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ABSTRACT Accurately assessing the driver’s situational awareness is crucial in level 3 (L3) autonomous
driving, where the driver is in the loop. Estimating the attention zone provides essential information about
the drivers’ on/off-road visual attention and determines their readiness to take over the control from the
autonomous agent in complicated situations. This paper proposes a double-phase pipeline to improve
the explainability and accuracy of the attention zone estimation using an intermediate gaze regression
layer, where the true relationships between the input images and output zone labels are interpretable. The
proposed GazeMobileNet, a lightweight deep neural network, in the first phase, achieved state-of-the-art
performance in estimating the gaze vector in the MPIIGaze dataset, with MAE of 2.37 degrees. The model
was used to extract the corresponding gaze vectors from the LISA V2, which is a driving dataset with the
in-cabin attention zone labels. As LISA V2 does not contain gaze vector labels, an unsupervised clustering
approach was proposed in the second phase to categorize the driver’s gaze vectors and map them to the
corresponding attention zones. The proposed method demonstrated improved accuracy and robustness in
the zone classification task. This model achieved the accuracies of 75.67% and 83.08% for attention zone
estimation under ‘‘daytime without eyeglasses’’ and ‘‘nighttime without eyeglasses’’ capture conditions,
respectively. Furthermore, the proposed model surpassed the recent research on that dataset by 73.11%
and 74.02% accuracies under the ‘‘daytime with eyeglasses’’ and ‘‘nighttime with eyeglasses’’ capture
conditions, respectively.

INDEX TERMS Level 3 autonomy, gaze estimation, GazeMobileNet, driver’s attention zone, explainable
clustering.

I. INTRODUCTION
The World Health Organization (WHO) states that the global
rate of road fatalities is alarmingly high, with roughly
1.35 million people losing their lives to road accidents
each year [1]. With the swift rise in vehicle numbers in
recent decades, traffic accidents and congestion have become
increasingly prevalent and pronounced [2]. Driver visual,
auditory, bio-mechanical, and cognitive distractions account
for more than half of all accidents [3]. However, in recent
years, significant advancements have been made in the devel-
opment of Automated Driving Systems (ADS) with the aim
of enhancing road safety. It is anticipated that the integra-
tion of vehicle autonomy, specifically at level 3 or higher,
as classified by the Society of Automotive Engineers (SAE),
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will play a pivotal role in diminishing this alarming statistic
substantially [4].

In L3 autonomy, drivers are not required to maintain con-
stant visual attention on the road or keep their hands on the
steering wheel continuously [5]. They will have the freedom
to engage in secondary non-driving-related tasks (NDRTs),
such as reading, writing, emailing, eating, etc. However, the
drivers need to be perceptive without delay in responding
to the take-over request (TOR), by the ADS, in situations
beyond the capabilities of the autonomous agent. Typically,
the vehicle prompts for intervention when the driving task
becomes challenging and the autonomous agent encoun-
ters intricate or unpredictable situations, including abrupt
obstacles, pedestrians, and temporary road work.

Safety at L3 automation is highly correlated with the
driver’s attention level and readiness for taking over the
vehicle’s control from the autonomous agent. Eye gaze is one
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of the most determinate tools to monitor the driver’s instan-
taneous on/off-road visual attention. The gaze vector, derived
from the driver’s eye movement, offers insights into the spe-
cific areas of focus while driving. This information is critical
for ensuring the safe intervention of the driver in autonomous
vehicles, as it enables the vehicle to determine the driver’s
situational awareness before handing the control over to the
driver. The direction of the driver’s eye gaze can be quantified
from the face/eye images captured by the sensor (camera)
inside the vehicle cabin, with the aid of artificial intelli-
gence (AI) technologies. However, in the presence of noise
factors including head movements, illumination variations,
occlusion, low resolution, and information loss, gaze predic-
tion becomes a challenging task. Current methodologies in
the literature, often employ a straightforward classification
approach to map images directly to attention zones, lack-
ing interpretability. Consequently, in specific safety-critical
applications, this approach can lead to critical errors or incon-
venient false alarms, as two classes with the highest and equal
likelihood may originate from distant, completely separate
zones.

The primary objective of the proposed method is to address
the lack of explainability in the existing zone estimation
techniques by mapping image frames to the zone labels.
In the existing methodologies in the literature, the images
are mapped to the attention zones directly using a simple
classification without interpretability. As a result of that, for
example, two classes with the highest and equal likelihood
may come from two separate zones with far distances which
causes critical errors in such a safety-related application
or leads to inconvenient false alarms. In this study, in the
first phase, we proposed GazeMobileNet and trained it on
the MPIIGaze dataset. Therefore, the proposed intermediate
layer estimates the gaze vector, as an interpretable feature
corresponding to the attention zones in the second phase.
Subsequently, since we aimed to find the attention zones,
we applied the gaze vector extractor model to the LISA V2
dataset, as a driving dataset that does not contain gaze labels,
like many other datasets in that context. As a result, we pro-
posed an unsupervised method for clustering the extracted
gaze vectors. After visualizing the data, we found that most
gaze vectors significantly overlapped. Therefore, we chose
GMM as the clustering method that can handle overlapping
samples. Our main contributions are outlined below.

• In the gaze estimation phase, we introduced the
GazeMobileNet model, which achieved state-of-the-art
performance on the MIIGaze dataset. When head pose
information was incorporated, the mean angle error
(MAE) significantly decreased to 2.37◦, while the head
pose-free model achieved an MAE of 2.51◦.

• Due to the model’s sensitivity to slight changes in the
head or eye direction, the driver monitoring system may
mistakenly estimate a different zone when the likeli-
hood of the attention zones is close. To address this
issue and enhance the explainability of zone classifi-
cation, we introduced an intermediate feature, a novel

contribution to this study. This feature facilitates the
mapping between the input image and the estimated
attention zones by utilizing the gaze vector/angle as a
significant descriptor.

