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ABSTRACT Vehicular Ad Hoc Network (VANET) was initiated about two decades ago in view of saving
lives by mitigating and reducing the number of accidents and incidents on public roads. Moreover, this
objective can only be achieved if VANETs mobiles regularly exchange Road State Information (RSI) with
their neighborhood and take decisive actions based on the RSI received. Therefore, it becomes paramount
to ensure that the transmitted message is well received. And this is only possible if the quality of the sharing
medium or link is controlled, and transmission performed while taking into consideration the Channel
State Information (CSI). The CSI provides information related to channel quality, Signal-to-Noise Ratio
(SNR), and so forth. The process of adapting the payload as a function of the CSI is called Link Adaptation
(LA). Several LAworks have already been published inVANETs, but almost without serious consideration of
the effect of the relativemobility amongst the nodes. Hence, while taking into consideration the Doppler Shift
induced by the relative velocity, the current work presents a link adaptation strategy using a Neural Network
(NN) and the Levenberg-Marquardt algorithm in VANETs. The simulation results definitively demonstrate
that the NN approach outperforms its counterparts by a significant margin. It achieves a performance of
1075% in transmission duration, 180% in transmitted bit, and 115% in model efficiency when compared to
the Cte, ARF, and AMC algorithms, respectively.

INDEX TERMS VANET, machine learning, link adaptation, WAVE, V2V, V2I, neural networks.

I. INTRODUCTION
Vehicles are regarded as wireless nodes in VANETs and
regularly share Road State Information (RSI) with their
neighbors. The RSI enables the participating mobile to con-
stantly be aware of the position, velocity, and direction of
all other mobiles nearby. The Wireless Access in Vehicular
Environment (WAVE) standard, also known as Dedicated
Short-Range Communication (DSRC), was created to enable
and facilitate inter-vehicular communication [1], [2]. Operat-
ing at a frequency of 5.9 GHz, the WAVE standard is part of
the Federal Highway Administration’s Vehicle Infrastructure
Integration (VII) for developing Intelligent Transportation
Systems (ITS) [3]. Under the WAVE standard, a vehicle
can connect with other vehicles using the Vehicle-to-Vehicle
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(V2V) protocol or with other wireless communication infras-
tructure using the Vehicle-to- Infrastructure (V2I) protocol.
The WAVE standard is composed of two other standards
named IEEE 802.11p, designed to handle all operations
related to the Medium Access Control (MAC) and the physi-
cal layers (PHY), and the IEEE 1609 standard, which focuses
more on handling all operations performed by the upper
layers [3].

In the context of the safety application, the success of
the VANETs relies essentially on two types of message
dissemination between the involved nodes. The first type,
known as Cooperative Awareness Messages (CAMs) which
are transmitted regularly [4], possesses all information related
to the whereabouts of all other mobiles in the vicinity of the
involved nodes. CAMs are sort of the RSI awareness notifi-
cation messages transmitted at the frequency of 1 to 10 Hz.
The second type, named Decentralized Environmental
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Notification Messages (DENMs), are high-priority notifica-
tion messages with extremely low latency which are only
generated in case of emergency (accident, collision). DENMs
notifications are time sensitive and will perish if not delivered
on time. The DENMs are very important messages notifica-
tion type that carry information about preventing accidents
or other incidents that might assist arriving cars before they
reach the accident or incident scene. These twomessage types
are of prime importance in VANETs and are often exchanged
between nodes in the context of safety applications [5].
Besides, some auxiliary advantages like electronic toll gate
payment, a la carte service, infotainment, and so on, the
successful transmission, effective handling, and management
of the CAMs and the DENMs messages constitute the central
part of the VANETs.

Taking advantage of this technology and in the seek to
reduce the number of accident risks on public roads, the
DSRC transceiver has since become mandatory for new vehi-
cles manufactured in North America [6]. With more than
30 zettabytes of data generated by connected cars, it is esti-
mated that the worldwide V2X industry will exceed US$100
billion in the coming years [7].

