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ABSTRACT In this paper, we have developed a series of wave hybrid models for significant wave height
prediction. Our developed hybridmodels uses a triplet of signal decompositionmethod, regressionmodel and
meta-heuristic algorithm. We have used the ϵ-Support Vector Regression (ϵ-SVR), Least Squares Support
Vector Regression (LS-SVR), Long Short-Term Memory (LSTM) and Large-margin Distribution Machine
based Regression (LDMR) model for the regression task. For signal decomposition methods, we have
considered theWavelet Decomposition (WD), EmpiricalModeDecomposition (EMD) andVariationalMode
Decomposition (VMD) method. Apart from this, we have also used the Particle Swarm Optimization (PSO)
method to tune the parameters of the used regression model in our wave hybrid models. Till now, the VMD
method and LDMRmodel have not been used in any wave hybrid model. We have evaluated the performance
of our developed wave hybrid models on time-series significant wave heights, collected from four different
buoys using the different evaluation criteria. After the detailed statistical analysis of the obtained numerical
results, we conclude that the VMD-PSO-LDMR based wave hybrid model obtain best performance on six
datasets out of seven considered datasets. Also, the VMD based wave hybrid models can obtain better
performance than other decomposition based hybrid models. Further, we also conclude from our numerical
results that the LSTM model outperforms the SVR, LS-SVR and LDMR based hybrid models if we do
not decompose the significant wave height signals apriori. But, when we decompose the SWH time-series
signals using a particular decomposition method, then SVR, LS-SVR and LDMR based hybrid models tend
to improve their prediction ability significantly.

INDEX TERMS Support vector regression, machine learning, hybrid model, renewable energy, wave height
prediction, wavelet transform, empirical mode decomposition.

I. INTRODUCTION
The renewable energy technologies have obtained a rapid
growth in recent years to meet the fossil fuels crisis and
reduce the climate threats. The wave energy is one of the
promising and reliable clean energy sources for catering the
future energy demands. It has broader prospects and higher
energy density compared with other clean energy sources
like solar and wind [1], [2]. The Significant Wave Height
(SWH) is very fundamental and necessary parameter in the
determination of wave power level. It is obtained by taking
the average of one-third highest ocean waves observed in a
given time interval. The significant wave height prediction
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plays a very crucial role in wave power generation. A reliable
and efficient prediction of significant wave height of few
hours ahead is required for the enhancing the performance
of wave energy converter [3]. Apart from this, the hourly
efficient prediction of SWH can significantly help to improve
the decisions in maritime and off-shore activities. But, the
highly random and chaotic nature of ocean waves make
the significant wave height prediction task difficult and
challenging.

Traditionally, researchers have used the energy balance
equations to obtain the wave forecast over a large spatial
and temporal domain using other different ocean variables
[4]. But, these models are computationally expensive and
complex which limits their applicability specifically for
hourly SWHpredictions for a particular location. Researchers
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have preferred the data driven models for short term wave
height forecasting which estimates the SWH of next few
hours using the time-series data.

The parametric time-series models such as Auto-
Regressive (AR), Auto-RegressiveMovingAverage (ARMA),
Auto-Regressive Integrated Moving Average (ARIMA), etc.
have been well exploited by researchers for SWH forecasting.
Some important literature that makes use of these models
effectively for wave prediction are ([5], [6], [7], and [8]).
The ARMA model obtains good prediction only when the
time series is stationary. For non-stationary time series, the
ARIMA model is preferred over the ARMA model. But, all
of these parametric time-series models fail to capture the
complex non-linear relationship. They also assume that the
data noise is from the normal distribution which may not be
relevant particularly for SWH time-series data.

The non-parametric modernmachine learningmodels have
shown more promising results, especially for short-term
SWH forecasting tasks as they do not make any assumption
regarding the noise distribution. Researchers have used the
different variants of neural architecture and obtained the
reliable short-term prediction of SWH. Deo et al. have used
the three-layer feed-forward ANN model for the prediction
of SWH [9]. In [10], the author has improved the SWH
prediction by using the ANN model. In [11], authors
have used the Extreme Learning Machine (ELM) along
with grouping genetic algorithm for searching the effective
features set and obtaining the effective forecast of short-term
SWH. The ELM is a feed-forward neural network in which
hidden layer weights are selected randomly. Unlike the ANN
model, it does not require the costly back-propagationmethod
for tunning all weights. Only the output weights are obtained
using a single matrix inversion. But, the solution obtained by
the ELM depends upon the randomly selected hidden layer
weights. For obtaining more robust prediction, authors have
used an ensemble of ELMmodels to obtain the daily forecast
of SWH in [12].
The Recurrent Neural Network (RNN) is a sequential

learning model which is capable of identifying the temporal
pattern in the data. RNN is a very effective and popular
approach for SWH prediction among researchers [13], [14].
But, the RNN architecture suffers from vanishing gradient
problems and fails to learn the long-term dependencies in
data. The Gated Recurrent Unit (GRU) [15] improves the
RNN by using the gate mechanism for controlling the flow
of information and getting rid of the vanishing gradient
problem. The different variants of GRU have been used to
obtain the estimate of SWH in [14] and [16]. The Long Short
Term Memory Network (LSTM) [17] is a more complex
neural architecture than GRU and involves more gates for
controlling the flow of information. Some important research
works which make the use of LSTM model for forecasting
SWH are [18], [19], [20], and [21]. But, all of these sequential
learning models are complex, require a large number of
parameters to be learned and are prone to over-fitting.