• For our research, we utilized the LISA V2 attention
zone dataset as the target driving dataset, which does
not include the gaze vector labels. To overcome this
limitation, we developed an unsupervised strategy to
cluster the gaze features associated with each target
video frame. By leveraging distinctive attributes of the
gaze directions, we proposed a clustering model to
assign each gaze vector to the corresponding attention
zone.

The paper is organized as follows. In section II,
we reviewed the related works. Sections III and IV describe
our datasets and the proposed methodology. Section V shows
the performance evaluation of the proposed models, and
the results were discussed. In Section VI the paper was
concluded.

II. RELATED WORK
In this work, we proposed an explainable double-phase
framework to monitor the visual attention of a driver, where
the input frames from the in-cabin camera are fed into the
gaze estimation module to quantify the gaze information,
and mapped to the region (zone) where the driver is looking.
Therefore, this section is divided into reviewing three distinct
areas of research. The first part pertains to the most promis-
ing investigations within the domain of gaze estimation in
general. In the second part, state-of-the-art techniques for
attention zone classification will be analyzed. Finally, in the
third part, we will review the related works in explainable AI
(XAI), followed by a discussion on its necessity in automated
driving systems.

A. GAZE ESTIMATION
Vision-based gaze estimation can be classified into two main
categories. 1) Model-based techniques, which estimate gaze
direction by combining the geometric eye model using the
eye features, such as cornea reflection and pupil center [6].
However, due to the calibration requirement, the need for ded-
icated infrared (IR) lighting hardware, and sensitivity to the
input noise (occlusions or lighting), these models are costly
prone to errors and less generalizable [7]. 2) Appearance-
based methods, which regress gaze directly from the cam-
era and map image information into the gaze angle [8].
These methods are broadly divided into two subcategories. a)
Conventional machine learning models, which extract hand-
crafted gaze-related features from image pixels. In a previous
study [9], a multi-stream model was presented that employed
features from the eyeball, iris, and the entire input image.
To mitigate the effect of noise, the authors used a synthetic
dataset, to train the isolation network and binary mask extrac-
tion. They achieved a mean angle error (MAE) of 4.64◦ on
the MPIIGaze dataset. b) Deep learning approaches estimate
direct mapping from images to the gaze vector quantitatively,
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using neural networks, which are more accurate and robust
against noise factors compared to conventional machine
learning. Ghosh et al. [10] introduced a multi-task gaze esti-
mation framework where ResNet-50 was utilized to leverage
pseudo-gaze, head pose, and eye orientation and achieved a
MAE of 4.07◦ on MPIIGaze dataset.

Wang et al. [11] proposed a unified framework that
incorporates adversarial learning to learn gaze-responsive
features and extend the point-estimation model to a Bayesian
framework. They showed improved performance on bench-
mark datasets, and adaptation capability to new sub-
jects/environments. However, compared to the superior
improvements in other human modeling studies, with the aid
of the representation power of deep neural networks (DNNs),
gaze estimation has not yet achieved the same level of matu-
rity. This is primarily due to the complex eye appearance and
cognitive process in the visual system, and most importantly,
the lack of sufficient annotated training datasets [7]. Ali
and Kim [12] introduced a multi-stream shallow CNN that
incorporates a dual spatial layer mechanism. This model indi-
vidually processed each eye patch along with the head pose
as the inputs, and utilized a learned regression function to
predict the gaze angle. Features extracted from each eye were
subsequently concatenated, and the head pose vector was
appended to the final layer for the gaze estimation task. They
also employed a data fusion technique, using MPIIGaze and
EYEDIAP datasets to improve model generalization. This
approach resulted in an accuracy of 2.60◦ on the MPIIGaze
dataset.

B. ESTIMATING THE ATTENTION ZONE
In some of the gaze estimation-based applications, such as
automotive, gaming, or virtual reality, the target is to estimate
the area in 2 or 3-dimensional (2D/3D) space where the gaze
is pointing to, and the time duration of the focus. For example,
in driver monitoring, estimating the attention zone, such as
road, mirror, steering wheel, or infotainment is an indicator
of visual attention/distraction.

Vora et al. [13], proposed a systematic evaluation of
various CNNs with the aim of enhancing the generalization
of the attention zone classification. The study explored four
different inputs including the driver’s face and background,
the driver’s face, and the upper half of the face. They used
a classification method to map from image content to the
attention zone directly. However, the relationship between
the input images and the output zone labels was not explic-
itly interpretable in their proposed method. Rangesh et al.
[14] proposed a model that used an IR camera to capture
images, normalized the images to manage lighting issues,
and employed gaze preserving CycleGAN (GPCycleGAN)
to remove eyeglasses before gaze estimation. The authors
utilized squeezeNet to directly classify eye crop images into
different gaze zone labels. Nonetheless, employing a direct
classification approach of the attention zones from input
images may lack the capability to provide a comprehensive

explanation of the reasoning and decision-making process
behind assigning the input image to a specific attention zone.

Yang et al. [15] proposed a model that presents a
classification-based approach that assigns input images into
distinct attention zones through a multistage algorithm. Ini-
tially, the detected face was fed into a facial encoding net-
work using an attention mechanism. In the final stage, head
pose information was integrated into the facial feature map,
resulting in the probability distribution of different classes.
However, that model also failed to elucidate the exact rela-
tionship between the input characteristics and the estimated
zone.

C. EXPLAINABLE AI-BASED DRIVER MONITORING
SYSTEM
As AI systems continue to evolve, the aspect of explainability
has emerged as a crucial consideration. Explainable AI (XAI)
addresses one of the major challenges in Machine Learn-
ing (ML) by enabling AI systems to make their operations
understandable to humans during practical implementation.
With the continuous advancements in AI techniques and
the increasing level of automation in the field of automated
driving, the significance of XAI has grown substantially.
The demand for explainability has reached unprecedented
levels due to the paramount importance of safety in the auto-
mated vehicle industry [16]. However, given that humans
are this technology’s primary social stakeholders and users,
the development principles for autonomous vehicles should
resonate with the target audience’s requirements, incorporat-
ing their preliminary opinions and expectations. Moreover,
from sociotechnical and philosophical perspectives, provid-
ing interpretations for AI decisions can yield descriptive
information about the causal sequence of actions taken,
especially in crucial situations.

