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ABSTRACT As a new type of public transportation, demand responsive transit has gradually attracted
attention for its flexibility and efficiency. In order to solve problems such as single-vehicle type and fixed
stop, and improve its operation efficiency, a collaborative scheduling method combining multi-occupancy
vehicle type with non-fixed stop is proposed. Different from the previous studies on scheduling problems
of demand responsive transit, which only focused on stop modes such as fixed or non-fixed stop or vehicle
types containing single-occupancy or multi-occupancy, this paper also studies the vehicle scheduling of
demand responsive transit from the perspective of combination of non-fixed stop and multi-vehicle type.
In addition, carbon emission cost is innovatively added into the scheduling model, and an improved genetic
algorithm with multiple crossovers within individuals is designed to accelerate the convergence speed of the
algorithm and improve the solution efficiency. Finally, taking Shijiazhuang downtown regional road network
as an example, the validity of the proposed scheduling method is verified. The results show that compared
with the single-occupancy vehicle scheduling method, the operating costs of the multi-occupancy vehicle
scheduling method can be reduced by up to 25.0%, and the average passenger in-vehicle time is decreased
by up to 8.8%, which could significantly reduce the system operating costs on the premise of ensuring
shorter total passenger travel time. Compared with the mode with fixed stops, the average full load ratio of
the mode with non-fixed stops increased by 21.7%. Besides, the convergence speed and solving speed of
the proposed improved genetic algorithm are increased by 31.7% and 4.8%, compared with the traditional
genetic algorithm.

INDEX TERMS Urban traffic, demand responsive transit, genetic algorithm, vehicle scheduling, multi-
vehicle type, non-fixed stop.

I. INTRODUCTION

Demand Responsive Transit (DRT) is a kind of public trans-
portation service system that does not operate using fixed
routes and timetables. The system offers a more flexible
approach for operations that determine the scheduling plan
and operating routes according to the individual spatial
and temporal information submitted by passengers, which
could effectively reduce detours and deadhead where tradi-
tional public transit does not perform well in low density
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or large-variance areas [1], [2]. In the post-epidemic era,
the DRT system could be much more popular for providing
personality service for individuals and improving efficiency
of bus company, as well as limiting the number of in-vehicle
passengers. In DRT system, reasonable vehicle route schedul-
ing could significantly reduce the vehicle operating costs
and improve the efficiency of public transit operations [3].
DRT service usually involves non-fixed stop, fixed stop and
other service modes. In the fixed stop mode service, the
vehicle route passes through not only demand points from
occasional requests but also several presetting fixed stops
providing picking-up and delivering services. However, as for
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the non-fixed stop service mode, vehicle routes are com-
pletely determined by demand points from passenger requests
distributed stochastically in the region.

Currently, most research focuses on constructing models
for DRT vehicle route scheduling problems. Sun et al. [4]
optimized customized bus routes with the goal of mini-
mizing operators’ operating costs, and introduced random
travel time constraints into the model, which could better
meet the travel demands of passengers. Narayan et al. [5] set
up a model with the goal of minimizing passengers’ travel
benefits and proposed a route selection approach combin-
ing fixed stop with DRT services. which can effectively
reduce the average waiting time. Only one single objec-
tive that maximizes the benefit of enterprises or passengers
is involved in the above studies. In order to obtain better
scheduling results, the multi-objective model is established
considering both passengers’ traveling costs and operat-
ing costs [6], [7]. Ayadietal. [8], [9], Jinetal. [10] and
Guan et al. [11] solved DRT scheduling problem by intro-
ducing penalty function into the proposed model, aiming
at maximizing benefits of both enterprises and passengers,
which could significantly improve passengers’ travel sat-
isfaction. A model aiming at maximizing operator profits,
maximizing the number of boarding passengers and minimiz-
ing total travel costs of passengers is established to optimize
the vehicle route [12], [13], [14], [15]. Above models only
take into account the benefits of enterprises and passengers,
but regardless of the social benefits, especially environmen-
tal factors. Recent research studied the eco-oriented DRT
vehicle route scheduling problems, and established schedul-
ing models considering vehicle fuel consumption/ carbon
emission [16], [17].