It makes them not a suitable choice for a single time stamp
ahead SWH forecasting with small or medium sample size
training sets.

Support Vector Regression (SVR) models [22] are popular
choice of researchers in hourly forecasting tasks due to its
simplicity. These models are based on statistical learning
theory [23] and can minimize an appropriate trade-off
between empirical risk and model complexity in their
optimization problem. Further, these models can obtain the
global optimal solution which remain missing in other neural
network architecture based machine learning models. The
different variants of the SVR models have been used in the
efficient predictions of the SWH in several research works.
Some of them are [24], [25], [26], and [27].

But, there are two main challenges associated with
SVR forecasting. The first one requires the efficient
tuning of user-defined parameters of SVR models. The
second challenge requires an informative set of features for
obtaining good forecasts with SVR models. SVR models
may obtain poor forecasts with raw SWH time-series
signals.

To get rid of these challenges, researchers have started to
use hybrid wave models for improving prediction in recent
years. In wave hybrid models, a decomposition technique is
used to decompose the time-series data into more informative
features. Thereafter, these features have been supplied to
machine learning algorithms for obtaining more accurate
predictions. Researchers have proposed the variants of the
hybrid models by considering the different combinations of
decomposition methods and machine learning models and
studied their behavior on different SWH datasets.

In SWH forecasting literature, the two decomposition
method namelyWavelet Decomposition (WD) and Empirical
Mode Decomposition (EMD) [28] has been used dominantly
along with different machine learning algorithm to develop
the efficient hybrid models.

Prahlada and Deka have proposed a hybrid model with
the Wavelet Decomposition (WD) method for the prediction
of SWH for the lead time up to 48 hours [29]. Other
relevant hybrid models which make use of the wavelet
decomposition technique are [16], [30], and [31]. Duan et al.
have used the EMD [28] technique along with ϵ-SVR model
[22] for obtaining the short-term forecasting of significant
wave height [4]. Tang et al. have used the Least Square
Support Vector Regression (LS-SVR) [32] models along with
the EMD technique for short-time wave height prediction.
Musaylh et al. used two phases PSO-based SVR model with
an improved EMD method for multiple origin electricity
demand forecasting [33]. Ali and Parasad have used an
improved ensemble EMDmethod along with the ELMmodel
to obtain the forecast of significant wave height 30 minutes
ahead [34]. But, the wavelet and EMDdecompositionmethod
may be sensitive to noise and sampling.

Also, only ϵ-SVR and LS-SVR models are exploited
in the hybrid wave model in the literature. The ϵ-SVR is
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preferred when noise is uniform whereas the LS-SVR model
is preferred for normal noise in data.

In this paper, we have developed a sequence of hybridmod-
els and compared their performance for hourly significant
wave height predictions. These hybrid models use different
regression models along with a signal decomposition method
for obtaining their prediction. Our developed hybrid models
include the wave hybrid models which use the LDMR model
[35] for prediction. The LDMR model [35] is a more general
SVR model which offers more flexibility and the ability to
handle the mixture of noise. Also, some of our developed
wave hybridmodels use the VariationalModeDecomposition
(VMD) [36] method for signal decomposition which is more
robust than the wavelet and EMD method.

We summarize the contribution of this paper as follows.
1) We have designed sixteen different wave hybridmodels

and compared their performances for hourly SWH
forecasting. Our wave hybrid models use the LDMR
[35], LS-SVR [32], ϵ-SVR [22] and LSTM model
[17] for prediction. We have also used the Wavelet
Decomposition (WD), EMD and VMD [36] methods
to decompose the time-series data into more suitable
features vectors in our hybrid models.

2) The LDMR model [35] can minimize a good trade-off
among the ϵ-insensitive loss function, quadratic loss
function and model complexity in its optimization
problem which enables it to obtain the better prediction
than ϵ-SVR and LS-SVR models. To the best of our
knowledge, no wave hybrid models have exploited the
LDMR model for improving the prediction of SWH.
In this paper, we have attempted to use the LDMR
model along with WD, EMD and VMD methods.

3) Researchers have recently shown that the use of
VMD [36] technique in wind hybrid models results
in significant improvement in short-term wind speed
prediction. Motivated by this, we have also used
the VMD decomposition method in our different
wave hybrid models and obtained an improvement
in SWH prediction over other decomposition-based
hybrid models.

4) We have also used the Particle Swarm Optimization
(PSO) algorithm [37] in our wave hybrid models
to obtain the appropriate parameter values for used
regression models.

5) We have collected the hourly SWH time-series data
from four different ocean buoys located at different
geographical regions and evaluated our developed
wave hybrid models namely PSO-LDMR, PSO-SVR,
PSO- LS-SVR, LSTM, WD-PSO-LDMR, WD-PSO-
SVR, WD-PSO-LS-SVR, WD-LSTM, EMD-PSO-
LDMR, EMD-PSO-SVR, EMD-PSO-LS-SVR, EMD-
LSTM, VMD-PSO-LDMR, VMD-PSO-SVR, VMD-
PSO-LS-SVR andVMD-LSTMmodels using different
evaluation criteria. After the brief analysis of the
obtained numerical results, we conclude that the
LDMR model based wave hybrid models can obtain

better predictions than other regression model-based
hybrid models. Also, the VMD method based hybrid
models can obtain better prediction than other decom-
position based hybrid models. Further, we also con-
clude from our numerical results that the LSTM
model outperforms the SVR, LS-SVR and LDMR
based hybrid models if we do not decompose the
significant wave height signals apriori. But, when
we decompose the SWH time series signals using
a particular decomposition method, then SVR, LS-
SVR and LDMR based hybrid models tend to improve
their prediction ability significantly and outperform the
LSTM model. Contrary to them, LSTM based models
fail to improve their prediction ability significantly
when signals are decomposed apriori.