An explainable driver monitoring system can offer con-
siderable benefits to the societal acceptance of intelligent
vehicles. Providing an intuitive human-computer interac-
tion interface is critical to satisfying users, which includes
drivers and passengers. A range of studies has leveraged
human-centered XAI design that employs visual, audio, and
textual modalities to communicate a vehicle’s real-time deci-
sions to its passengers [17]. Incorporating such feedback in
vehicle design can significantly improve user experience,
thus establishing the need for intelligent AI systems for the
broader acceptance of autonomous vehicles. Furthermore,
safe driving directly influences the safety of passengers and
pedestrians, making it imperative to establish a reliable trans-
portation system. However, recurrent system failures without
adequate explanations can substantially erode users’ trust.
Therefore, the provision of detailed interpretations and build-
ing an explainable intelligent driving system are the crucial
steps toward building trust in AI, which further engenders
transparency and accountability within the technology [18].

Kim and Canny [19] employed visual explanations repre-
sented as real-time highlighted regions of an image, using
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an attention model, that exerts a causal influence on the
network’s output, specifically, steering control. The poten-
tial image regions impacted the network output, but those
regions may contain both true influences and spurious ones.
There has been limited research on the topic of explainabil-
ity in AI-based driver monitoring systems. Lorente et al.
[16] proposed the XRAI, an explainability technique in AI,
to scrutinize the decision-making process of two DNNs in an
advanced driver assistance system (ADAS). The first model,
detecting the driver’s mood, showed an inadequate focus on
key facial features due to insufficient training. The second,
identifying driver distractions, struggled to classify new data
despite high training accuracy.

This paper aims to enhance the explainability of intelli-
gent driver’s attention monitoring by focusing on the specific
context. Previous studies on attention zone estimation pri-
marily utilized classification methods to allocate each sample
to an attention zone. However, these methods often lacked
explainability, making it difficult to establish a clear rela-
tionship between the input image and the estimated attention
zone. To address this limitation, our study introduces a novel
approach by incorporating gaze features as intermediate-level
features. By utilizing these features, we not only improve
the classification accuracy but also provide a clearer under-
standing of the connection between the input image and the
assigned attention zone.

III. DATASET
In this study, two publicly available datasets, the MPIIGaze
dataset, and the LISA V2 dataset are utilized in two phases
of the proposed framework to build a model for gaze fea-
ture extraction and the attention zone estimation phase,
respectively.

A. MPIIGAZE DATASET
The MPIIGaze dataset [20] includes over 213,659 facial
images of 15 subjects recorded during their everyday lap-
top usage. This dataset is significantly challenging due to
its high appearance, head movement, gaze target, and illu-
mination variability. The number of images collected per
participant ranged from 1,498 to 34,745. The ‘‘Normalized’’
version of the dataset contains the images of eye crops that
have been normalized to cancel the scaling and rotation
effects. The size of the normalized samples is a 30 × 60
grayscale eye-patch image, corresponding to each right and
left eye. Figure 1. shows the RGB version of the eye-cropped
images. Additionally, the dataset provides two annotations
for each image: the 3D head pose and the 3D gaze direc-
tion, corresponding to the right and left eye images, respec-
tively. Due to the availability of gaze vector information,
this dataset is ideal for training and evaluating supervised
gaze estimation models. It is recognized as one of the most
well-known datasets, as its appearance variations, make it a
valuable resource for gaze estimation research. In Table 1,
the specific appearance features of the MPIIGaze dataset are
shown.

FIGURE 1. Sample images in MPIIGaze dataset.

TABLE 1. Appearance characteristics of MPIIGaze dataset per subject.

B. LISA V2 DATASET
The primary version of the LISA V2 dataset [14] was col-
lected utilizing two cameras positioned in front of the driver,
along with one outside the vehicle. In this dataset, seven
classes including six distinct attention zones and one state
were identified, namely ‘‘forward’’, ‘‘right’’, ‘‘left’’, ‘‘center
console (radio)’’, ‘‘center rearview mirror’’, ‘‘speedometer’’,
and an ‘‘eyes-closed & lap’’ state. LISA V2 was captured
using an IR camera mounted adjacent to the rearview mir-
ror. Furthermore, LISA V2 incorporates data about the time
of driving (either daytime or nighttime) and the use of
eyewear by the drivers. Figure. 2 depicts the six in-cabin
attention zones, and sample images in the LISA V2 dataset.
In Table 2, the number of images in the LISA V2 at dif-
ferent image-capturing conditions is shown. To maintain
the integrity of cross-subject validation, there is no subject
overlap between the training and validation sets.

As previously mentioned, the LISA V2 dataset introduces
crucial real-world intricacies and variations that conventional
driver gaze estimation systems frequently overlook. Notewor-
thy among these complexities are factors such as the pres-
ence of eyeglasses and exposure to demanding illumination
conditions, both of which are commonly encountered dur-
ing real driving scenarios. The dataset thoughtfully includes
numerous illustrative samples, as shown in Fig. 3, that show-
case these challenges, providing valuable insights into these
real-world aspects.
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TABLE 2. The size of LISA V2 dataset, determined by the number of
images in the training, validation, and testing sets, as well as the image
capturing conditions.

TABLE 3. Comparison of the MPIIGaze and LISA V2 datasets.

