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ABSTRACT The motion or out-of-focus effect in digital images is the main reason for the blurred regions in
defocused-blurred images. It may adversely affect various image features such as texture, pixel, and region.
Therefore, it is important to detect in-focused objects in defocused-blurred images after the segmentation
of blurred and non-blurred regions. The state-of-the-art techniques are prone to noisy pixels, and their local
descriptors for developing segmentation metrics are also complex. To address these issues, this research,
therefore, proposed a novel and hybrid-focused detection approach based on Discrete Cosine Transform
(DCT) coefficients and PC Neural Net (PCNN) structure. The proposed approach partially resolves the
limitations of the existing contrast schemes to detect in-focused smooth objects from the out-of-focused
smooth regions in the defocus dataset. The visual and quantitative evaluation illustrates that the proposed
approach outperformed in terms of accuracy and efficiency to referenced algorithms. The highest Fα-score
of the proposed approach on Zhao’s dataset is 0.7940 whereas on Shi’s dataset is 0.9178.

INDEX TERMS Defocus-blur region, out-of-focused region, DCT coefficients, PC neural net, in-focused
region.

I. INTRODUCTION
Defocus-blur is a common distortion in Depth-of-Filed
images that destroys the detailed image information as well
as image quality, and also degrades its main structure. Out-of-
focus commonly arises in natural scenes which is the reason
for the limited DoF (Depth-of-Field), mostly in the optical
lens of digital cameras. During photography, the Object-of-
Interest (OoI) in defocus-blur images is sharp and clear in
the lens focal plan; whereas, the background is blurred and
faraway from the focal length which signifies the out-of-
focus region in the image. The focal-length distance from the
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object indicates the level of DoF in defocus-blurred images.
The DoF level is high if the object is faraway from the focal
length. Defocus-blur detection is used in numerous computer
vision applications, such as in-focused object detection [1],
background blur magnification [2], image refocusing [3],
depth estimation [4], [5], image information security [6], text
detection [7], partial image deblurring [8], [9] and region-of-
interest detection in light-field images, and also image edge
detection [55], [56].

The Discrete Cosine Transform (DCT) vector takes aver-
age weight by Gaussian function for modeling the DoF
effect, any single descriptor cannot signify DoF subse-
quently, and the Point Spread Function (PSF) is spatially
varying constantly. The Pulse Coupled Neural Network
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(PC Neural Net model) is a self-organizing network com-
prising a lightweight structure that does not require any
learning process. Hence, this study excluded measuring the
blur kernels. As an alternative, in this research, an efficient
defocus-blur segmentation approach from a single image
is proposed, which does not require any prior information
related to the degree of DoF.

The classical defocus-blur detection techniques can be
categorized into two major classifications: edge-based tech-
niques and pixel-based techniques. The prior detects the
blur measure of the descriptive pixels to find sparse blur
edge-based estimation and disseminate the knowledge to the
entire defocus-blur image; whereas, pixel-based techniques
scan local patches of image from top to bottom and left to
right, to measure defocus-blurriness of each and every pixel,
yielding direct dense maps of defocus-blur. Pixel-based tech-
niques have been actively adopted in various recent research,
particularly the defocus-blur region detection used at the pixel
level in defocus images [10].
Contributions of this study include:
• We propose a hybrid, efficient, novel, and accurate
defocus-blur detection technique from a single defo-
cused image, based on Discrete Cosine Transform
(DCT) coefficients measures along with a neuron firing
based Pulse coupled Neural Network (PC Neural Net)
to determine the major limitations of defocus-blur seg-
mentation approach.

• The defocus-blur detection approach is based on posi-
tive threshold parameters, as it is one criterion for the
region detection procedure. DCT has the characteristics
of symmetry and separability to detect the defocus-blur
data in DCT coefficients without any degradation.

• Next, the DCT feature vector estimates the out-of-focus
region in the defocus-blur image and then accurately
detects the partial defocus-blur area.

• Subsequently, PC Neural Net-based firing of neuron
sequence structure is applied that contains information
about each pixel feature after the blurred region detec-
tion, e.g., region, texture, and edges, that utilized the
features of defocus-blur image to prominently segment
the blurred region.

• It is evident from the experimental results that the
proposed defocus-blur map yields prominent segmenta-
tion results; whereas, adopting limited processing time
and computation in numerous out-of-focused platforms.
The proposed approachmeasures defocus-blur detection
metric to visually represent the consistent segmented
regions.

• Finally, the EDAS fuzzy technique is used to eval-
uate the ranking of the proposed approach alongside
various recent state-of-the-art techniques for defocus-
blur segmentation. It also calculates appraisal scores
(AS) for numerous performance estimations incorporat-
ing precision, recall, as well as Fα-score and indicates
that the proposed approach outperforms the referenced
methods.

The rest of the paper is structured as follows: Section II
illustrates the literature review of defocus-blur images along
with PC Neural Net followed by DCT and EDAS techniques.
The proposed framework, including its algorithm and imple-
mentation procedure, is described in Section III. Section IV
contains the evaluation of the segmented results of the pro-
posed study and discusses the datasets, algorithms, compara-
tive results, and EDAS scheme for ranking the state-of-the-art
schemes. Finally, the conclusion is presented in Section V.

II. LITERATURE REVIEW
Presently, defocus-blur segmentation is predominantly used
for focused object detection. According to the literature
reviewed, the state-of-the-art defocus-blur techniques of a
single image are categorized into edge-based techniques,
pixel-based techniques and also learning schemes.