In view to improve on the current standard, the
IEEE802.11 bd was developed to enhance and replace the
actual IEEE802.11p standard. Nevertheless, despite many
advancements, there is still a crucial problem of matching
the transmission rate and mode to the extremely dynamic
channel conditions in a vehicular environment that must be
resolved [8]. Any mobile communication subjected to this
network will have sporadic signal degradation proportional
to the incurred relative speeds. The other big issue is that
to design an effective LA model, one needs to simulate
the communication module under all possible variations of
channel realization. Hence, such exercise is very cumber-
some, fastidious, and time-consuming. In the past, these ITS
characteristics were and continue to be a mere challenge
hindering the development of the LA algorithm for the ITS
environment. Additionally, besides the higher mobility of the
involved nodes, the IEEE 802.11p PHY layer also makes
use of Orthogonal Frequency DivisionMultiplexing (OFDM)
which is extremely sensitive to Doppler Shift (DS) [9]. Con-
sequently, the design of an effective LA strategy that takes
into consideration the higher mobility factor of the vehicular
environment remains of prime importance [8].
Unlike the work proposed by some authors [10], [11], and

[12] which focused on LA and Doppler Shift mitigation in
VANETs, the current work proposes a Link Adaptation strat-
egy using a Neural Network and the Levenberg-Marquardt
Algorithm to address the challenging LA problem in
VANETs. The proposed work starts by analyzing the problem
to find out how such a complex problem can bemodeled using
ML. The dataset used in this work was obtained from the
work generated by [12]. The dataset is arranged, and the data
preparation is performed in line with the ML criteria. Then
the LA model is proposed and the choice of the selected NN
algorithm is motivated and justified. The model is trained,

tested, and validated using the provided dataset to obtain
the final model response. Thereafter, the work ended by
evaluating and testing the final response against its peers LA
strategies ARF, AMC, and Cte. The results from validation
tests demonstrated the outperformance of the NN over its
selected peers with 1075 %, 180%, and 115% performance
in relation to the transmission duration, transmitted bit, and
model efficiency, respectively.

As a main contribution, this work:
1-Presents a state-of-the-art method to translate a real-life

problem into a mathematical model.
2-Demonstrates and presents how to use the

Levenberg-Marquardt algorithm to solve LA problems.
3-Demonstrates a convenient way to model LA strategy

using NN.
The paper is arranged as follows: a literature review is

presented in Sect. II. The data preparation is presented in
Sect. III. The proposedML algorithm is presented in Sect. IV.
Followed by the model training in Sect. V. The model testing
and evaluation are described in Sect. VI. And finally, the
conclusion is presented in Sect. VII.

II. LITERATURE REVIEW
Several works have already been published in the field of
LA. Moreover, some recent works, such as [13], [14], and
[15], do not employ ML in their strategies and are not
tailored for the VANETs environment. Many well-known
works, such as [16], [17], and [18], were developed for
the legacy IEEE 802.11 that was created for conventional
Wireless Local Area Networks (WLAN). Auto Rate Fallback
(ARF) is one of the most used rate adaptation mechanisms
in wireless environments [16]. In the ARF strategy, a rate
upshift is performed after ten consecutive successful frame
transmissions, whereas a rate downshift is performed after
two consecutive frame transmission failures. ARF, however,
is unable to respond quickly to a channel that is changing
rapidly since it takes 10 successful frame transmissions to
boost the transmission rate. Numerous ARF techniques based
on various up/down counter algorithms have been incorpo-
rated in most firmware [19]. The adaptive auto rate fallback
(AARF) is one of the enhancements to the ARF [17]. The
AARF’s goal is to improve ARF performance in a channel
with gradual fading. Every time AARF tries to increase the
transmission rate and the ensuing packet transfer fails, the
threshold is doubled.

In general, very few research works have successfully
addressed the LA in the context of VANETs while tak-
ing increased mobility into account. In view to develop the
mathematical model for each MCS, Khaldoun examined the
effects of Doppler Shift (DS) as a function of relative speed on
the signal quality [20]. Furthermore, simulation experiments
were conducted, and an AdaptiveModulation Coding (AMC)
scheme was developed, simulated, and tested. Additionally,
although restricted to a maximumDS range of 500 Hz, which
is comparable to about 92 km/h, the AMC approach exhibits
improved performance compared to its peers. Alternatively,
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the minstrel algorithm was proposed by [21] to solve the
LA problem encountered in IEEE 802.11 standards. This
algorithm selects its bit rate based on which rate can reach
maximum throughput. It considers the expected number of
retransmissions based on the statistical history of the wire-
less channel. To achieve the optimal data rate, the minstrel
algorithm uses three main components made of the retry
chain mechanism, the rate decision process, and the statistical
calculations [21]. First, a multi-rate retry chain is used to
select the best data rate whenever a short-term variation in
channel quality occurs. Second, a rate selection which defines
the rate of normal and sampling transmission used. Then, the
third part focuses on statistical calculations.