IV. METHODOLOGY
As shown in Fig. 4, the proposed framework includes two
main phases. 1) In the first phase, a DNN, ‘‘Gaze Esti-
mation’’, learns to extract gaze vectors from the training
dataset (MPIIGaze). Then the trained model extracts the gaze
angles corresponding to each image in the target driving
dataset (LISA V2). In the second phase, ‘‘Attention Zone
Estimation’’, the gaze vectors from the previous step, are
clustered into the predetermined attention zones using the
Gaussian mixture model (GMM), which assigns each target
image to an attention zone by utilizing the corresponding gaze
vectors. Finally, the accuracy and robustness of the model are
validated using the ground truth zone labels. The intermediate
features (gaze vectors) obtained from the first phase, enhance
the explainability of the mapping between the drivers’ images
and attention zone labels in the second phase.

A. PHASE 1: GAZE ESTIMATION
This framework aims to provide the intermediate features
(gaze vectors) before mapping each image to a specific atten-
tion zone, in the next phase, to increase the interpretability
of zone assignment. The implementation of this phase can be
extended to other relevant gaze estimation applications. The
following section provides a detailed description of each step
in the first phase.

The comparison between the utilized datasets in our study
(MPIIGaze and LISA V2) were summarized in Table 3.

1) GAZE ESTIMATION
Appearance-based gaze estimation using DNNs creates an
end-to-end platform to estimate the gaze vector from the
raw camera frames (face/eye images). Compared to tradi-
tional machine learning, deep learning-based approaches
automatically extract hierarchical gaze features from
high-dimensional image data and learn a direct mapping from
eye appearance to the gaze vector. In this work, two setups

for gaze estimation were examined: one that utilizes the eye
image as the input, and the other setup which incorporates the
corresponding head pose as a piece of auxiliary information.

• Head pose-free gaze estimation: Head pose-free models
may be considered in certain applications where the
head pose information is not readily available, or the
process of collecting such information is infeasible or
computationally intensive. The motivation for investi-
gating the performance of the gaze estimation model
without the head pose information emanates from the
fact that in real applications, computational complexity
will be increased to extract the 3D head pose information
from 2D images. From a set of eye images ei, the goal
is to learn a head pose-free model f that estimates gaze
angle αi = f (ei) in the eye coordinate system.

• Head pose-incorporated gaze estimation: In the context
of gaze estimation, both the position and orientation of
a subject’s head pose and eyeball may be effective for
determining gaze direction [21]. However, the degree of
their interaction varies per individual, due to differences
in comfort and habitual posture. Therefore, while both
head pose and eyeball position are important, their rel-
ative contributions to the gaze direction can fluctuate
based on individual behaviors and tendencies. In this
work, we examined the effect of incorporating head pose
in estimating gaze direction. A model f was trained
using a set of eye images ei and their corresponding head
poses hi, with the objective of estimating gaze angles
αi in the eye coordinate system. Gaze direction depends
on the position of the eyes, and a parallax effect can
occur between the gaze directions of the two eyes due to
pupillary distance. Therefore, the model that takes head
pose information into account is expected to provide
more accurate gaze estimation results.
The dataset that we utilized in this study, contained
information in the form of cartesian coordinates (x, y, z)
to indicate the location of a point in 3D space. The
3D gaze direction (x, y, z) can be converted to a 2D
representation (θ , ϕ) as an angle corresponding to the
ith sample as follows.

αpi = [θi, ϕi],

θi = sin−1(−yi),

ϕi = atan2(−xi, −zi). (1)

Also, 3D head rotation (x, y, z) can be converted to (θ , ϕ)
using the following equations [22].

Mi = Rodrigues((xi, yi, zi)),

Zvi = (the third column ofM ),

θi = sin−1(Zvi[1]),

ϕi = atan2(Zvi[0],Zvi[2]), (2)

where, Rodrigues’ rotation formula transforms the rota-
tion in 3D space, represented by Euler angles (x, y, z),
into a rotationmatrixM . The third column of the rotation
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FIGURE 2. Representation of attention zones (left), and sample images (right) in LISA V2 dataset.

FIGURE 3. Instances exemplifying the prevalent challenges of intense
illumination and eyeglass-related complexities within the daytime images
of the LISA V2 dataset.

matrix M , represented by Zv, corresponds to the unit
vector in the z-axis of the rotated frame. The angle θi
between the z-axis vector and the y-axis was computed
using the arcsine function on the y-component of the
z-axis vector. Lastly, ϕ, the angle between the z-axis
vector and the x-axis (representing azimuth), was deter-
mined using the two-argument arctangent function on
the x and z components of the z-axis vector to ensure
the correct quadrant for ϕ is identified.

2) MODEL ARCHITECTURE
In this work, three CNN-based architectures including
modified LeNet (MLeNet), AlexNet, and our proposed
GazeMobileNet were trained using the MPIIGaze dataset
and evaluated to select the best model for estimating the
gaze direction. By comparing the performance of these three
different networks, we aimed to examine the influence of
the depth and size of the neural network architecture on
gaze estimation performance. MLeNet is an adaptation of
the original LeNet architecture with some significant mod-
ifications to extract the higher-level features and improve
performance. In MLeNet, the number of filters in the first
and second convolutional layers was increased to 20 and 50,
respectively. Additionally, the final fully connected layer of
the original LeNet was removed, and a linear layer with two
nodes, denoted as (θ, ϕ), was used instead of the softmax
layer. We employed the original version of AlexNet for our
application, with a few necessary modifications. Given that
the minimum input size for AlexNet should be 256 × 256,
the input image was upsampled to 288 × 480. Furthermore,
we modified the size of the final FC layer and appended a
regression layer for estimating the gaze direction parameters
(θ, ϕ).
GazeMobileNet: A high-level overview of the

GazeMobileNet architecture is shown in Fig. 5 and Table 4.