The blur amount of the entire blurred pixels is directly
estimated by the pixel-based schemes. The dense metric is
achieved without propagating the blurriness map, which also
avoided the error produced by spreading in limited points.
Chakrabarti et al. [11] concatenated the Gaussian-scale Mix-
ture and sub-band-decomposition to measure the specific
window probability in a re-blurred image caused blurri-
ness by applying a candidate-kernel. Su et al. [10] ana-
lyzed the information of a particular and singular value
of each and every pixel of the defocused image to seg-
ment the regions of a re-blurred image. A novel blur map
based on [10] is presented in [12] and [13] that fused
certain particular and singular values of numerous sub-
bands using image windows of multi-scale. The presented
algorithm merged local image filters, gradient distribution,
and a spectrum of defocused blur images into a multi-scale
pattern to distinguish between in-focused and out-of-focused
images. Yi and Eramian [14] proposed a Local Binary Pat-
tern (LBP) and observed the fewer LBPs in the out-focused
region compared to the focused region. Blur region detection
mainly used spectral features. Marichal et al. [15] observed
the high-frequency coefficients which were assigned as zero,
regardless of the content. Henceforth, the histogram-based
algorithm was proposed, adopting the non-zero DCT coef-
ficients. Vu et al. [16] estimated the amplitude-spectrum
slop and the complete spatial variation for each block of
the defocused image. Javaran et al. [17] designed the princi-
ples for high-frequency information that remain the same in
re-blurred images and is used for out-of-focused region detec-
tion. Golestaneh et al. [18] developed a High-Frequency
multi-scale Fusion Sort-Transform (HiFST) of gradient mag-
nitudes in the detection of out-of-focused regions.

In edge-based schemes, the aim is to estimate the edges
of the images along with the sparse-blur mapping. The
edges of the defocused-blurred images have gradient mea-
sures, and visual changes occur in the defocused-blur region,
which can help out with prominent defocus-blur estima-
tion at the edges. In [19], [20], [26], and [27], the novel
presented defocused-blur edge is formed as the complex
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in-focused image. A Gauss function and its required pro-
portional parameters are measured by analyzing the rate
of change of edge intensity of the image. In [21], a cross
bilateral filtering is applied to eliminate outliers. The col-
orization approach-based interpolation scheme to determine
an entire defocus-blur map has been presented. To deter-
mine the correspondence between the numerous contrasts at
the edge points and the extent of spatially varying defocus-
blur, the blur estimation was measured at the particular
edge points. In [22] and [23], an entire defocus map is
produced by disseminating the blur measure at edge points
in the whole non-homogeneous image. The defocus-blurred
edge is generated with respect to the gradient proportion
between the Gaussian-kernel-based defocused-blurred and
the original input image. Their research also presented the
Mating-Laplacian (MatLap) scheme to disseminate infor-
mation to other parts of the image. Karaali et al. [24], sug-
gested the defocus-blur parameters selection based on [23],
where the interpolation and extrapolation techniques were
adopted to extract the out-focused information at edges for
dissemination. A faster guide filtering technique was also
applied to disseminate the sparse-blur mapping in the entire
defocused-blur image for reducing the computational com-
plexity. Tang et al. [25] suggested a limited number of blur
points which was estimated for yielding the blur map detec-
tion region, which is related to the edge-detection schemes.
A coarse-blur metric has been presented in their article [25],
which is a residue to get a log-averaged spectrum based on a
blurmap. In fact, a blurmeasure decreases the highly frequent
components of a defocused image. Therefore, an iterative
updating-based novel approach was suggested to enhance
the blur metric from coarse to fine region by adopting
the intrinsic-relevance of relevant referenced regions of re-
blurred image. Liu et al. [26] and Xu et al. [27] both group
of researchers applied the MatLap scheme to achieve an
extensive defocus-blur estimation.

Nowadays, learning-based schemes have been extensively
used in various research, as evident from the literature.
These techniques trained the classifiers to detect out-
of-focused regions. Liu et al. [28] designed out-of-focused
features based on the spectrum, color, and gradient infor-
mation of the defocused image. They also applied train-
ing of parametric features for the accurate classification
of defocused images. Shi et al. [29] presented Just Notice-
able Blur (JNB) which propagates fewer quantity of pixels
yielded by out-of-focused images. In their research [29],
a correlation between the strong blur measures and sparse
edge illustration is established by training a dictionary.
Dandres et al. [30] and Tang et al. [31] adopted machine as
well as deep learning schemes using blur strength com-
putation and a regression-tree fields extraction based on
local frequency image statistics, for training a model to
retrogress a consistent out-of-focused metric of the image.
The defocus-blur metric of the out-of-focused image was
measured to infer the proper disk PSF radius at each pixel

level. Ma et al. [32] presented an approach based on sub-band
DCT fusion ratio, multi-orientation, and multi-scale windows
for calculating the blurred edge points. This approach pro-
duced dense-blur maps by applying matting Laplacian and
multi-scale fusion algorithms. Similarly, Jinxing et al. [48]
proposed contrastive similarity for multi-patch and multi-
scale learning methods for unsupervised detection of
defocused-blur images in order to eliminate the manual anno-
tations of pixel-level data. A generator first exploits the
mask to reproduce the combined images by conveying the
approximated blurred and sharp regions of the test image
with completely natural full-blurred and full-sharp images,
respectively. Moreover, Xianrui et al. [49] presented the
Defocus-to-Focus (D2F) model for bokeh rendering learning,
to fuse the defocus-priors with the in-focused region and
implement the radiance-priors in the form of layered fusion.

A large-scale bokeh dataset is adopted for evaluation,
which indicated that the proposed model is able to render
the visual bokeh effects in challenging scenes. Furthermore,
Sankaraganesh et al. [50] illustrated the defocus-blur detec-
tion technique that measured the approximation of each pixel
belonging to a sharp or blurred region in resource-constrained
devices. Their model efficiently detected the blur map from
the source defocused-blur image. Likewise,Wenda et al. [51]
proposed a set of separate and combined models, i.e., a pixel-
level DBD network and an image-level DBD classification
network, to accomplish accurate results for various defocus-
blur images. Their proposed study was evaluated using
their own DBD dataset called DeFBD+, along with anno-
tations at the pixel level, and outperformed. Additionally,
Yanli et al. [52] presented a depth restoration method for a
single defocused-blur image based on the superpixel seg-
mentation method. At first, the simple linear iterative cluster
(SLIC) separates the source image into numerous superpixel
phases. Next, the defocus-blur effect of each superpixel phase
is obtained as per the Gaussian-Cauchy mixed framework,
to achieve the sparse depth map of the superpixel level.