The Packet Rate Adaptation based on the Bloom filter
(PRAB) protocol to mitigate the hidden terminal collision by
adapting the packet generation rate is presented in [22]. The
paper derived the optimal formulation for the packet genera-
tion rate based on the number of hidden terminals experienced
by each transmitter-receiver pair. To calculate the number of
hidden terminals, the protocol used the efficient Bloom filter
data structure for piggybacking 1-hop neighbor set. The simu-
lation results demonstrated that the PRAB protocol increases
the packet reception probability to 90% in contrast to IEEE
802.11p’s 68%, NORAC’s 75%, and FABRIC’s 72.5% even
in very high-density networks. In addition, it delivers BSM
packets faster (lower PRD). The performance improvement
in PRP and PRD comes at the negligible cost of marginally
higher PRI.

In terms of VANETs LA strategies using Machine Learn-
ing (ML) techniques, very few works have been pub-
lished in the literature. The authors in [23] investigated a
machine learning method of link adaptation which analyti-
cally characterizes the adaptation problem to maximize the
system throughput while maintaining transmission reliabil-
ity. In order to maximize the whole system throughput,
the setup uses an Nt x Nr MIMO system and employs
an autoencoder model and a multi-class SVM to select
MCS through SNRs for MIMO-OFDM systems. Further-
more, a scheme based on a channel matrix is investigated
to select spatial mode and MCS for MIMO systems, where
an autoencoder is used to extract features from CSI and
the match probability of each MCS is then derived through
a SoftMax model. Simulation results demonstrated the
improved performance of the proposed algorithms. Despite
the approach’s performance, due to its extremely low appli-
cable mobile velocity (3 km/h), the model is not fit for a
VANET environment. A Study on Link Adaptation Tech-
niques for IEEE 802.11bd Based eV2X Communications
was presented in [24] to evaluate various link adaptation
techniques. In the proposed approach, the communication
between two vehicles is realized using single-link and multi-
connectivity communications. The link-level performance of
IEEE 802.11bd is abstracted using different effective SINR
mapping techniques. The model also includes the DCM and
multi-connectivity communications with a maximum ratio
combining (MRC). Then the link adaptation performance

FIGURE 1. Data exploration.

of these mapping techniques is evaluated and compared to
the optimal link adaptation in terms of achieved data rates
and reliability. In the case of multi-connectivity, various link
adaptation schemes are considered to adapt MCS and the
number of links. Subsequently, an algorithm for joint adapta-
tion of MCS and several multiple links is proposed to enable
ultra-reliable communications. The evaluation results show
that higher data rates can be achieved by utilizing the same or
a lower number of simultaneous links.

A new link adaptation algorithm employing Deep Learn-
ing (DL) based channel prediction was proposed in [25].
The algorithm is derived by using two trained Deep Neu-
ral Networks (DNN) at the receiver to first estimate L and
subsequent channel coefficients from past estimates. Then,
considering the predicted channel condition, for every instant,
the MCS L is chosen based on the SNR stylized profile
and sent to the transmitter through a feedback link. In fact,
to significantly reduces the number of feedback transmissions
from the receiver to the transmitter. The proposed algorithm
chooses the best MCS for a longer period of data trans-
mission. The proposed DL-based algorithm achieves almost
similar reliability and higher throughput compared to the
rule-based link adaptation method using the Minimum Mean
Square Error (MMSE) one-step channel predictor as the opti-
mal link adaptation method in terms of reliability. Moreover,
this algorithm heavily relies on a closed-loop system which
is not appropriate in a VANETs environment to perform at its
best.