We have organized the rest of this paper as follows.
In Section-II and Section- III, we have briefly described the
used signal and machine learning models and decomposition
methods respectively. In Section-IV, we have developed
different wave hybrid models and briefly described their
methodologies and implementation details. In Section-V,
we have presented the numerical results and their brief
analysis. Section-VI concludes this paper.

II. MACHINE LEARNING MODELS
In this sections, we shall briefly describe the used machine
learning models in our wave hybrid models.

Given the training set T = {(xi, yi) : xi ∈ Rn, yi ∈

R, i = 1, 2, . . . , l }, SVR models minimizes a linear
combination of the loss function and regularization term to
obtain a linear estimate f (x) : wT x + b, w ∈ Rn, b ∈

R. For estimating the non-linear function, it finds f (x) :

wTφ(x) + b = K (xT ,AT )u + b in feature space, where K is
an appropriate kernel satisfying Mercer condition [38] such
that φ(xi)Tφ(xj) = K (xi, xj). The matrix A is l×n data matrix
containing the l data points in Rn.

A. ϵ-SUPPORT VECTOR REGRESSION MODEL
The ϵ-SVR model [22], [23] minimizes the ϵ-insensitive loss
function along with the 1

2w
Tw regularization. It finds the

solution of the following optimization problem

min
w,b

1
2
wTw+ C

l∑
i=1

|yi − (wTφ(xi) + b)|ϵ, (1)

where |yi−(wTφ(xi)+b)|ϵ =max(0, |yi−(wTφ(xi)+b)|−ϵ)
is the ϵ-insensitive loss function which can ignore an error
up to ϵ. After introducing the slack variable ξ1

i and ξ2
i for

i = 1, 2, .., l, the ϵ-SVR problem (1) is solved by converting
the QPP:

min
(w,b,ξ1,ξ2)

1
2
∥w∥

2
+ CeT (ξ1 + ξ2)

subject to, Y − (φ(A)w+ eb) ≤ ϵe+ ξ1,

(φ(A)w+ eb) − Y ≤ ϵe+ ξ2,

ξ1 ≥ 0, ξ2 ≥ 0 (2)
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HereC > 0 and ϵ are the user specified positive parameters
that balances the trade off between the training error and the
flatness of the regression function. And the vector Y and
is l × 1 vector containing the responses yi. Further, ξ1 =

[ξ11 , ξ21 , . . . , ξ l1] and ξ2 = [ξ12 , ξ22 , . . . , ξ l2] are l dimensional
column vectors.

Using the Karush-Kuhn-Tucker(KKT) conditions, the
Wolfe dual problem of the primal problem (2) can be obtained
as

min
(α1,α2)

1
2
(α1 − α2)TK (A,AT )(α1 − α2)

− Y T (α1 − α2) + ϵeT (α1 + α2)

subject to, eT (α1 − α2) = 0,

0 ≤ α1 ≤ Ce,

0 ≤ α2 ≤ Ce. (3)

where α1 = [α1
1, α

2
1, . . . , α

l
1, ] and α2 = [α1

2, α
2
2, . . . , α

l
2]

are l dimensional vectors for Lagrangian multipliers. After
obtaining the optimal values of the Lagrangian multipliers
vectors, α1 and α2, from (3), the estimated regressor is
obtained for the given x ∈ Rn as follow.

f (x) = wTφ(x) + b

= K (xT ,AT )(α1 − α2) + b. (4)

B. LEAST SQUARES SUPPORT VECTOR REGRESSION
MODEL
The LS-SVR model [32] minimizes the quadratic loss
function along with 1

2w
Tw regularization term. It minimizes

min
w,b

1
2
wTw+ C1

l∑
i=1

(yi − (wTφ(xi) + b))2, (5)

in its optimization problem along with the regularization
term 1

2 ||w||
2. The optimization problem of the LS-SVR

model can be expressed as

min
w,b,ξ

1
2
∥w∥

2
+ C1

l∑
i=1

(ξ2i )

subject to, yi − (φ(Ai)w+ b) = ξi, i = 1, 2, . . . , l, (6)

where C1 > 0 is a user defined parameter. The solution of
problem (6) can be obtained by solving the following system
of equations. [

0 eT

e K (A,AT ) +
2
C1
I

] [
b
α

]
=

[
0
Y

]
(7)

After obtaining the (b, α) by solving the above system of
equations, we can estimate our regression function for a given
x ∈ R using

f (x) = wTφ(x) + b = K (xT ,AT )α + b. (8)

C. LARGE-MARGIN DISTRIBUTION MACHINE
REGRESSION MODEL
The least square loss function used in LS-SVRmodelmakes it
to perform optimal in case of the presence of normal noise in
the data. The ϵ-insensitive loss function in the ϵ-SVR model
makes it perform optimal in the presence of the uniform
noise.