Pulse Coupled Neural Network (PC Neural Net) is a
visual cortex model of mammalians to provide synchroniza-
tion pulse bursts in the monkey and cat visual cortex and
a neuron-firing feedback network structure. PC Neural Net
contains three main components: Receptive branch, Modula-
tion field, and Pulse producer. In the receptive field, the input
signals are received by neurons through linking and feeding
subsystems. The PC neural Net is capable for recognizing
the visual nervous structure and also has the characteris-
tics of neuron pulse synchronization and global coupling.
It is mainly adopted in image segmentation, image fusion,
image denoising, object recognition, and image enhance-
ment, etc. [33], [34], [35], [36]. Shen et al. [37] presented the
PC Neural Net application in refocusing images for defocus
region segmentation. PC Neural Net estimates the spatial
properties of pixels in image segmentation.

However, the above state-of-the-art methods effectively
extract the defocus-blur metric in defocus-blur images,
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FIGURE 1. The test as well as its corresponding ground-truth images are
signified as in-focused, transitive and out-of-focus regions. In the
ground-truth image, white denotes in-focused region, whereas black
identifies out-of-focused region. Red square in both images indicates
transitive region while yellow and purple squares illustrate the in-focused
and the out-of-focused regions, respectively.

generally, these techniques have some complexities for
prominent detection of focused and out-of-focused regions.
The referenced defocus-blur detection algorithms have some
common limitations, such as extending the blur metric dura-
tion, background clutter, indistinguishable in-focused regions
of low-contrast images from defocus-blur regions, high com-
putational cost, and misclassification in region segmentation.

Evaluation Based on Distance from Average Solution
(EDAS) based fuzzy logic scheme is adopted in this
research in order to rank the state-of-the-art algorithms.
Authors of [38] applied EDAS scheme for ranking numer-
ous clustering techniques, while authors of [1] and [39]
utilize the application of the EDAS method to rank various
defocused-blurred techniques for in-focused region detec-
tion. Mehmood et al. [40] adopted the EDAS scheme for the
evaluation of numerousWBAN (wireless body area network)
techniques and Ileiva et al. [41] used it for decision analysis
of different fuzzy-based methods to resolve the Multiple-
Criteria-Decision Making Method (MCD) issues and also to
subside its computational complexity.

III. PROPOSED DEFOCUS-BLUR METRIC
The visual system of human gets more attracted to the image
frame and object when viewing a defocus-blur image and
focus more attention on the detailed information of focused
objects, for the visual quality analysis. In the visual effects
of defocus-blur images, there is a visible difference in the
absence of details in defocus-blur region compared to those
of the focused region.

A. DCT-BASED SCHEME
Pentland [19] proposed that a defocus-blur image patch can
be represented as the convolution between aGauss blur kernel
and a focus image patch. The convolution eliminates the
prominent frequency information in the focused region. The

Gauss-blur kernel parameters signify the defocus-blur degree
of an image up to some range, as represented in formula (1).

IBlr = FG × IN + µ (1)

where IBlr and IN denote blurred and non-blurred image
patches, while FG is the Gauss function and µ represents
the noisy image, which can be derived from the below
formula (2).

F
G(u,v,σ )= 1

2πσ2
e−u

2+v2
/2σ2

.

(2)

In the Gaussian function, the standard deviation is sym-
bolized as σ, whereas the greater σ represents the detail
information of the image which was eliminated after the
convolution process, i.e. the defocus image is highly blurred.

Spatially varying blur is one of the popular types of
defocus-blur images, that adopt the Gaussian function for the
filtering process of each pixel, along with various parameters.
The rich frequent DCT coefficients in mathematical evalua-
tion are reduced in each image patch blurred by a Gaussian
blur kernel, and they are further reduced if the Gauss blur ker-
nel increases the mathematical value of σ . Image (a) in Fig. 1
is a test image taken from a partially defocused-blur public
dataset containing 704 images [43], while image (b) repre-
sents the ground-truth image which is manually segmented
to illustrate the in-focused and out-of-focused regions. The
high-frequency elements in the in-focused region are high
compared to the out-of-focused region. DCT coefficient high-
lights the high-frequency components of the transitive and
in-focused regions more than those of the out-of-focused
regions, where significant details are lost in defocused-blur
images. The mathematical evaluation validates that the out-
of-focus area attenuates high-frequency information com-
pared to its corresponding in-focus area. These details can
differentiate between out-of-focused and in-focused regions
of the defocused-blur image.

This study adopted the DCT coefficient to estimate the
defocus image blurriness patch; whereas, PCNN measures
the image in-focus patch as pre-processing. Moreover, the
DCT feature vector detects the edge features of the high
gradient data to avoid the measured error produced by the
focused textureless patch. To resolve the spatially varying
blurred issue, we presented the defocus-blur image patch at
the edge level, along with various defocus degrees de-blurred
by numerous σblr , represented by the Gauss kernel.

In this study, the convolution is performed on the blurred
as well as the non-blurred image patches using the Gaussian
function, to achieve the consistent out-of-focus measured
in the de-blurred type. The DCT vector-based coefficients
proportion between the input image and the de-blurred image
are estimated as the out-of-focused measure of the middle
pixel in the image patch. This process is executed one by
one, on the edge and pixel level, to achieve a blur metric.
Lastly, PC Neural Net is applied to classify the in-focused
image regions from the entire defocus-blur image. The block
diagram of the proposed approach is illustrated in Fig. 2.
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FIGURE 2. The framework of the proposed approach is depicted. The left
side of the figure indicates the primary steps, while the role and
production of each image is illustrated in the right side of the figure.