This review demonstrates and pinpoints some limitations
of the existing works. Many proposed LAs do not consider
higher mobility and some few advanced works which con-
sider the dynamics of the ITS environment make use of
closed-loop feedback, historical data, or a combination of
both. Conversely, any mobile in VANETs is very temporal,
and communication between any two mobiles cannot always
last for long. Consequently, building historical data becomes
a challenge. Additionally, since each vehicle is independent
and can move freely in any direction at any time, relying
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TABLE 1. Refined ADSA MCS.

on close-loop feedback becomes unrealistic in such an envi-
ronment. Therefore, to overcome some of the drawbacks,
the current work proposes an efficient LA for VANETs that,
while taking into consideration the relative mobility of the
involved nodes, does not actively rely on any feedback,
historical data, or closed-loop method.

III. DATA PREPARATION
Making use of the refined Automatic Doppler Shift Adap-
tation (ADSA) MCS table generated by the authors in [12],
the current work employs AI (ML) techniques to analyze the
data in order to create a realistic model applicable in various
VANET environments and instances. The data presented in
Table 1 was generated after intense simulation under variable
channel conditions in [12].

It should be noted that each entry in Table 1 corresponds to
the interpolation of three distinct parameters: SNR, DS, and
MCS. In this table, the MCS that ensures high throughput
is selected based on the mobile velocity and the available
SNR. This Table, which is our training set, cannot be directly
used in ML due to its non-compliance with the ML data
representation convention. To utilize it in ML, the columns
and rows need to be rearranged according to the ML data
presentation convention. The data should be divided into two
groups: one representing the input features and the other
representing the target (labels).

In our case, the input features group consists of SNR values
andDS values, while the target group consists ofMCS values.

In the training set table, it can be observed that this data has
30 columns of 4 rows. Each entry on the table corresponds
to a specific SNR and DS which ensure successful data
transmission under these channel conditions. For instance,
considering the first entry (row 0), at the SNR of 15 dB,
with a DS of 0 Hz, the maximum achievable MCS is a QPSK
rate 3/4.

Similarly, in the last entry (row 4), at the SNR of 30 dB, and
a DS of 1500 Hz, the maximum achievable MCS is a 16QAM
rate 3/4. It should be noted that the DS range of 0 to 1500 Hz
is to cater for a relative mobile velocity of 0 to 250 km/h.

The relationship between DS and the relative mobile
velocity is defined in equation 1.

DS = ±
fcVcosβ

C
(1)

where DS is the change in frequency of the source seen at the
receiver, fc the frequency of the source, V the speed difference

between the source and transmitter, C the speed of light, and
β = angle of velocity vector.
To explore and get more insight into the data, Figure 1

was computed to clarify the correlation between the SNR, the
DS, and the MCS. In that Figure, looking at the relationship
between the SNR and the MCS, a general observation does
not really provide any recognized pattern.

However, it can be observed that higher MCS is only
achieved with SNR above 20 dB, where MCS 5, and 6 can
be selected apart from MCS 7, which is only possible at
30 dB. Now looking at MCS and the DS, it can be seen
that MCS 7 is only possible at a DS of 0 Hz. It can also be
observed that MCS 3, 4, and 6 are denser in comparison to
others. The same Figure also shows that as the DS increases
beyond 1200 Hz, higher MCS is no longer possible. Finally,
since the scatter plot of these Figures does not reveal any
consistent recognized pattern, the only way to generate a
realistic model is to turn to the power of the ML which can
deal with complex problems.

The procedure will consist of first selecting the right ML
algorithm to use, then training the selected algorithm with
the available data so that the ML can learn from the data,
understand it, and generate an acceptable, realistic model
accordingly. The choice of the selected ML algorithm is
discussed in the subsequent section.

IV. MACHINE LEARNING ALGORITHM
Before choosing the suitable algorithm, it is very important to
first and foremost understand the problem that we are trying
to solve. In the IEEE802.11p standard which defines the
wireless parameters based on the VANET’s characteristics,
8 MCS are available as presented in Table 2 [6].