As illustrated, in this architecture, the main component of
GazeMobileNet is the inverted residual with a linear bot-
tleneck. The module of the inverted residual with linear
bottleneck initially accepts a compressed low-dimensional
representation as input. This representation in the expansion
layer was expanded to a high dimension and then subjected
to a lightweight depthwise convolution for filtering. Follow-
ing this in the projection layer, a linear convolution was
applied to project the features back to a low-dimensional
representation. The fundamental concept in the depthwise
convolution involves transforming a standard convolutional
operation into a factorized form, segregating it into two
distinct layers [23]. The initial layer, known as depthwise con-
volution, executes lightweight filtering by applying a unique
convolutional filter for each input channel. The subsequent
layer involves a 1 × 1 convolution, termed a pointwise con-
volution, which constructs new features by calculating linear
combinations of the input channels. The proposed GazeMo-
bileNet was inspired by the lightweight MobileNetV2 archi-
tecture [23]. However, they differ in several ways as described
below.

• Grayscale input: In MobileNetV2, the first layer
expects a three-channel RGB input. However, in
GazeMobileNet, the input channels in the first con-
volutional layer were modified from 3 to 1 to accept
one-channel grayscale input images. Such adjustment
was necessary for the MPIIGaze dataset, where the nor-
malized images were grayscale. Moreover, the adapta-
tion of the model to the target driving dataset (LISA V2)
involvedmaking adjustments due to differences in image
characteristics. As a preprocessing step, grayscaling the
RGB images proved somewhat beneficial in aiding the
model’s adaptation to the IR images present in the LISA
V2 dataset.

• Reduced parameters: The last FC layer (classifier) which
originally had 1000 output units (for 1000 classes in the
ImageNet dataset), was replaced by a linear layer with
128 or 132 output neurons, corresponding to the head
pose-free or head pose-incorporated setup, respectively,
which further passes through a batch normalization (BN)
layer and a ReLU activation function. By implementing
this modification, there was a significant reduction in the
number of parameters in the final layer, resulting in a
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FIGURE 4. The proposed framework.

FIGURE 5. The block diagram of the proposed GazeMobileNet architecture.

more suitable network for deploying with low-latency
requirements.

• Gaze regression: For the purpose of obtaining the
gaze yaw and pitch angles as outputs, our proposed
GazeMobileNet incorporates a gaze regression unit.
This unit consists of a linear layer with 64 output
neurons, followed by a BN layer, a ReLU activation
function, and ultimately, a linear layer with 2 output
neurons.

• Batch normalization: In contrast to the original
MobileNetV2 architecture, our proposed
GazeMobileNet introduces three extra BN layers. These
additional BN layers are placed after the initial convo-
lution layer and the fully connected (FC) layers. The
rationale behind this modification was to harness the
benefits of BN, such as accelerated learning through
the reduction of internal covariate shifts, facilitation of
higher learning rates, and improvement of gradient flow.
Furthermore, BN decreases the network’s reliance on
initialization, making it less sensitive to initial weights
and promoting better model generalization [24]. This
was particularly important in adapting the model to the
target dataset.

B. PHASE 2: ATTENTION ZONE ESTIMATION
In our framework, the attention zone estimation phase aimed
to assign each image in the target dataset to the corresponding

TABLE 4. The description of layers in GazeMobileNet.

attention zone based on the gaze vector information obtained
in phase 1. This process involved extracting gaze vectors
from the target dataset and mapping them to the relevant
zones. In the existing literature, the common approach to
mapping images to zone labels is through a straightforward
image classification method. However, this approach lacks
sufficient interpretability, as it fails to provide meaningful
explanations for the assigned zone labels. One reason for this
is the variation of the Point of Gaze (PoG) depending on the
distance between the driver and the zone plane. Additionally,
in the boundaries between adjacent zones, there is a high
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FIGURE 6. Distribution of 2D gaze angles corresponding to the LISA V2 training subset of ‘‘daytime/without eyeglasses’’. (a) before applying GMM, and
(b) after applying GMM.

TABLE 5. Comparison of GazeMobileNet’s MAE (in degrees) in the
presence/absence of head pose.

level of ambiguity in zone assignment. Moreover, poten-
tial ambiguity in class assignments may arise when regions
(classes) that are far apart within the vehicle cabin exhibit
similar likelihoods and are consequently misclassified. This
issue is particularly critical in a safety-related application
such as autonomous driving, as it may lead to high-risk false
negatives or inconvenient false positives. By incorporating
gaze vector information prior to the zone mapping process,
a higher level of precision and explainability can be achieved
in assigning the zones. This level of precision and explainabil-
ity is crucial for the effective implementation of autonomous
driving systems.

1) UNSUPERVISED CLUSTERING
In the second phase, the gaze vectors extracted from the
first phase need to be clustered in an unsupervised manner,
based on the predetermined attention zones. Among vari-
ous methods, such as hierarchical, K-means, density-based,
and model-based clustering, the selection of an appropriate
technique depends on the data distribution characteristics.
Figure 6 (a), illustrates the distribution of the 2D gaze vector
obtained from applying the trained gaze estimation model to
the target dataset (LISA V2) with seven classes, under the
‘‘daytime/without glasses’’ condition. It can be observed that
there is significant overlap among themajority of gaze angles,
before applying the clustering method. In this particular sce-
nario, where the gaze vectors were not well-separated and
exhibited overlapping distributions, a probabilistic model-
based clustering method was proposed to categorize the data
samples.

2) GAUSSIAN MIXTURE MODEL
Gaussian mixture model (GMM) as a probabilistic
model-based clustering approach can effectively address the

extensive overlap in data distributions. GMM represents data
as a combination of several Gaussian distributions. Themodel
initializes the parameters including mean, co-variance, and
mixing coefficients, and uses the Expectation-Maximization
(EM) algorithm to iteratively optimize them. In the E-step, the
model calculates the posterior probability that each data point
belongs to each Gaussian component, and in the M-step, the
model updates the parameters to maximize the likelihood of
the data. The algorithm continues to alternate between the two
steps until convergence. Due to its probabilistic framework
in computing the likelihood data with respect to the Gaussian
components, GMMproves to be a powerful tool for modeling
data with complex and overlapping distributions. As demon-
strated in Fig. 6 (b), applying the GMMclusteringmethod has
effectively addressed the overlapping issue, in successfully
separating the gaze direction data.