1) DCT COEFFICIENT-BASED BLUR MAP
DCT operates high as well as low frequency signals, by trans-
forming spatial domain into frequency signals, to illustrate
the image structures and details that can frequently be utilized
in JPEG image compression via excluding high frequency
matrix part [42].

The frequency domain represents the high-frequency detail
reduction and reflection of the main variations between the
in-focused and out-of-focus defocus-blur images and has
also been the result of insufficient detail information. DCT
coefficients characterized the measure in the detail infor-
mation loss in the out-of-focused region, which is depicted
by the experiments and also illustrated by the prominently
in-focused region detection.

TheDCT produces a transformmap between the test image
patch and the de-blurred region to observe a proper estima-
tion. The DCT-based blur map can be derived utilizing the
following equations:

Rx
=
cx

cxa
(3)

ca = T (Ca) , c = T (C) (4)

where T (C) is a transformation function of a matrix in a blur-
vector, which is explained in the section below. The DCT

vector-based transformation matrix of F and Fa, are C∈Di×j

and Ca∈Di×j, which are the test as well as de-blurred defocus
image patches, and cxa and cx are the DCT transformation
matrix of xth components. In formula (3), Rx indicates the
sharpness-vector R of xth element which lies in the interval
[0, ∞], where sharper defocused-blur images are denoted by
larger values.

The matrix acquired after the transformation of DCT coef-
ficient illustrates that the DCT coefficient ratio differ more
spontaneously, and the irregular DCT coefficients reduce the
impact of DoF. The DCT vector-based coefficients perform
the mean operation of similar frequency. A 2 × 70 − 1
dimension column is obtained by DCT-based coefficients,
as depicted in Fig. 2. The function T (C) delineating a speci-
fied process is represented in Eq. (5) as below:

cx =

∑
u+ v = x + 1Cu,v

focus(Cu,v|u+ v = x + 1)
(5)

where cx denotes DCT-based transformation vector of
xth element, Cu,v represents initial DCT vector-based
matrix C and focus(Cu,v|u + v = x + 1) indicates the
Cu,v total number at a specific frequency element. The edge
and pixel-based blur metric is observed in Fig. 3, containing
DCT-based feature extraction de-blur parameter selection.
The DCT-based transformation of the infinite image signal
of 2-D cosine function is represented as the super-position.
The DCT-based coefficient matrix is denoted by Cu,v, which
is the weight of discrete cosine transformation signal function
on u (i.e., horizontal-frequency direction) and v (i.e., vertical-
frequency direction). The lack of detailed image information
is reflected as blurred image. The sharpness-vector coeffi-
cients are categorized into three major frequency classifi-
cations and a weight is assigned to each classification to
estimate theDCR (de-blurred coefficient ratio) of the original
images and illustrated as below:

DCR =
a
l

∑l−1

x=1

(
cx

)
+

b
h− l

∑h−1

x=l

(
cx

)
+

y
− h+ 1

∑n

x=h

(
cx

)
(6)

where the sharpness-vector dimension is denoted by the
parameters n, l and h; where l and h are identified as the
demarcation-value of low-level and high-level frequency,
respectively. The co-efficient weights in numerous classifi-
cations are denoted as a, b, y. The DCR mainly reflects the
blur estimation of central pixels. Furthermore, the vector c
determined the DCR value in the estimation procedure value
of which range lies in the interval [0,+∞]. The DCR value
is mapped as [0, 1].

MD =
1 − F−b

1 + F−b (7)

where the parameter D indicates DCR value, and mapping
values are denoted by MD. The value of constant b (i.e., 0.4)
adapts the mapping output 0.4.

The frequency weights are calculated using the DCT-based
image. The DCT-based image function f (u, v) is described
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FIGURE 3. DCT coefficients are averaging at similar frequency and the row vectors at each frequency of average DCT-based coefficients are achieved.

as follows:

DCT (x, y) = α(x)α(y)
∑n

u=1

∑n

v=1
f (u, v)

× cos(
πx(2u− 1)

2n
) cos

(
πy(2v− 1)

2n

)
(8)

where x, y = 1, . . . , n

α(x) =


1

√ , x = 1√
2
, x ̸= 1

(9)

In this study, we calculate η level DCT-based metrics of a
defocus-blur image patch having size m × m at pixel level i,
indicated by DCT (i, η), η = 1 to m; i = 1 to m. In the
T (absolute) number of DCT-based descriptors m2, the low
and middle order of DCT-based metrics of η number are
chosen by adopting the interval x + y − 1≤m(max)≤2m.
The value of parameter m to η level DCT-based descriptors
(e.g.,m = 2, m(max) = 2) producing η = 4. The algorithm 1
illustrates the calculation of η level DCT-based descriptors at
a pixel position i.
The minimized and maximized DCT-based distances are

merged to yield the distance formula DCT (ui, yi) in the
DCT-based transformation domain, as follows:

DCT (ui, yi) =
1

αi + βi
(αiDCT (ui, yi) + βiDCT (ui, yi))

(10)

where αi and βi indicate the weighting factors for minimum
and maximum level DCT-based distances at pixel position i.
The minimized distance in the DCT coefficient is indicated
as DCTMin (ui, yi) and calculated in Eq. (11):

DCTMin (ui, yi) =

∑
Min WMin

(
ui, yj

)
D(ui, yi)∑

Mini WMin
(
ui, yj

) (11)

The parameterMini denotes the minimize searching window
at pixel position i whereas the parameter D(ui, yi) indi-
cates DCT-based feature vectors. The minimized DCT-based
weightsWMin

(
ui, yj

)
are estimated as given below:

WMin
(
ui, yj

)
= e

−
∑l
h=1(DCT (l,h)−DCT (i,h))

F(DCT ) (12)

where F(DCT ) is indicated as the filtering parameter for
weight estimation. The maximized DCT-based distance is
identified as DCTMax (ui, yi) and also calculated in Eq. (13).