The LDMR model [35] minimizes the linear combination
of the quadratic loss and ϵ -insensitive loss function for
measuring the empirical risk along with 1

2w
Tw regularization

term. It enables it to perform better than both ϵ-SVR and LS-
SVR model. The LDMR model [35] minimizes

min
w,b

1
2
wTw+

1
2

l∑
i=1

(yi − (wTφ(x) + b))2

+ C
l∑
i=1

|yi − (wTφ(x) + b)|ϵ, (9)

which can be converted to the following QPP

min
w,b,ξ1,ξ2

c
2
||w||

2
+

1
2
||Y − (Aw+ eb)||2

+ CeT (ξ1 + ξ2)

subject to, Y − (Aw+ eb) ≤ eϵ + ξ1,

(Aw+ eb) − Y ≤ eϵ + ξ2,

ξ1 , ξ2 ≥ 0, (10)

where C, c and ϵ are the user specified positive parameters.
We prefer to solve the Wolfe dual of the primal problem (10)
which can be obtained as follows,

min
α1,α2

1
2
(α1 − α2)TH (c(α1 − α2)

+ Y TH (cI0 + HTH )−1HT (α1 − α2)

− Y T (α1 − α2) + ϵeT (α1 + α2)

subject to, 0 ≤ α1 ≤ Ce, 0 ≤ α2 ≤ Ce. (11)

Here H = [K , e] is a augmented matrix and I0 =
I 0

.

.

0 . . . 0

 where I is n × n identity matrix. After obtaining

the solution of problem (11), the solution vector u = [w, b]T

can obtained using

u = [w, b]T = (cI0 + HTH )−1HT (α1 − α2 + Y ) (12)

and the regression function is estimated using (8).

D. LONG SHORT-TERM MEMORY MODEL
Long Short-Term Memory (LSTM) is a recurrent neural
network (RNN) architecture that can handle long-range
dependencies in sequential data. Unlike feedforward neural
networks, LSTM incorporates feedback loops that enable
it to learn from both current and past inputs. A typical
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FIGURE 1. LSTM architecture.

LSTM unit consists of four components: a memory cell,
an input gate, an output gate, and a forget gate. We can
see architecture in Figure 1. These components interact to
regulate the information flow within the unit and to maintain
a persistent state over time.

Figure 1 illustrates the different gates that regulate
the information flow in an LSTM block. The input gate
determines the new information that will be incorporated into
the cell state, as shown in (13). The forget gate controls the
information that will be discarded from the previous cell state,
as shown in (14). The cell state is the key component of the
LSTM block that stores and updates the relevant information
over time, as shown in (17). The output gate decides the
information that will be emitted from the current LSTM
block, as shown in (15). The hidden state of the LSTM block
is updated according to (18).

It = σ (Wxi ∗ Xt +Whi ∗ ht−1 + bi) (13)
Ft = σ (Wxf ∗ Xt +Whf ∗ ht−1 + bf ) (14)
Ot = σ (Wxo ∗ Xt +Who ∗ ht−1 + bo) (15)
C̃t = It ∗ (tanh(Wxc ∗ Xt +Whc ∗ ht−1 + bc)) (16)
Ct = Ft ∗ Ct−1 ∗ C̃t (17)
Ht = Ot ∗ tanh(Ct ) (18)

III. METHODOLOGY OF PROPOSED WAVE HYBRID
MODELS FOR SWH PREDICTION
In this section, we shall develop novel variants of wave hybrid
model and briefly describe the methodology and implemen-
tation details of them. Our wave hybrid models involve
five general successive steps which we have presented in
the Figure 2. Further, we briefly describe these steps as
below.

1) Decomposition of signal:- After receiving the
time-series SWH data, we need to decompose it
into more informative data signals. A standalone
regression model performs poorly with raw time-
series signifi. The performance of a regression model
depends upon the quality of supplied feature set.
We have used popular decomposition techniques to
decompose the raw time-series significant wave height
into more strong and informative features which is

supplied to regression model for efficient prediction
The decomposition of the signal is important as it
helps to obtain the more informative features for our
machine learning method. In our developed wave
hybrid models, we have used the WD, EMD or VMD
decomposition method to decompose the time series
SWH x(t) into [x1(t), x2(t), . . . , xn(t)] component data
signals.

2) Attributes/features composition:- After decompos-
ing the SWH signal, we need to prepare the dataset for
machine learning model. For this, we need to compose
the feature set and corresponding response values. For
ith signal component, we compose the p-dimensional
[xi(t), xi(t−1), xi(t−2), .., xi(t− (p−1))] features for
the prediction of xi(t + 1).

3) Parameters Tunning:-We need to train the n machine
learning models to obtain the prediction for each of
xi(t + 1) for i = 1, 2, .., n, using our composed feature
sets. But, before training a machine learning model,
we need to tune its parameters. We have used the
PSO algorithm to tune the parameters of our machine
learning models.

4) Prediction:- After selecting the appropriate values of
parameters for our machine learning model, we finally
train them for obtaining the prediction of xi(t + 1) for
i = 1, 2, .., n.

5) Aggregation:- After obtaining the prediction of xi(t +
1) for i = 1, 2, .., n, we aggregate them to obtain the
final prediction for x(t + 1).

Now we detail the working of our proposed wave hybrid
models as follows.