In Table 2, MCS 1 represents BPSK rate 1/2 (lowest
modulation with higher robustness), generally used in case
of fluctuation or bad wireless channel quality while MCS
8 represents 64 QAM rate 3/4 (highest modulation with very
low resilience) generally used in case of very good wireless
channel quality. It should be noted that the higher the MCS,
the higher the throughput, the faster the communication, and
the higher the system efficiency. In general, the communi-
cation system will try to always achieve the best efficiency
for the given channel condition. In our case, the suitable
algorithm will always be able to select the right MCS which
will provide higher throughput given the SNR and the DS
values. Simply speaking, the problem is to select a particular
MCS given a SNR and a DS value. Since the selected MCS
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TABLE 2. Modulation code scheme IEEE802.11p.

has a specific invariable value, it can be seen as a categorical
nominal variable while the SNR and the DS can be seen as
continuous variables. Therefore, a specific MCS will only be
selected if the SNR and the DS values have reached a certain
threshold value. Viewed from this perspective, it can be said
that continuous variables are used to select a categorical
variable. In the field of AI, any problem having these specific
characteristics can be modeled using basic ML techniques
(linear or logistic regression) or advanced ML such as Neural
Networks (NN). Moreover, based on the complexity, the NN
will be the suitable choice in this case. In general, NNs
can learn and model nonlinear and complicated interactions
between inputs and outputs; make generalizations and infer-
ences; uncover hidden correlations, patterns, and predictions;
and model highly volatile data and variances required to
anticipate unusual occurrences [26]. Since we are dealing
with a single target or label (MCS) selection based on input
parameter values or features (SNR and DS), the model will
have two input layers, one hidden layer made of 10 neurons,
and one output layer.

A. NEURAL NETWORK MODEL
Inspired by biological nervous systems, a neural network
combines several processing layers, using simple elements
operating in parallel. The network consists of an input layer,
one or more hidden layers, and an output layer. In each layer,
there are several nodes or neurons, and the nodes in each
layer use the outputs of all nodes in the previous layer as
inputs, such that all neurons interconnect with each other
through the different layers. Each neuron is typically assigned
a weight that is adjusted during the learning process. These
weights are automatically adjusted during training according
to a specified learning rule until the artificial neural network
performs the desired task correctly. A decrease or increase
in the weight changes the strength of the neuron’s signal [27].
The proposed and implemented NN is illustrated in Figure 2.
The type of NN implemented in the current work can also

be called a FeedForward shallow Neural Network (FFNN)
because it is made of a single hidden layer. The input layers
I1 and I2 are connected to the SNR and DS vectors, respec-
tively. The hidden layer consists of 10 neurons, numbered
from 1 to 10, and the output layer denoted as ‘‘y’’, will output
the selectedMCS. It is noted that to facilitate error calculation

FIGURE 2. Feed forward neural network.

and minimize the loss using the chain rules and backprop-
agation technique, the middle layer neurons use a sigmoid
activation function while the upper layer uses the Rectified
Linear Unit (ReLU) activation function. The sigmoid func-
tion is essential because the step function contains only flat
segments, so there is no gradient to work with (Gradient
Descent cannot move on a flat surface), while the sigmoid
function has a well-defined nonzero derivative everywhere,
allowing Gradient Descent to make some progress at every
step. On the other hand, although the ReLU (z) function is
continuous and not differentiable at z = 0, it works very well
and is fast to compute. After building the NN, the next step is
choosing of the optimization algorithm. Therefore, to ensure
fast convergence, a smart optimization algorithm called the
‘‘Levenberg-Marquardt Algorithm (LMA) was chosen. The
original description of the Levenberg-Marquardt algorithm
is given in [28]. The application of Levenberg-Marquardt to
neural network training is described in [29] and starts on
pages 12-19 of [30]. This algorithm appears to be the fastest
method for training moderate-sized feedforward neural net-
works (up to several hundred weights). The particularity of
LMA is that it uses the combination of steepest descent
and the Gauss-Newton method to always achieve the best
result. The LMA is an iterative technique that locates the
minimum of a function that is expressed as the sum of
squares of nonlinear functions. Due to its performance in
the field, it has become a standard technique for nonlin-
ear least-squares problems. Further details on the proposed
optimization algorithm (LMA) can be found in [28], [29],
and [30].

In a NN, tominimize the network loss or error, one needs to
iteratively find the weights that satisfy the optimal condition.
This is done by computing the weights using equation 2.