DCTMax (ui, yi) =

∑
Maxi WMax

(
i, yj

)
D(ui, yi)∑

Maxi WMax
(
ui, yj

) (13)

The parameter Mini denotes the maximized searching win-
dow at pixel position i. The maximized DCT-based weights
WMin

(
ui, yj

)
are estimated as specified in the formula (14).

WMax
(
ui, yj

)
= e

−
∑l
h=1(DCT (l,h)−DCT (i,h))

F(DCT ) (14)

The value of filtering parameter F(DCT ) is similar for
WMin

(
ui, yj

)
as well as for WMax

(
u, yj

)
, meanwhile the cal-

culation of DCT-based coefficients is similar for patch size
× extractions.

2) GAUSSIAN FUNCTION PARAMETERS
Gaussian function parameter ρS value is selected in order
to detect the sharp patch of the defocused-blur image. It is
required to select numerous sharpness parameters at the edge
and pixel positions along with various texture intensities.
Once selecting the local sharpness parameters, the primary
effect which is needed to be considered is the noise, which
can be eliminated by the filtering process. In our experiment,
we set the parameter ρS

= 0.4ρC to produce optimal
results. In original images, the local sharpness descriptor at
the pixel points is measured to detect the pixel sharpness.
The sharpness descriptor classified a defocused image into
sharp and blur regions, whereas the sharp region represents
the foreground and the blurred one indicates the background,
as given below:

IDef (i, j) = χi,jIFg (i, j) + (1 − χi,j)IBg(i, j) (15)

where χi,j represents the dense foreground on the correspond-
ing pixel location (i, j).

Some pretreatment work is required on the image acqui-
sition prior to entering the input image into the proposed
Algorithm 2. In the initial operation, the outlier needs to be
removed by applying bilateral filtering on the defocus-blur

94950 VOLUME 11, 2023



S. Basar et al.: Novel Defocus-Blur Region Detection Approach

Algorithm 1 DCT-based Descriptors Calculation at Pixel Level i (DCT(i, η))
Data: parametric estimation (mx)
Result: DCT-based descriptor
begin

m = 2,m (max) = 2
η = 0
for x = 1 to m

for y = 1 to m
while x + y− 1 ≤ m (max)

T = 0
for u = 1 to m

for v = 1 to m
T = T + ϱ (x)

∑n
u=1 ϱ (y)

∑n
v=1 f (u, v) cos (πx(2u−1)

2n ) cos (πy(2v−1)
2n )

end for
end for
η = η + 1
DCT (i, η) = T

end while
end for

end for
return

map [44]. The potential errors of the defocus-blur map-
ping are further reduced by adopting the double threshold
scheme [14], as illustrated in Eq. (16).

map(i, j) =


MDCR(i, j) if MDCR(i, j) ≥ Th1
MDCR(i, j) if MDCR(i, j) ≤ Th2
0 otherwise

(16)

whereMDCR (i, j) is the DCR value at pixel position (i, j).

B. PC NEURAL NET (PULSE COUPLED NEURAL
NETWORK)-BASED SCHEME
The PC Neural Net is a coupling nature neuron based on a
feedback system. Each coupling neuron contains three sub-
systems: the receptive branch, modulation field, and pulse
producer [45]. The neuron firing will target the neurons of the
same category. The linking and feeding inputs in the receptive
branch provide input signals to neuron. Next, the input signals
are categorized into two networks: one is the feeding input
denoted byFij whereas the other is the linking input identified
by Lij. The normalized pixel location (i j) of the image is
the input motivation and is represented as δij. The internal
neuron activity is denoted as Uij while dynamic-thresholding
is represented by ϑij.
The feeding element received the input motivation;

whereas the linking and feeding elements are merged by
the internal activation element. The PC Neural Net-based
image fusion, as depicted in Fig. 4, observes that the external
stimulus element is only accepted by the feeding signal Fij.
The reflects the th block pixels of the source image.
PC Neural Net-based mathematical structure is illustrated in

the schematic model presented below (Fig. 4):

Fij =δij (17)

Lij[ ]=vL
∑

ab
Wijxyϒxy[ −1]+ex (−∂L) Lij[ −1]

(18)

Uij [ ]=Fij [ ]
(
1 + βijLij[ ]

)
(19)

ϑij [ ]=VϑYxy[ − 1] + ex (−∂ϑ ) ϑij [ − 1] (20)

ϒxy[ ]=Uij [ ] − ϑij [ ] (21)

In image segmentation, PC Neural Net is a single pulse
layer-based coupling of nature neurons along with a 2-D con-
nection. The pixel number in the inputted image is equal to the
number of neural cells in a network. Therefore, it is known as
a 1-to-1 correspondence that exists between pixels in an input
image and neurons in a network. The linking field connects
each neuron alongwith its adjacent neurons. The firing output
of each neuron lies under two states, i.e., firing or ‘1’ state
and non-firing or ‘0’ state. The neighboring neurons receive
the pulse burst result. If the current neuron denoted as Cij
and neighboring neurons have similar intensity, firing will
perform as a result of pulse-coupled action. Therefore, the
neuron Cij has been recalled to capture the neighboring neu-
ron cells. Lastly, the synchronization pulses will be emitted
by the neuron Cij and its neighboring neurons. Consequently,
the synchronous pulses and the global coupling are the basic
properties of PC Neural Net.