1) LDMRbased hybridmodels:- In LDMRbased hybrid
model, we use the LDMR model for regression tasks.
In Figure 3, we have shown the steps of training the
PSO-LDMRmodel for a given dataset. In PSO-LDMR
model, the choice of kernel parameter q, trade-off
parameters C and c has been supplied by the PSO
algorithm after tuning them efficiently. We have listed
the flow chart of PSO algorithm in Figure6. Now we
detail the working of the LDMR based hybrid model
one by one.

a) PSO-LDMR model :- For given time-series
SWH data (X1,X2, . . . .,Xt ), the PSO-LDMR
model construct the training set (A,Y ) using A =
X1, X2, . . . ., ,Xp
X2, ,X3, . . . ,Xp+1

. . . . . . . . .

Xt−p,Xt−p+1, . . . .,Xt−1

 and Y =


Xp+1
Xp+2
. . .

Xt

.

Using the training set (A,Y ), the PSO-LDMR
model is trained using the steps of flowchart given
in Figure 3. For the prediction of the SWH xt+1,
the PSO-LDMR model is estimated for the test
point [Xt−p+1,Xt−p+2, . . . .,Xt ].
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FIGURE 2. Wave hybrid model.

FIGURE 3. LDMR model flowchart.

b) WD-PSO-LDMR model:- In WD-PSO-LDMR
model, we first decompose the input time-series
SWH signal s(t) = (X1,X2, . . . .,Xt ) into five
high frequency detail signals (D1,D2,D3,D4,D5)
and a low frequency approximate signal A5.
Thereafter, we construct the six different training

FIGURE 4. SVR model flowchart.

sets by using each decomposed signal as
shown in the Attribute/Feature Composition
step of Figure 2. For each training set,
we train a PSO-LDMR model separately. For
the prediction of the SWH xt+1, we con-
sider the different decomposition of test point
[Xt−p+1,Xt−p+2, . . . .,Xt ] similar to the training
data and send the decomposed signal to the cor-
responding trained LDMR model. The prediction
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FIGURE 5. LS-SVR model flowchart.

of the all LDMR model is aggregated to obtain
the final prediction of xt+1.

c) EMD-PSO-LDMR model:- The working of
the EMD-PSO-LDMR model is similar to the
WD-PSO-LDMR model except that the EMD-
PSO-LDMR model uses the EMD decomposi-
tion technique to decompose the input signals.
In EMD-PSO-LDMR model, input time-series
SWH signal s(t) = (X1,X2, . . . .,Xt ) is decom-
posed in five Intrinsic Mode Functions (IMFs)
and one residuals function.

d) VMD-PSO-LDMR model:- The working of
the VMD-PSO-LDMR model is similar to the
WD-PSO-LDMR model except that the VMD-
PSO-LDMR model uses the VMD decomposi-
tion technique to decompose the input signals.
In VMD-PSO-LDMR model, input time-series
SWH signal s(t) = (X1,X2, . . . .,Xt ) is decom-
posed in five IMFs and one residuals function
using the VMD decomposition.

2) SVR based hybrid models:- The PSO-SVR model
is a hybrid model that uses SVR for regression and
PSO for parameter optimization. Figure 4 shows the
steps for training the PSO-SVR model on the given
SWH dataset. The PSO algorithm tunes the kernel
parameter q and the regularization parameter C for
the SVR model. The PSO-SVR model constructs the
training set (A,Y) from the time-series SWH data
s(t) = (X1,X2, . . . .,Xt ) as in the PSO-LDMR model.
The PSO-SVR model then trains on the training set
(A,Y) following the steps in Figure 2. To predict the
SWH xt+1, the PSO-SVR model takes the test point
[Xt−p+1,Xt−p+2, . . . .,Xt ] as input. The other hybrid
models that use SVR for regression, such as WD-PSO-
SVR, VMD-PSO-SVR, and EMD-PSO-SVR, work
similarly to the LDMR based hybrid models, except
that they replace LDMR with SVR.

3) LS-SVR based hybrid models:- The PSO-LS-SVR
model is a hybrid model that uses LS-SVR for regres-

sion and PSO for parameter optimization. Figure 5
shows the steps for training the PSO-LS-SVR model
on the given SWH dataset. The PSO algorithm tunes
the kernel parameter q and the regularization parameter
C1 for the LS-SVR model. The PSO-LS-SVR model
constructs the training set (A,Y) from the time-series
SWH data s(t) = (X1,X2, . . . .,Xt ) as in the PSO-
LDMRmodel. The PSO-LS-SVR model then trains on
the training set (A,Y) following the steps in Figure 5.
To predict the SWH xt+1, the PSO-SVR model takes
the test point [Xt−p+1,Xt−p+2, . . . .,Xt ] as input. The
other hybrid models that use LS-SVR for regression,
such as WD-PSO-LS-SVR, VMD-PSO-LS-SVR, and
EMD-PSO-LS-SVR, work similarly to the LDMR
based hybrid models, except that they replace LDMR
with LS-SVR model.

A. IMPLEMENTATION DETAILS
In Wavelet decomposition based hybrid models, we have
decomposed the SWH data signal into five high fre-
quency detail signals (D1,D2,D3,D4,D5) and a low fre-
quency approximate signal A5. For this, we have used the
Daubechies 4 discrete wavelet filter available in MATLAB
( www.mathworks.com). In Figure 8 (a), we have shown the
wavelet decomposition for the dataset A. For our EMD and
VMD decomposition based wave hybrid models, we have
decomposed the initial data signal into six IMFs using their
respective algorithms. In Figure 8 (b), we have shown the
VMD decomposition for the dataset A. After decomposing
the original signal into six different components, we have
composed the feature sets and response values in each case
and divided the obtained datasets into training set and testing
set. The 80% of a dataset was used as training set and
remaining was used as testing set.