In GMM, convergence tolerance is an important hyper-
parameter that needs to be optimized due to its significant
impact on GMM performance. Convergence tolerance plays
a vital role in determining when the EM algorithm should
cease. The EM algorithm is iterative, and convergence toler-
ance serves as a threshold to ascertain whether the iterations
have achieved sufficient convergence [25].

3) CATEGORIZATION PROCESS
To enhance the interpretability of zone classification in the
target driving dataset, LISA V2, this study involved the
categorization of acquired gaze vectors from each image
into their respective attention zones. However, due to the
absence of drivers’ gaze labels in the target dataset, which is
a common challenge in publicly available driving datasets,
we introduced an unsupervised clustering approach to cat-
egorize the obtained gaze directions, where he number of
clusters is equal to the predetermined attention zones. Fol-
lowing the clustering process, each sample in the training
subset of the target dataset was assigned a label based on
its membership in the corresponding cluster. In this step,
there is a M × ncomponents matrix, where M denotes the
number of observations in the training subset of the target
dataset, and ncomponents refers to the number of clusters.

VOLUME 11, 2023 93105



R. Yahyaabadi, S. Nikan: Explainable Attention Zone Estimation for Level 3 Autonomous Driving

FIGURE 7. Comparison of the performance of GazeMobileNet with and
without head pose information.

FIGURE 8. Example noise factors in MPIIGaze e.g. Spectacles, high
contrasts, blurring, and Eye occlusion by hair in subjects 5, 11, 12, and 15.

Finally, the attention zone corresponding to each cluster had
to be determined. To achieve an accurate assignment of the
cluster labels, We adopted a comprehensive methodology
to establish the correlation between the clusters and the
zone labels, encompassing all potential outcomes within the
sample space. We selected the optimal match based on the
accuracy metric, leveraging a global approach that consid-
ers every possibility. The computational complexity of this
process was O(ncomponents!).

V. RESULTS AND EVALUATIONS
A. EVALUATION OF PHASE 1 - GAZE ESTIMATION
The proposed methodology was implemented on a 12th Gen
Intel(R) Core(TM) i7-12700 processor, 2.10 GHz, equipped
with 32.0 GB of RAM and 12.0 GB NVIDIA GeForce
RTX 3060 GPU. To determine the optimal model in the
first phase, we evaluated three CNN models. MLeNet,
AlexNet, and GazeMobileNet. Mean Squared Error (MSE)
was employed as the loss function. To compare the per-
formance of the models, the leave-one-out cross-validation
protocol was used, where the images of one subject in the
MPIIGaze dataset were designated as the test set, and the
images of 14 remaining subjects were adopted to train the
model for 50 epochs. The performance of the trained models
was evaluated using the mean angle error (MAE) metric.
MAE was computed using the cosine similarity measure
between the inner products of the estimated gaze angle gpi
and the target gaze angle gti .

MAE =
1
m

m∑
i=1

arccos(⟨gpi |gti⟩)
2, (3)

where m indicates the number of samples.

TABLE 6. Comparison of the performance and number of parameters of
MLeNet, AlexNet, and GazeMobileNet.

TABLE 7. Comparison of the proposed gaze estimation versus the
state-of-the-art models on the MPIIGaze dataset. The best result is in
bold.

FIGURE 9. Comparison of the performance of MLeNet, AlexNet, and
GazeMobileNet.

As depicted in Fig. 7 and Table 5, the head
pose-incorporated GazeMobileNet showed a marginally
lower MAE for most subjects compared to the head pose-free
network. In addition, Table 5 provides a comparison of the
average MAE between these two models across 15 subjects.
The results suggested that including the head pose infor-
mation could improve the model’s accuracy and provide
supplementary information. However, given that the normal-
ized MPIIGaze dataset is an eye-cropped image dataset and
does not contain the entire face/head image, the use of head
pose information did not have a highly significant impact and,
for some subjects, it was redundant information.

As depicted in Fig. 7 and Fig. 8, some differences between
the results obtained from the head pose-incorporated and
head pose-free models were observed in subjects 5, 11, 12,
and 15. According to the specific characteristics of each
subject’s image in theMPIIGaze dataset, described in Table 1,
these subjects were presented with instances of occlusion,
such as spectacles, hand, or hair, as well as fluctuations
in illumination. Consequently, while head pose information
enhanced the overall efficacy of the models, its influence
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TABLE 8. Per-class accuracy of attention zone estimation across four different capture conditions and seven classes in LISA V2 dataset (%).

FIGURE 10. Estimated (green) and ground truth (red) gaze vectors in
some MPIIGaze data samples.

was particularly pronounced in scenarios involving obscured
facial or ocular regions, as well as images exhibiting varying
levels of darkness or contrast. In such cases, the gaze infor-
mation gleaned directly from the image may be incomplete,
or insufficiently distinct, and the additional cues provided by
the head pose information may be instrumental in bolstering
the robustness of the model in the presence of noise factors.

In this step, three head pose-free models, MLeNet,
AlexNet, and GazeMobileNet were compared to pick the best
performing as the final gaze estimation model. In Fig. 9, the
MAE of these three models was separately sorted by different
subjects.

As shown in Fig. 9 and Table 6, GazeMobileNet had
superior performance compared to the other two networks.
As demonstrated in Fig. 9, GazeMobileNet significantly out-
performs both AlexNet and MLeNet on other subjects, with
the exception of Subject 1. There could be some reasons for
this. It’s possible that the initially chosen random weights
for GazeMobileNet were not as suitable for Subject 1’s data
as those for MLeNet and AlexNet. Under these circum-
stances, GazeMobileNet may have struggled to converge to
an optimal solution for Subject 1, leading to less satisfactory
performance. Additionally, Subject 1 might exhibit unique
eye characteristics or gaze patterns that the architecture of
GazeMobileNet fails to effectively capture. GazeMobileNet,
built for efficiency and reduced computational complexity
using depthwise separable convolutions, may lack the capac-
ity or specific layers necessary to interpret the nuances of
Subject 1’s gaze. On the other hand, AlexNet and MLeNet
might possess architectures more adept at handling this
particular subject’s unique characteristics.