W ∗
= argmin

W

1
n

∑n

i=1
L

(
f
(
x(i)

;W
)

, y(i)
)

W ∗
= argmin

W
J (W )

Remember:
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W =

{
W (0),W (1), . . . ..

}
(2)

Having described the NN, the next step will consist of apply-
ing the Levenberg-Marquardt (LMA) optimization algorithm
to train the network in order to achieve the best performance
with minimal error. For simplicity, the LMA employed in this
work as described in [28], [29], and [30] is summarized in
the subsequent sentences. Based on the problem at hand, the
specific steps required to predict and select the right MCS as
a function of the SNR and the DS are as follows.

1) Start by choosing initial parameters for training error ε,
µ0, θ and the weight w0. Then let k=0 and µ = µ0.

2) Then the error output and network index functionE
(
wk

)
is calculated using equation 3 as follows.

E (w) =
1
2

∑N

q=1

(
yq − ŷq

)2
=
1
2

∑N

q=1
e2 (3)

3) And the Jacobian matrix J(w) of the partial derivative
e(w) is calculated using equation 4.

J =



∂e1
∂w1

∂e1
∂w2

∂e1
∂wn

∂e2
∂w1

∂e2
∂w2

· · ·
∂e2
∂wn

...
... · · ·

...

∂eN
∂w1

∂eN
∂w2

∂eN
∂wn



=



∂e1
∂wh1,1

∂e1
∂wh1,2

∂e1
∂whsh,R

∂e1
∂wo1,1

∂e1
∂wo

1,sh
∂e2

∂wh1,1

∂e2
∂wh1,2

· · ·
∂e2

∂whsh,R

∂e2
∂wo1,1

· · ·
∂e2

∂wo
1,sh

...
... · · ·

...
... · · ·

...

∂eN
∂wh1,1

∂eN
∂wh1,2

∂eN
∂whsh,R

∂eN
∂wo1,1

∂eN
∂wo

1,sh


(4)

4) Calculate the weights increment of the network 1w
using equation 5 as presented below.

1w = −

(
JT (w) J (w) + µI

)−1
JT (w) e (w) (5)

5) Then the error output and network index functionE
(
wk

)
is calculated using equation 3.
6) If E

(
wk

)
< ε go to step 8. Else calculate wk+1 and

E
(
wk+1

)
using equation 6 and 3, respectively.

wk+1
= wk + 1w (6)

7) If E
(
wk+1

)
< E

(
wk

)
, let k=k+1, µ =

µ
θ
, go back to

step 2. Otherwise wk+1
= wk , then µ = θµ and go to step 4.

8) The stop condition is achieved if E
(
wk

)
< ε or when

the maximum number of iterations has been reached.

FIGURE 3. Training performance curve.

V. MODEL TRAINING
The proposed NN was built and implemented in MATLAB.
The obtained training and validation results are depicted in
Figures 3 and 4, while the model response after training is
presented in Figure 5. In both Figures 3 and 4, the training
data made up of 70% of the whole dataset is represented in
blue color while the test data (15% of the whole dataset)
is represented in red, and the validation data (15% of the
whole dataset) is represented in green. These figures help us
to analyze and appreciate the performance of the developed
model in relation to our dataset.

The observation of the training performance curve pre-
sented in Figure 3 shows how the MSE starts at around
18 and diminishes progressively as the training continues
until the optimal point of 1.086. At the optimal point which
corresponds to 8 epochs and the MSE of 1.086, it was no
longer possible to achieve better than this point. Conversely,
a continuous training beyond the optimal point will instead
degrade the model’s performance. This is why the validation
error starts rising from the 10th epoch onward. Therefore, the
best parameters that ensure the optimal performance of our
model correspond to epoch 8 where the validation error is
minimal.

The error histogram is presented in Figure 4. This
Figure presents the error (training, test, and validation) dis-
tribution over the whole dataset. The observations in this
Figure reveal that most data are centered between the bin -
1.526 and 1.658 where the maximum number of instances
occurred with minimal errors. Due to the nature of the data,
this histogram also shows that there are a total of 5 training
(bin) and 1 validation (bin) errors on both extremes of the
distribution. This is surely due to the outlier’s presence in
the training dataset. Because the outliers are just some few
points placed far away from the mean, and since the splitting
is performed automatically over the whole dataset range,
that is why some outliers didn’t have sufficient testing and
validation data. This lack of enough information about the
outliers’ variances then resulted in high or maximum number
errors at these specific points. This can also be proven by
observing the scatterplot Figure obtained before the feature
mean normalization.
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FIGURE 4. Error histogram.