We have used the SVR, LS-SVR, LDMR and LSTMmod-
els for the prediction of SWH data. We have implemented the
SVR, LS-SVR and LDMRmodels in MALTAB environment
by writing an appropriate function in MATLAB. The SVR
and LDMR model require the solution of the dual QPPs (3)
and (11) respectively. The solution of these QPPs of SVR
and LDMR models have been obtained using the ‘quadprog’
function available in MATLAB by using the ‘interior-point
convex’ algorithm. The LS-SVR model only requires the
solution of a system of equations to obtain its solution.
In SVR, LDMR and LS-SVR models, we have used the RBF
kernel of the form k(x, y) = e−q||x−y||, where q is the kernel
parameter. We have implemented the LSTMmodel in python
using Jupyter notebook.
We need to tune and obtain the appropriate parameters

of our machine learning model for a given dataset before
using them for obtaining the prediction. We have used the
PSO algorithm to tune the parameters of our used machine
learning models. We have illustrated the flow chart of used
PSO algorithm in our hybrid model in Figure 6. The LDMR
model involves four parameters namely ϵ, C , c and kernel
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FIGURE 6. Flow chart of implemented PSO algorithm in our wave hybrid
models.

parameter q. The ϵ-SVR involves three parameters namely
ϵ, C and kernel parameter q and LS-SVR models involve
two parameters C and kernel parameter q only. The ranges of
parameters ϵ, C , c and q ([lb,ub] in Figure 7) have been fixed
with [0, 2], [0, 1024], [0, 1024], [0, 1024] respectively for
all considered SVR models. For the evaluation of fitness
function in our PSO algorithm, we need to obtain the testing
error by solving the dual problem (3) and (11) for ϵ-SVR and
LDMR model respectively. For the LS-SVR model, we need
to obtain the solution of system of equations (7). For LSTM
model, we have tunned number of hidden units and batch
sizes using grid search method in [1, 128].

IV. EXPERIMENTAL RESULTS
In this section, we shall be comparing the performances of
developed wave hybrid models along with different existing
wave hybrid models on different ocean significant wave
height datasets.

A. DATASETS DESCRIPTION
We have collected the time-series hourly SWH data from the
different ocean buoys available on the National Data Buoy
Center (NDBC) (https://www.ndbc.noaa.gov/). We have
listed a brief details of chosen ocean buoys datasets at Table 1.
At first, we have considered the forecasting of one hour

ahead SWH. For this, we have collected four datasets namely
A, B, C and D, which contain the hourly reading of SWH
from ocean buoys detailed in Table 1. The datasets A,

FIGURE 7. Plot of different time series SWH datasets.

B, C and D record the SWH for 670, 2869, 2872, and
2852 continuous hours respectively.

We have plotted the time series signals of SWH dataset A,
B, C and D in Figure 7. The SWH (h 1

3
) is mean of top one

third of wave height. We can observe that our datsets contain
highly non-linear and chaotic signals. We have shown the
WD, VMD and EMD decomposition of the time-series signal
for dataset A in the Figure 8.
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FIGURE 8. Decomposition of signal for dataset A.

We have also compared the existing and proposed hybrid
models for six hour ahead forecasting of SWH. For this,

TABLE 1. Description of datasets.

we have considered dataset E, F, and G, which records the
SWH at every six hour time interval. We have also collected
this datasets from buoys detailed in Table 1. The datasets E,
F, and G contains 476, 478 and 479 readings of SWH.

B. EVALUATION CRITERIA
For evaluating the different considered wave hybrid models,
we need to fix the evaluation criterion first. We have used
the commonly used evaluation criterion for measuring the
performance of wave hybrid models. With the notations, yi
as actual SWH for ith test sample, ŷi as predicted SWH for ith

test sample, ȳi as mean of actual SWH and n as total number
of testing samples, we briefly describe our evaluation criteria
as follows.

1) Root Mean Square of Errors (RMSE): It is obtained by√
1
n

n∑
i=1

(yi − ŷi)2.

2) Mean of Absolute Deviations (MAD): It is obtained by
1
n

n∑
i=1

|yi − ŷi|.

3) Mean Absolute Percentage of Errors (MAPE):- It is

obtained by 1
n

∑n
i=1

∣∣∣∣ yi−ŷiyi

∣∣∣∣ × 100.

4) Normalized Mean Squares of Errors (NMSE):- It is
ratio of Sum of Squares of Errors (SSE) and Sum of
Squares of Testing samples (SST) and is obtained by
n∑
i=1

(ŷi−yi)2

n∑
i=1

(yi−ȳ)2
.

5) Accuracy (Acc): It is the measure for the accuracy of
obtained predictions. It is obtained by Acc = 100 -
MAPE.

C. RESULTS
After fixing the evaluation criteria, we present our numerical
results obtained from the extensive experiments. We have
listed the performance of proposed LDMR, SVR, LS-SVR
and LSTM models with no decomposition, WD,EMD and
VMD techniques on our selected SWH datasets with lead
time of 1 hour and 6 hours using Accuracy, RMSE, NMSE,
MAD andMAPE at Table 2 and Table 3 respectively.We have
also listed the total computational time in seconds for each of
our wave hybrid models in Table 2 and Table 3.