As presented in Table 5, GazeMobileNet achieved the
state-of-the-art gaze estimation on the MPIIGaze dataset,

FIGURE 11. Accuracy of zone estimation versus the GMM convergence
tolerance for the training subsets of the LISA V2 dataset.

with MAE of 2.37 ◦ when using head pose information, and
2.51 ◦ without utilizing head pose.
The superior performance of GazeMobileNet in estimating

the gaze vector accurately is illustrated in Fig. 10, which
depicts a cohort of randomly selected test samples. Table 7
presents a comparative analysis of the performance of our
proposed GazeMobileNet model on the MPIIGaze dataset
versus the state-of-the-art methods in the literature, evaluated
under the leave-one-out cross-validation protocol. The pro-
posed model not only demonstrated a significant reduction
in MAE but also contained a considerably fewer number
of learnable parameters, that plays a key role in determin-
ing computational efficiency. In designing an automated
AI-based system, the size of the neural network is a critical
factor, which impacts the feasibility of its deployment in
real-world applications with low-latency requirements. As a
result of depthwise convolutions in the architecture, perform-
ing separate convolutions, and applying a single filter on each
input channel independently, the computational complexity
of the convolutional operations was significantly reduced.
The lower memory footprint and thus faster inference time in
GazeMobileNet make it an appropriate choice for real-time
performance and a wide range of deployment constraints in
the automotive industry. Therefore, we utilized the trained
GazeMobileNet on the MPIIGaze dataset for gaze estimation
in the driving dataset in the next phase.

B. EVALUATION OF PHASE 2 - ATTENTION ZONE
ESTIMATION
We applied GMM as the clustering method with EM opti-
mization. An optimized convergence tolerance (tol) param-
eter determines the minimum change in the log-likelihood
needed for the algorithm to converge. A smaller tol value
leads to a more precise estimation of GMM parameters,
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TABLE 9. F1-score of the attention zone estimation across four different
capture conditions and seven classes in LISA V2 dataset (%).

TABLE 10. Comparison of attention zone estimation accuracy of the
proposed method with the original method related to LISA V2 dataset
(%). The best results have been bold.

at the cost of more iterations and computational resources.
By adjusting tol, we can control the accuracy of the clustering
model. Figure 11 shows the results for 13 different tol values,
versus the GMM accuracy. We chose the GMM model with
tol = 5× 10−8 as the attention zone estimation model on the
training subset in the LISA V2 dataset and validated with the
validation subset.

We evaluated our proposed attention zone estimation
approach on four main image-capturing conditions of the
LISA V2 dataset, and the per-class accuracies corresponding
to six in-cabin zones and the ‘‘eyes-closed & lap’’ state are
shown in Table 8. As can be seen in Table 8, the best accura-
cies in both ‘‘daytime without eyeglasses’’ and ‘‘nighttime
without eyeglasses’’ conditions belong to the ‘‘radio’’ and
‘‘rearview’’ classes which achieved accuracies of 78.86% and
89.20%, respectively. Most of the samples from these classes
are front-facing views with the entire face and both eyes
visible. Hence, the trained network had ample information
for a more accurate gaze vector estimation, making the target
LISA V2 dataset highly compatible with the training dataset
(MPIIGaze) in this context. The lower recognition rates for
the ‘‘right’’ and ‘‘forward’’ zones are due to the camera
direction; in some captured images, where both eyes were not
visible. In the ‘‘left mirror’’ attention zone, most samples con-
tain a side view of the face, where at least one eye and other
facial features, such as the nose, and eyebrows, were lost.
Consequently, the recognition rate for this class was compar-
atively lower than that of other classes. The lowest accuracy
in the ‘‘daytime/without eyeglasses’’ condition, belongs to
the ‘‘speedometer’’ zone and ‘‘eyes-closed & lap’’ state. This
phenomenon was expected because, in the ‘‘speedometer’’
class, the eyes of the subjects were not fully visible in most

samples. The upper eyelid obscured the sclera, iris, and pupil,
making them difficult to recognize. Moreover, subjects in
the ‘‘eyes-closed & lap’’ state had their eyes closed. Conse-
quently, the model trained on the MPIIGaze dataset, which
was based on open eyes, encountered difficulties in detecting
gaze-related features from those samples.

The situation differed slightly for ‘‘daytime with eye-
glasses’’ and ‘‘nighttime with eyeglasses’’, likely due to the
effect of eyeglasses as an occlusion factor and their impact
on the image texture. The highest accuracy in both ‘‘daytime
with eyeglasses’’ and ‘‘nighttimewith eyeglasses’’ conditions
belongs to the ‘‘rearview’’ class, with accuracies of 77.14%
and 92.24%, respectively. The ‘‘right mirror’’ class in the
‘‘daytime with eyeglasses’’ condition had the second worst
accuracy, while it had the second best accuracy in the ‘‘night-
time with eyeglasses’’. In the ‘‘daytime with eyeglasses’’
condition, there were no significant ormeaningful differences
among per-class accuracies. Upon examining the samples,
it is evident that the number of side-view faces in the ‘‘right
mirror’’ class of ‘‘daytime with eyeglasses’’ exceeded the
same class in the ‘‘nighttime with eyeglasses’’. Furthermore,
daytime introduces the noise factor of illumination variation
and sunlight reflection in the eyeglasses, which is absent
during nighttime.

Furthermore, we assessed our model’s performance using
the Micro and Macro F1-score metrics as shown in Table 9
and were calculated as follows.