FIGURE 5. Trained model response.

After the training and validation phase using the supplied
data, the final model response in terms of SNR, DS and MCS
was computed and depicted in Figure 5. This Figure describes
the dynamic behavior of the model response in relation to its
inputs (SNR, DS) and the label (MCS). The overall observa-
tion of this response shows thatMCS 6 and 7 are only possible
for a DS less than 100 Hz with a SNR greater or equal to
30 dB.

The non-linearity behavior induced by the DS in a VANET
can also be perceived and justified by the fact that each curve
is affected differently at the same DS value in comparison to
others. This reality is clarified by observing the DS values
ranging from 400 to 600 Hz. This Figure further shows that
beyond a DS value of 1300 Hz and a SNR less than 30 dB,
the maximum achievable label is MCS3 which technically
corresponds to QPSK rate 1/2. Having trained, evaluated, and
validated our model, the next step will consist of evaluat-
ing and comparing the performance of the developed model
against its peers in the field of VANETs. This model response
is particularly important in the sense that it will be used during
the testing phase to verify the performance of our developed
NN approach.

VI. MODEL TESTING AND EVALUATION
To evaluate and appreciate the real performance of the devel-
oped NN, further simulations were performed to compare
the strengths of the NN against its peers Auto Rate Fallback
(ARF) [16], Constant modulation (Cte) which is a BPSK

FIGURE 6. Channel model.

TABLE 3. Simulation parameters.

rate 1/2, and the AdaptiveModulation Code (AMC) proposed
in [20]. The work makes use of a channel model presented in
Figure 6 as developed and proposed by [12] where all channel
components and subsystems were described and explained.
To recall, the channel model as depicted in Figure 6 was
made of four main block systems, namely Transmitter (TX),
Channel, Receiver (RX), and Bit Error Rate (BER) calculator.
Themodel used a combination of anAdditiveWhite Gaussian
Noise (AWGN) and a Rayleigh channel. Further clarification
can be found in [12].
Making use of the simulation parameters presented in

Table 3, the model was evaluated in terms of transmission
duration, transmitted bits, transmission efficiency and model
performance. The simulation of each approach was carried
out under variable Signal to Noise Ratio (SNR) and variable
mobility expressed in Doppler Shift (DS).

Figure 7 represents the transmission duration while the
number of transmitted bits for each approach is depicted
in Figure 8. The analysis of Figure 7 shows how the DS
affects each approach differently. The worst performer in
this case is the AMC which spent a large amount of time
(45 seconds or more) transmitting at DS values around 400,
1000 and 1250 Hz. This deficient performance is followed by
the Cte strategy. Cte also spent about 35 seconds while trans-
mitting at the DS value around 1250 Hz. However, both ARF
and NN performed well despite the small outperformance of
NN over ARF making NN the best performer in terms of
transmission duration.

Now looking at Figure 8, although at different values, both
Cte andARF consistently transmitted the same number of bits
under variable mobility over the whole simulation duration.
However, for the case of Cte, this is not a surprise because it
is always a fixed rate transmission. But in the case of ARF,
this may be justified by its slow reaction to change. As for
the other two strategies (AMC and NN), the variation of the
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FIGURE 7. Transmission duration.

FIGURE 8. Transmitted bits.

transmitted number of bits can be clearly perceived. In this
Figure, the best performer is still the NN with an extremely
high performance compared to all other peers along the whole
simulation range.

To further assess, confirm, and ascertain the robustness
of the NN over its peers, Figures 9 and 10 were also com-
puted. Figure 9 displays the total transmission duration while
Figure 10 portrays the total number of bits transmitted by
each LA strategy over the entire simulation runtime. The
analysis of Figure 9 shows that the NN took a noticeably
short time to transmit all its data in comparison to others.
This performance is followed by the ARF and the Cte, respec-
tively. The worst performer here is the AMC with more than
600 seconds in comparison to about 50 seconds spent by the
NN during their respective data transmissions.