D. ANALYSIS AND INFERENCE
We shall briefly analyze the numerical results presented
in Table 2 and Table 3. Out of seven considered dataset
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TABLE 2. Numerical results of lead time 1 hrs.

VMD-PSO-LDMR model obtain the best performance on
six datasets among other considered wave hybrid models.For
clear visualization of obtained numerical result, we have
compared the accuracy obtained by different wave hybrid

models using a box plot in Figure 9 for all considered seven
datasets.

In box plot of Figure 9, we can compare the median
of accuracy obtained by different wave hybrid models.
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TABLE 3. Numerical results of lead time 6 hrs.

The VMD-PSO-LDMR model obtains highest 95.77 median
accuracy which is followed by the VMD-PSO-LS-SVR
model with 95.43 median accuracy. The VMD-PSO-LDMR
model also excels with other wave hybrid models if we
consider the 25th and 75th percentile of accuracy values. Also,
the maximum accuracy obtained by the VMD-PSO-LDMR
model is 98.32, which is the highest among all obtained
accuracy values by any wave hybrid model.

From the box plot, we can observe that the VMD-PSO-
LDMR, VMD-PSO-LS-SVR, WD-PSO-SVR, and WD-
PSO-LDMR models are four top-performing wave hybrid
models on our dataset. We considered four top-performing
hybrid models on SWH datasets and computed listed their
obtained ranks in Table 5. The VMD-PSO-LDMR model
obtains the first rank on all seven SWH datasets. The
average ranks obtained byWD-PSO-LDMR,VMD-PSO-LS-

TABLE 4. Wilcoxon test.

SVR, and WD-PSO-SVR models are 2.57, 2.71, and 3.71,
respectively.

We have plotted the prediction obtained by VMD-PSO-
LDMR model for dataset A and D in Figure 12. We have
shown the prediction of VMD-PSO-SVRmodel in Figure 13.
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TABLE 5. Rank obtained by four top-performing wave hybrid model namely VMD-LS-SVR, WD-SVR, VMD-LDMR and WD-LDMR on considered SWH
datasets.

FIGURE 9. Comparison of different wave hybrid models using box plot.

FIGURE 10. Box plot for comparison of different regression models.

FIGURE 11. Box plot for comparison of different decomposition methods.

Also, we have shown the prediction of VMD-PSO-LS-SVR
and VMD-PSO-LSTM model for dataset D in Figure 14.

Now, we compare the effectiveness of regression models
used in considered wave hybrid models. We have used four
variants of LDMR, SVR, LS-SVR and LSTM based hybrid
models on seven different datasets. Figure 10 compares
LDMR, SVR, LS-SVR and LSTMbased hybridmodels using
box plot. The LDMR based hybrid models obtain highest

FIGURE 12. Performance of VMD-PSO-LDMR model.

90.72 median accuracy which is followed by the SVR based
hybrid models with 86.49 median accuracy. The LS-SVR
based hybrid models and LSTM based hybrid models obtain
84.58 and 81.30 median accuracy respectively. The 75th

percentile accuracy values obtained by LDMR based hybrid
models is 93.64 where as 75th percentile accuracy values
obtained by SVR, LS-SVR and LSTM based hybrid models
are 92.45, 93.23 and 90.96 respectively. The 25th percentile
accuracy values obtained by LDMR based hybrid models is
80.69 where as 25th percentile accuracy values obtained by
SVR, LS-SVR and LSTM based hybrid models are 79.51,
78.55 and 76.18 respectively.

We have shown the average accuracy values obtained
by different wave hybrid models in Table 6. We can
observe that PSO-LDMR based wave hybrid mod-
els obtain 87.79 mean accuracy which is followed
by PSO-SVR based hybrid models with 82.92 mean
accuracy.

We can easily realize that LDMR based hybrid models
obtain best performance on considered seven datasets for
SWH prediction. We can also find that SVR based hybrid
models outperformLS-SVR and LSTMbased hybridmodels.

Let us compare the performances of LDMR, SVR, LS-
SVR and LSTM based wave hybrid models in case of no
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FIGURE 13. Performance of VMD-PSO-SVR model.

FIGURE 14. Performance of (a) VMD-PSO-LS-SVR and (b) VMD-PSO-LSTM
model on dataset D.

TABLE 6. Average accuracy values obtain by wave hybrid models.

decomposition of SWH signals. In Table 6, we have listed
the average of accuracy values obtained by LDMR, SVR,LS-
SVR and LSTM models in case of different decomposition
techniques. From Table 6 and Figure 9, we can note
that, in the case of no decomposition, the LSTM model
obtained 86.30 median accuracy and 81.33 mean accuracy,
which is highest among all no decomposition based wave
hybrid models. In case of no decomposition of signals,

the median accuracy obtained by PSO-LDMR, PSO-SVR
and PSO-LS-SVR models are 79.05, 73.06 and 70.75,
respectively and mean accuracy obtained by PSO-LDMR,
PSO-SVR and PSO-LS-SVR models are 81.10, 66.38 and
76.77 respectively. We can observe that the LSTM model
outperforms the SVR, LS-SVR and LDMR based hybrid
models if we don’t decompose the SWH signals apriori.