Micro average F1-score =

N∑
i=1

2 × TPi

N∑
i=1

2 × TPi + FPi + FNi

, (4)

Macro average F1-score =
1
N

N∑
i=1

2×TPi
2×TPi+FPi+FNi

, (5)

where, TP, FP, and FN represent True Positive, False Posi-
tive, and False Negative respectively and N is the number
of classes. Micro F1-score aggregates the contributions of
all classes to compute the average metric. In other words,
it calculates the F1-score by counting the total TP, FN, and
FP across all classes while the Macro F1-score, estimates the
per-class F1-score independently for and takes the average
(hence treating all classes equally), irrespective of the class
imbalance.

The discrepancy between Micro- and Macro-averaged
F1-scores is caused by the existing class imbalance in the
dataset. Under all capture conditions, the Micro F1-score
marginally supersedes the Macro F1-score. This finding
implies that the model shows better performance in classes
that contain a greater number of instances.

As real-world variability and complexity in driver gaze
estimation systems are often ignored, we made use of the
LISA V2 dataset in our research. This dataset includes exam-
ples that encompass a wide range of factors such as the use
of eyeglasses, harsh illumination, nighttime data, and more.
The diverse characteristics of the LISA V2 dataset make
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FIGURE 12. Normalized confusion matrix for testing subset in ‘‘daytime without eyeglasses’’ capture condition. (a) Proposed model, and (b) proposed
model in [14].

it both challenging and general, enabling us to assess the
generalization capabilities of our proposed model effectively.
Furthermore, the LISA V2 dataset stands out as one of the
few publicly available resources specifically designed for
in-cabin attention zone evaluation during driving tasks, which
adds significant value to our research. Regarding previous
research that utilized the LISA V2 dataset for comparison
purposes, the [14] is the only study to date that has employed
the LISA V2 dataset for their investigations.

Table 10 compares the results of the proposed method
with that presented in [14] for LISA V2, following the same
hypotheses and settings in this work. As shown in Table 10,
our proposed method has been evaluated in the night con-
dition and day condition that contains different lighting and
where the performance on the ‘‘nighttime’’ images outper-
formed the ‘‘daytime’’ cases, in both ‘‘with’’ and ‘‘without’’
eyeglasses. This trend can be attributed to a significant fac-
tor: daytime images within this dataset often exhibit intense
illumination due to sunlight, leading to increased noise and
intricacy in the samples. Harsh illumination in these condi-
tions can result in diverse effects on IR images, including
overexposure and diminished contrast. In contrast, nighttime
images are inherently shielded from the challenges of harsh
illumination.

Also, the proposed model excelled over the method in [14]
with samples featuring eyeglasses. Removing eyeglasses can
negatively impact image quality, causing the gaze estima-
tion model to be unable to estimate accurate gaze-related
appearance features from the eye region. Therefore, we can
conclude that removing eyeglasses does not necessarily
improve the accuracy of the attention zone classification. Our
explainable model, which uses intermediate gaze features,
showed robustness in dealing with the eyeglasses as an occlu-
sion noise factor, effectively. One reason is that the gaze
estimation model was trained on the images of subjects with
eyeglasses in the MPIIGaze dataset.

C. EVALUATION OF EXPLAINABILITY
As observed in Fig. 12, when employing direct classification
as the reference method [14], the accuracy of the ‘‘eyes-
closed & lap’’ state exceeds that of the proposed method

which utilizes the intermediary gaze angle features. This
occurs because when the driver’s eyes are closed or in the
lap position, the gaze direction could align with any of the
other zones. As a result, the accuracy of the ‘‘eyes-closed &
lap’’ state is distributed among other zones, notably the ‘‘left
mirror’’ and ‘‘radio’’ classes.

Regarding explainability, it is evident that, for instance,
when considering the ‘‘speedometer’’ attention zone, the
method in [14] allocates 25% of probability to the ‘‘for-
ward/normal driving’’ zone, even though the true zone is
‘‘speedometer’’. This means that the automated system has
a 25% chance of incorrectly identifying a distracted zone as a
normal one, increasing the rate of false negatives. Conversely,
in the proposed method, the ‘‘forward’’ zone is integrated,
ensuring that the ADAS does not mistakenly perceive an
abnormal situation as normal driving. In other words, a
distractive zone is not erroneously classified as a normal zone.

VI. CONCLUSION
In this paper, we present a two-phase framework for estimat-
ing the driver’s gaze direction and attention zone to detect
their visual focus. This is explicitly crucial in improving the
safety aspects in the intermediate level of autonomy (level 3).
We proposed a GazeMobileNet network in the training phase
of our proposed platform to estimate the gaze vectors cor-
responding to each driver’s image in the target LISA V2
dataset, as the intermediate features to improve the explain-
ability of the zone classification. In addition to obtaining
the state-of-the-art MAE in gaze angle prediction on the
MPIIGaze dataset, the network showed sufficient efficiency
to be applied in the real-time analysis of the driver’s video
frames and low-latency deployment requirements. The GMM
clustering approach, whichwas proposed in the second phase,
with an optimized tolerance level, increased the accuracy of
zone mapping from the highly overlapping distribution of the
gaze angle data. Our proposed method demonstrated superior
performance in estimating attention zones within the LISA
V2 dataset, especially when subjects wearing eyeglasses.
This platform offers explainable, robust, and generalizable
predictions adequate for safety-related applications.
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Additionally, the influence of the head pose information
on gaze estimation was examined. We concluded that for
normalized data in the MPIIGaze dataset, where images were
cropped around the eyes region, and facial features are not
readily extractible, head pose information did not signifi-
cantly enhance the model’s performance. This holds true
except in instances where noise factors, such as occlusion,
lighting, and eyeglasses are present. Moreover, we found that
our proposed method excels in estimating attention zones
under certain conditions, where both eyes are visible and the
face direction is primarily front view, such as ‘‘forward’’,
‘‘rearview’’, and ‘‘radio’’ zones.

In future research, we will utilize a dataset with a
broader range of gaze angles, which fully represents the
driving gaze distribution based on Original Equipment
Manufacturer (OEM) requirements. Additionally, we will
estimate the Aleatoric/Epistemic uncertainty and out-of-
distribution robustness of our framework which are crucial
in safety-related applications.
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