The mathematical model of PC Neural Net is represented
in Equations (17)-(21), the linking-strength βij indicates the
characteristics of the pixels and the values that lie in between
0 < βij < 1. According to the human vision system, the
stimulus about prominent region features is high compared

VOLUME 11, 2023 94951



S. Basar et al.: Novel Defocus-Blur Region Detection Approach

Algorithm 2 Proposed Defocus-Blur Metric
Data: BDef = Defocussed-Blur image
Result: IFoc = In-focussed segmented image
begin

Highest value = high(BDef)
Lowest value = low(BDef)
Average value = avg(BDef)
DCT-based feature vector for in-focused region estimation using Eq. (10)- Eq. (16)
PC Neural Net initial formula estimation using Eq. (17) – Eq. (21)
for pixel-position uv in BDef do

if DCT(T) < BDef (uv) then
DCT segmented image (uv) = 0
else DCT segmented image (uv)= BDef (uv)

end if
end for

// Call Algorithm 1 for DCT-based coefficient calculation
EMat = 0, I = 0, CMat = 0 and = 1
for pixel-position (uv) in DCT segmented image do

estimate Fij [ ], Lij [ ] ,Uij [ ], ϑij [ ], ϒxy [ ]
if ϒxy [ ] = = 0 then

EMat(uv) = 1, DCT segmented image (uv) = 1
else EMat(uv) = 0, DCT segmented image (uv) = 0

end if
end for

// Call Algorithm 3 for pixel classification
IFoc = EMat _lw
for pixel position (uv) in IFoc do

if IFoc(uv) = = 1 then
IFoc(uv) = IFoc(uv)
else IFoc(uv) = 0

end if
end for

return

FIGURE 4. Schematic model of PCNN structure.

to less prominent region features. Hence, the βij value of
each neuron cell in the PC Neural Net model must be con-
nected to corresponding pixel features of the defocus image.

The above-focused parameters are adaptively allocated in
the proposed Algorithms 2 and 3. Algorithm 2 takes the
defocused-blur image as an input and yields the in-focused
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Algorithm 3 Classification of Pixel
Data: output parameter ϒ , connectivity matrix CMat
Result: edge classification matrix EMat(uv)
begin

for pixel-position uv in ϒ do
if ϒxy [ ] = = 1 then

// Label the connected region in the output matrix ϒ

DCT = lwLab[ϒ];
end if

end for
for pixel-position (uv) in CMat do

CMat(uv) = DCT connectivity uv
end for
m = m+1
for pixel-position (uv) in EMat do

if EMat(uv) > T then
EMat(uv) = 1;
else
EMat(uv) = 0;

end if
end for

return

image as an output, whereas Algorithm 3 illustrates pixel
classification called by Algorithm 2. Algorithm 2 takes the
defocused-blur image as an input and yields prominent image
regions as an output. Algorithm 2 consists of parameter
initialization, producing a firing sequence matrix, DCT coef-
ficient calculation, and analyzing the segmentation quality
of prominent regions. Algorithm 2 calls Algorithm 3 for
pixel classification, whereas Algorithm 3 marks each pixel
category by receiving the inputs: connectivity matrix CMat ,
and the parameter Y .
Algorithm 2 involves various parameters, i.e., connecting

weight matrix W , connecting strength β, dynamic thresh-
olded coefficient YE , decay factor XE , minimum thresholded
limit Thm, and judgment criteria j. The initial value ofW has
been computed experimentally. The other parameters YE ,XE ,
Tm, and j are configured adaptively according to gray-scale
distribution in the image. The gray-scale pixel intensity value
is indicated by the connecting weight matrix W and the cen-
tral neuron broadcast this information. The synaptic weights
in our matrix are initialized with constant values as given in
Eq. (22) as follows:

Wij

 0.5 1 0.5
1 0 1
0.5 1 0.5

 (22)

The activation of the firing neuron interval in the PCNN
structure is adapted step-wise. Tsai and Wang [18] illustrate
that YE modifies the width of the matrix for each firing step
whereas, the height of each firing step is altered by XE .
For example, XE narrows down each step of neural fir-
ing that decreases its numerical neural coupling properties,
and neural pulse delivery about network behavior is shown.

The algorithm performance is suffering from a continuing
decrease XE , that tends to increase each iteration interval
of the algorithm. The pixel value parallel to the neuron and
the normalized gray-level value high(BDef ) in the whole
defocused-blur image must be fired at the primary iteration
interval. Therefore, YE is normally set as high(BDef ). To avoid
overlapping between each neural firing cycle, the neurons
must be fired once. If the neuron gets fired, then its threshold
value is assigned as infinity. Subsequently, in the same cycle
of algorithm, the neuron has not the capability to fire again
as mentioned in Eq. (23). The image BDef is normalized as
the matrix δ.

YE= max(δ) (23)

The simple pre-processing steps adopted by the algorithm 2
proposed consist of spatial frequency statistics, calculation of
gray-scale statistical distribution, and normalization of gray-
level values. The adaptability of the proposed algorithm 2 is
improved if the parameters are set as per the pre-processing
results of images. The gray-scale distribution of the whole
image is indicated by the parameter Thm. Thus, the gray-level
values with pixel numbers in the parameter iteration [Thm;
1 >= 93%] of δ pixels are yielded in the image. The low,mid,
and high-level frequency information from the entire image is
extracted, called three-level descriptive regions. The highest
pixel value with the image block in each descriptive region is
the output frequency band.

IV. EXPERIMENTAL RESULT AND EVALUATION
To evaluate the proposed model, we conducted our exper-
iments using two publicly available datasets. The first
one consists of 704 partially blurred images, presented
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by Shi et al. [43]. The second one is a defocused-blurred
dataset of 500 images, presented by Zhao et al. [46] along
with recent state-of-the-art comparators. There are some
challenges involved in both the datasets, as some images
are nearly blurred while others are distantly blurred. Con-
sequently, some images have homogeneous backgrounds,
whereas other images involve cluttered backgrounds.