From Table 6, we also observe that the PSO SVR, PSO
LS-SVR and PSO LDMR model obtain poor performances.
But, when these models are used with decomposition tech-
niques, their performances are significantly improved. It is
because of the fact that the decomposition techniques provide
informative and suitable features to SVR models. Contrary
to this, LSTM models fail to improve their prediction ability
significantly when signals are decomposed apriori.

Further, we compare the performance of the different
decomposition methods used in considered wave hybrid
models.We have used four decomposition techniques with all
considered wave hybrid models on seven different datasets.
Figure 11 compares No decomposition, EMD,WD andVMD
methods using a box plot. The VMD method obtained the
highest 93.91 median accuracy, which is followed by theWD
method with 91.48 median accuracy. The no decomposition
and EMD method obtain 79.05 and 80.42 median accuracy,
respectively. The 75th percentile accuracy values obtained
by VMD method is 95.43, whereas 75th percentile accuracy
values obtained by no decomposition, WD and EMD
methods are 83.51, 92.83 and 81.88 respectively. The 25th

percentile accuracy values obtained by VMD methods is
89.40, whereas 25th percentile accuracy values obtained
by no decomposition, WD and EMD methods are 72.48,
88.93 and 78.55 respectively. From Table 6, we can also
observe that mean accuracy obtained by VMD, WD, EMD
and No decomposition methods based hybrid models are
91.64, 87.23, 80.98 and 76.40.

From VMD based wave hybrid models obtain the best
performance among other used wave hybrid models. TheWD
methods based hybrid models also perform better than EMD
and no decomposition methods. Researchers have shown that
the EMDmethodmay be sensitive to noise and sampling [36].
Our datasets contain the reading of sensors deployed at ocean
buoys, which may be subject to noise. It causes the EMD
based wave hybrid models to perform poorer than VMD and
WD based wave hybrid models.

We now use the non-parametric Wilcoxon single rank
test [39] for comparing the different decomposition based
wave hybrid models using accuraccy. Our null hypothesis
is that all considered decomposition-based hybrid models
perform equally. We have reported the R+, R-, and p values
computed in the Wilcoxon single rank test for every pair of
decomposition methods in Table 4. Here R+ and R- are the
sums of positive and negative ranks respectively obtained
for a pair of all the decomposition methods of wave hybrid
models. We have considered the level of significance α =
0.05 in this study. If the p value is lesser than α, then we reject

VOLUME 11, 2023 109853



P. Anand et al.: New Improved Wave Hybrid Models for Short-Term SWH Forecasting

our null hypothesis; Otherwise, we need to accept it. We have
also listed the decision of the Wilcoxon single rank test for
every pair of decomposition methods in Table 4. We can
observe from the Table 4 that the numerical results obtained
from VMD based hybrid models are significantly different
from the numerical results obtained by the WD, EMD
and No-decomposition based wave hybrid models. Furhter,
WDbasedwave hybridmodels produce numerical results that
are significantly different from the results obtained by EMD
and no-decomposition based hybrid methods.

V. CONCLUSION
In this paper, we have designed sixteen different wave
hybrid models namely PSO-LDMR, PSO-SVR, PSO- LS-
SVR, LSTM, WD-PSO-LDMR, WD-PSO-SVR, WD-PSO-
LS-SVR, WD-LSTM, EMD-PSO-LDMR, EMD-PSO-SVR,
EMD-PSO-LS-SVR, EMD-LSTM, VMD-PSO-LDMR,
VMD-PSO-SVR, VMD-PSO-LS-SVR and VMD-LSTM
model for hourly forecasting of significant wave height.

We have used theWavelet, EMD and VMDmethods in our
hybrid models for decomposing the time-series signal into
informative features. We have first used the VMD decom-
position method in wave hybrid models for significant wave
height forecasting and shown that it improves performance
significantly.

We have used the LDMR models ϵ-SVR, LS-SVR, LSTM
models for forecasting of SWH. No wave hybrid model has
ever exploited the LDMR model for SWH forecasting. The
LDMRmodel offers more flexibility and the ability to handle
the mixture of noise well. We have shown that the use of
the LDMR model in wave hybrid models improves SWH
forecasting. We have also used the PSO method to tune the
parameters of the used regression model in our developed
wave hybrid models

We have checked the performances of wave hybrid models
using different evaluation criteria on seven real-world ocean
wave height datasets collected from four different ocean
buoys.

After the brief analysis of the numerical results, we find
that the VMD-PSO-LDMR model obtains the best perfor-
mance on six datasets out of seven datasets with a median
accuracy of 95.77 and mean accuracy of 95.30. We find
that the LDMR based wave hybrid models perform better
than SVR, LS-SVR and LSTM based wave hybrid models.
We have also compared decomposition methods used in
our wave hybrid models. We find that VMD based wave
hybrid models outperform EMD, WD and No decomposition
based wave hybrid models significantly. Further, we observe
that in case of no decomposition of signals, the LSTM
based wave hybrid models perform better than SVR, LS-
SVR, and LDMR based wave hybrid models. But, when
signal decomposition techniques are used in SVR, LS-SVR,
and LDMR based wave hybrid models, then they improve
their performances significantly. Contrary to them, the

LSTM based hybrid models do not improve their prediction
significantly when signal decomposition techniques are used.

Our developed wave hybrid models are only capable
of single time stamp ahead forecasting. Further, it does
not involve any mechanism to exploit the information
available like wind speed, wind directions, temperature and
sea level and for improvement in SWH forecast. We have
planned to improve our hybrid models in this sense in the
future.
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