Now looking at the number of transmitted bits as depicted
in Figure 10, it is remarkably interesting to see that although
theNN spent the least amount of time on its data transmission,
it also transmitted a higher number of bits in comparison to
its peers. This behavior further confirms and approves the
effectiveness of the AI over all other strategies. In this Figure,
the best performer is still the NN followed by the Cte.

To clearly understand and perceive the whole simulation
result, a recapitulative table summarizing all achieved results
for each strategy is presented in Table 4.

Using the values presented in this table, the overall model
performance was computed and depicted in Figure 11. In this
Figure, ARF was taken as a reference point because, with the

FIGURE 9. Transmission duration.

FIGURE 10. Transmitted bits.

TABLE 4. Simulation result.

exception of the transmission duration, its underperformance
against its counterpart can be seen in all scenarios. Similarly,
due to its large amount of time spent during transmission, the
AMC was also taken as the reference point when computing
the transmission duration performance. Then, comparing the
results of each approach with those of ARF or AMC (trans-
mission duration only), the overall performance of the whole
simulation can be assessed using equations 7 or 8.

Ovef =

(
Xi − Xmin

Xmin

)
× 100 (7)

Ovef =

(
XMax − Xi

Xi

)
× 100 (8)

In equation 7, Xmin represents the ARF value because it has
the minimum value compared to others in terms of efficiency
and transmitted bit. In the same equation, Xi represent any
other value (AMC, Cte or NN). In the case of transmission
duration (runtime), equation 8 is used, and AMC is taken as a
reference and represented as XMax while all other values are
represented by Xi.
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FIGURE 11. Overall model performance.

Figure 11 shows the global comparative performance
(Ovef ) of each approach in terms of transmission duration,
transmitted bits, and strategy efficiency. The exploration of
this Figure clearly confirms and ascertains the outperfor-
mance of the NN approach against its peers with 1075 %,
180%, and 115% performance in relation to the transmission
duration, transmitted bit, and model efficiency, respectively.
The second in line is the Cte with the best runtime and higher
number of transmitted bits. The third best performer is AMC
with higher efficiency and a higher number of transmitted bits
in comparison to ARF.

Holistically, the exploration of all computed Figures as
well as the derived findings proved that ML is a very pow-
erful tool for complex problem resolution. The result of
this work further emphasizes this reality by proving and
confirming the outstanding performance of the NN against
its peers in different simulation settings using variable per-
formance metrics. This superior performance observed in
various channel conditions and under variable mobile veloc-
ity was further confirmed from Figures 9 to 11. These results
collectively emphasize the research’s potential impact on
improving VANET performance and addressing challenges
in the domain of Intelligent Transportation Systems (ITS).

VII. CONCLUSION
The current work proposes a Link Adaptation (LA) strategy
to mitigate one of the challenging problems that hinders
the success of VANETs. An investigation was conducted to
prove the significance of this problem in the WAVE envi-
ronment. A solution was formulated, and a Neural Network
(NN) algorithmwas developed in accordance with the criteria
for ML algorithm development. The proposed NN solu-
tion model was created, trained, and validated before being
evaluated against its counterparts ARF, AMC and Cte in
various channel conditions and under variable mobile veloc-
ity. A simulation result derived from this work demonstrated
and proved the outperformance of the NN approach against
its peers ARF, AMC and Cte with 1075 %, 180%, and 115%
performance in relation to the transmission duration, trans-
mitted bit, and model efficiency, respectively.

The significance of this study lies in its comprehensive
approach to addressing a challenging problem in VANETs.

It leverages mathematical modeling, advanced optimization
algorithms, modern machine learning techniques, and prac-
tical implementation considerations. This study contributes
to both the theoretical understanding of the problem and its
practical application in real-world intelligent transportation
systems.

As a main contribution, this work:
1-Presents a state-of-the-art method to translate a real-life

problem into a mathematical model.
2-Demonstrates and presents how to use

Levenberg-Marquardt algorithm to solve LA problems.
3-Demonstrates a convenient way to model LA strategy

using NN.
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