A. EVALUATION AND PARAMETER SELECTION
In this section, the comparison of our proposed approach
along with referenced schemes is performed based on both
the qualitative and the quantitative evaluations. For testing the
results, the proposed approach was executed on Intel(R) Core
(TM) i7-10th GENCPU@2.70 GHz. The proposed approach
partially segmented the dataset images into in-focused and
out-of-focused patches, as illustrated in Fig. 5. The in-focused
regions are identified by white color and are assigned a pixel
value is 1, whereas the out-of-focused regions are depicted in
black color and are allocated a pixel value is 0. The in-focused
regions are prominently detected by the proposed approach in
the segmented defocused-blur images. The results yielded by
the proposed approach eliminated noisy background and have
a closer resemblance to the ground-truth images, compared
to previously published research. The segmented results pro-
duced by Su et al. [10], Shi et al. [13], and Javaran et al. [17]
have mixed-up the sharp and blurred regions and the objects
are not noticeable in the results. Henceforth, the proposed
approach prominently detected the sharp objects from the
blurred background as compared to referenced schemes. The
estimated process time required for our proposed approach
on the datasets, i.e. Shi et al. [43], and Zhao et al. [46], were
136.407s and 33.139s, respectively. The results of the pro-
posed approach were compared with those of nine other
comparators [10], [13], [14], [17], [22], [24], [25], [27], [32].
Some of the schemes among them are edge-based techniques
i.e., Tang et al. [22], Karaali and Jung [24], Tang et al. [25],
and Xu et al. [27], while the rest are recent pixel-based
techniques.

The experimental results of the proposed approach along
with those of the comparators techniques for sample images
of diverse categories are illustrated in Fig. 5. Out of eleven
images, the first eight was chosen from Shi et al. [43] dataset,
while the rest were selected from Zhao et al. [46] dataset.
It is noticeably observed that the proposed approach visibly
outperformed the referenced schemes under numerous blurs
and cluttered backgrounds. The visual effect of the proposed
approach is outstanding, even in the cases of non-uniform and
complex blurs and backgrounds.

Our approach outperformed the nine classical tech-
niques [10], [13], [14], [17], [22], [24], [25], [27], [32]
in terms of the error-control and the accurate in-focused
region location. Tang et al. [25] missed the details of the
targeted objects. The edge-based techniques avoided the
texture features of the regions without edge points and
adopted blur details of the edges to detect sharp regions

in a sample image. Yi et al. [14] measured the sharp-
ness estimation using the LBP descriptor by adopting
the thresholded-based LBP method. Su et al. [10] cal-
culated and classified the sharpness metric by applying
the Decomposition of Singular Value (DSV) algorithm.
Shi et al. [13] applied a multi-scale inference structure fol-
lowing the Naïve Bayes classifier. Javaran et al. [17] adopted
a DCT-based feature vector for blur map extraction and
segmented the images into blurred and sharp regions.
Tang et al. [25] used a log averaged-spectrum residual mech-
anism for segmenting the in-focused smooth region and
blurred-smooth region in defocus andmotion-blurred images.
Consequently, Karaali et al. [24] adopted an edge-based
method for spatially-varying defocus-blur map using a
reblurred-gradient magnitude to detect blur map in defocus-
blur images. Similarly, Ma et al. [32] adopted DCT-based
feature for detecting the blur estimation and segmented the
in-focused and the out-of-focused regions in the partially
blurred defocused dataset.

The outputs produced by the contrast techniques were
gray-scale images where the maximum intensity levels indi-
cate the highest sharpness level, and most of the stud-
ies applied threshold measure for final segmentation. The
depth metric of the proposed approach is standardized
by the interval [0, 8] to detect the sharpness map. This
study, following the referenced schemes, adopted Precision
and Recall curves along with Fα-score for validating the
results, in terms of quantitative evaluation [17], [27], [53],
[54]. The parameters of the performance metrics are as
follows:

Precision and Recall graphs of each contrast technique,
to vary the threshold at each integer value, were yielded by
applying the interval [0, 255] on Shi’s and Zhao’s dataset,
as illustrated in formula (24).

Precision =
RS ∩RG
RS

Recall =
RS ∩RG
RG

(24)

where RS indicates the pixels in the blurred region of
the segmented image, whereas RG denotes the pixels in
the blurry region of a ground-truth image. The authors
of reference techniques including [10], [17] provided the
implementation codes. We brought some minor changes in
the results of some of the techniques, to adjust the black
and white regions signifying the blurred and non-blurred
regions. The edge-based comparisons were performed on
Shi’s dataset and observed that the proposed approach out-
performed the comparators’ ones if the Recall is higher
than 0.65, as depicted in Fig. 6. Consequently, the proposed
approach achieved higher Precision in terms of Recall, com-
pared to Xu et al. [27], and Javaran et al. [17], compared to
other pixel-based algorithms which are illustrated in Fig. 7.
Zhao’s dataset is very challenging for performing the experi-
ments for our proposed model, because of the cluttered back-
grounds and non-uniform in-focused regions. Conversely,
the proposed approach yielded higher Precision in terms of
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FIGURE 5. Visual results of local in-focused detection illustrated by numerous schemes stated as left to right: (a) Original images, (b) Su et al. [10],
(c) Shi et al. [13], (d) Javaran et al. [17], (e) Yi et al. [14], (f) Tang et al. [22], (g) Tang et al. [25] (h) Xu et al. [27], (i) Karaali et al. [24] (j) Ma et al. [32],
(k) Ours (l) Ground-truth.

higher Recall, while the rest of the techniques reduced their
accuracy.

Correspondingly,Fα-score [47] was also computed for the
proposed approach, to evaluate the segmentationmetric of the
blurred regions, expressing the harmonic mean of precision-
recall, as illustrated in Eq. (25).

Fα =

(
1 + α2

)
× precision× recall

α2 × precision+ recall
(25)

where α was assigned a value of 0.3, as stated in [12] and [14].
It can be seen in Table 1 that the proposed approach outper-
formed the referenced techniques.

It is observed that the proposed approach illustrated
accurate results in terms of precision and recall and has
noticeable segmentation leads in blurred and non-blurred
regions.

B. RANKING BASED EVALUATION
In this study, the fuzzy logic-based Evaluation Based on Dis-
tance from Average Solution (EDAS) technique [38], [40],
[41] has been adopted to rank the proposed scheme, fol-
lowing the referenced approaches with respect to feature
integrity and minimum execution time. In this research study,
the EDAS scheme has been revamped to accumulate the
cross-efficient results of numerous parameters of the overall
ten schemes, comprising the proposed one as well. In our
research, The EDAS ranking has been applied on the basis
of Fα-score, whereas the rest were used by the proposed
scheme only. The Appraisal Score (AS) was calculated to
rank the existing algorithms. The positive distance value from
the mean value been measured as indicated by (PF) and the
negative distance value from the mean solution has been
measured as represented by (NF), refer to the equations
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FIGURE 6. Precision vs recall of numerous techniques adopted on Shi’s dataset.

