extracted directly from ASIS and hospital user failure com-
plaints. There is a possibility that the maintenance system
does not record verbal complaints or events that have been
concealed.

The upcoming work will investigate and estimate the
timing of the subsequent occurrence. The prediction must
include the time between the first and second failure and the
time-lapse. The ensuing failures study may suggest equip-
ment life cycle analysis and remaining useful life for medical
equipment.
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