FIGURE 7. Precision vs recall of numerous techniques adopted on Zhao’s dataset.

TABLE 1. The highest Fα-score of diverse schemes.

below. In Table 1, the estimated performance has been
detected as the benchmark of the existing algorithms. Overall,

the following steps were performed to conduct the ranking
based evaluation:

94956 VOLUME 11, 2023



S. Basar et al.: Novel Defocus-Blur Region Detection Approach

TABLE 2. Cross-efficient values.

TABLE 3. Estimated results of average (PF).

Step 1: Calculate the mean value (µ℘) solution of the
overall metrics in expression (26);

(µ℘) = [µ℘β
]1×T (26)

where,

(µ℘β
) =

∑x
i=1 Yαβ

x
(27)

Step 1 measures the performance and calculates numerous
algorithms criteria. The cumulative score of formulas (26)
and (27) can be determined as the mean value (µ℘β

) for each
value of the benchmark calculated in Table 2.

Step 2: This step calculates the positive distance results
from the mean value (PF) in formulas (28), (29), and (30),
as mentioned below:

PF = [(PF)αβ ]q×q (28)

If the βth criterion is more valued then

(PF)αβ =
Maximum(0, (AVB − Xαβ ))

AVB

(29)

otherwise, the formula (29) will be transformed as mentioned
below:

(PF)αβ =
Maximum(0, (Xαβ − AVB ))

AVB

(30)

The outputs of evaluation of this step are given in Table 3.
Step 3: The results of negative distance has been estimated

in this step from the average (NF) using formulas (31), (32),
and (33), as shown below:

(NF) = [(NF)αβ ]q×q (31)

If the βth criterion is the most measurable, then the below
formula (32) is calculated:

(NF)αβ =
Maximum(0, (AVB − Xαβ ))

AVB

(32)

Otherwise, the formula (31) will be revised in formula (32)
as given below:

(NF)αβ =
Maximum(0, (Xαβ − AVB ))

AVB

(33)

whereas the (PF)αβ and (NF)αβ indicate the positive distance
value and negative distance value of βth estimated methods
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TABLE 4. Estimated results of average (NF).

TABLE 5. Estimated results of the aggregate (SPF))α .

from the average value about αth rating performance mea-
sures, respectively.

The results achieved in this step are illustrated in Table 4.
Step 4: This step calculates the cumulative sum of (PF) for

the estimation method in formula (34):

(SPF))α =

∑x

β=1
Yβ (PF)αβ (34)

The results of this step are presented in Table 5.
Step 5: Calculate the cumulative sum of (NF)αβ for the

rated algorithms in Table 6 mentioned in formula (35) as
shown below:

(SNF)α =

∑x

β=1
Yβ (NF)αβ (35)

The outputs are represented in Table 6.
Step 6: This step standardizes and calculates the values

of (SPF)α and (SNF)α for the evaluated methods, using the

formulas (36) and (37):

N (SPF)α =
(SPF)α

maximumα((SPF)α)
(36)

N (SNF)α = 1 −
(SNF)α

maximumα((SNF)α)
(37)

Step 7: This step estimates the values of N (SPF)α and
N (SNF)α to obtain an appraisal score (AS) which is equal
to (ρ) for the rated approaches, using the formula (38) below:

(ρ)α =
1
2
(N (SPF)α − N (SNF)α) (38)

where 0≤ AS ≤1.
The (AS) is determined by the aggregate score ofNSPF and

NSNF.
Step 8: This step determines the decreasing order in

appraisal scores (AS) and also estimates the ranking of
appraised methods. The lowest (AS) determines the best rank-
ing scheme. As evident from Table 7, the proposed scheme,
presented in this article, has the lowest (AS). Table 7 illus-
trates the final results, indicating that our proposed approach
outperformed the referenced methods.
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TABLE 6. Estimated results of the aggregate (SNF)α .

TABLE 7. Estimated results of 9 state-of-the-art schemes.

V. CONCLUSION
This paper represents a hybrid approach consisting of the
DCT-based coefficients and PC Neural Net for in-focused
segmentation in the defocus-blur dataset. The neuron fir-
ing sequence contains significant features of the defocused-
blur image, i.e., texture, edge, and pixel information. The
proposed approach revamped the PC Neural Net neuron
firing sequence, following the design and pixel classifica-
tion criteria, to select parameters along with DCT-based
feature vectors for sharpness descriptor. The proposed
approach segments the in-focused region in a defocused-blur
image. The experimental outputs and quantitative evaluations
noticeably depicted a balanced ratio between precision and
recall, in terms of accuracy compared to those of other recent
state-of-the-art schemes. It evidently outperforms, specif-
ically in differentiating the detailed information between
in-focused and out-of-focused regions. However, the state-
of-the-art methods effectively extract the defocus-blur metric
in defocus-blur images, generally, these techniques have
some complexities for prominent detection of in-focused and

out-of-focused regions. The referenced defocus-blur detec-
tion algorithms have some common limitations are extending
the blur metric duration, background clutter, indistinguish-
able in-focused regions of low contrast images from defocus-
blur, and especially high computational cost. The proposed
approach achieves promising results with efficient computa-
tional time, producing smooth edges and object shapes, even
in noisy and blurred background images compared to the
reference algorithms. The limitation of the proposed scheme
is that it may degrade the overall performance of in-focused
segmentation in those images having cluttered background.
Another limitation of the proposed scheme is that it is not
applicable to medical and microorganism-related images.
Our future research direction is to improve the efficiency of
the existing techniques and preferred GPU coding in case
of enormous datasets and also span its scope in medical,
agriculture, and 3D object estimation.
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