Most of the current studies constructed vehicle route
scheduling models based on single-type vehicle.
Shen et al. [18] established a model with the goal of maxi-
mizing enterprises’ revenue with single occupancy vehicles.
Sun et al. [19] studied the DRT feeder service based on
ride-sharing and established a model aiming at minimizing
the total travel time of passengers. Based on the optimum
routes by solving the proposed model, the service could
accurately provide individual and vehicle guidance. A multi-
objective model is constructed by taking into account the
benefits of enterprises and passengers with a single-vehicle
type [20], [21], [22]. However, single-vehicle type is not
suitable when travel demand has a large variance, especially
in peak and off-peak hours, resulting in in-vehicle conges-
tion and vehicle deadhead. Besides, low vehicle capacity
generally means high comfort for passengers but high travel
cost for the bus company. On the contrary, high vehicle
capacity reduces cost for bus company, but is not friendly
to passengers. Therefore, multi-occupancy vehicle type ser-
vice needs to be offered in this trade-off. Wang et al. [23]
investigated two vehicle types in the feeder bus route vehicle
scheduling problem. Zhang et al. [24] established a model
considering the coordination between rental vehicles and
DRT in suburban areas, aiming at minimizing total vehicle
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travel costs of both vehicles of DRT and rental vehicles.
Zhao et al. [25] studied the coordinated optimization prob-
lems of conventional public transit and DRT, and established
a model with the objective of minimizing passengers’ total
travel time as well as the total fleet size.

In order to solve the DRT optimization model, genetic
algorithm is a common method [28]. For solving the bus
line design or optimization model, Johar et al. [29] sum-
marized and concluded the research based on genetic
algorithm to solve this kind of problem, and concluded
that genetic algorithm is an effective optimization tech-
nology. Chakrobority et al. [30] showed the effectiveness of
genetic algorithm in solving urban public transport network
design and optimization problems, and designed a set of pro-
grams for solving such problems based on genetic algorithm.
Genetic algorithm is used to optimize the departure schedule
of public transportation vehicles to reduce the transfer time of
passengers, to generate bus lines with the goal of decreasing
passenger travel time in public transit vehicle scheduling
problems [31], [32], [33], [34]. It is concluded that genetic
algorithm performs much better in computation efficiency
and applicability in solving public transit problems, espe-
cially in vehicle scheduling problems.

Most of models are established based on the optimal ben-
efits of enterprises and passengers, however, social benefits
are rarely considered. Single-vehicle type is largely used
in vehicle scheduling model, while few studies focus on
multi-occupancy vehicle type. Besides, the non-fixed stop
DRT service usually involves fixed stops, just like conven-
tional transit stops, lacking of the flexibility. In order to fill
those gaps, the DRT service combines with non-fixed stops,
multi-objective of combining benefits of passengers, opera-
tors and carbon emission, and multi-vehicle type is presented
in this paper. In addition, an improved genetic algorithm is
also proposed to solve the DRT vehicle problems.

The rest of this paper is organized as follows: The first
section describes the model parameters and constructs the
DRT scheduling model. A heuristic algorithm is proposed in
the second section. The third section gives an illustrative case
to demonstrate the validity of the model and effectiveness of
the heuristic algorithm. The fourth section draws the conclu-
sions and outlooks future research.

Il. SCHEDULING MODEL OF DRT WITH NON-FIXED
STOPS AND MULTI-VEHICLE TYPE

A. PROBLEM DESCRIPTION

The fixed stops are generally supermarkets, schools and other
large passenger demand points or some regular bus stops,
where passengers do not need to submit requirements. Mean-
while, vehicles must stop at fixed stops regardless of whether
there is demand. The non-fixed stops are meeting points of
passenger demand, and vehicles will provide service only
when the passengers submit their demands. In this paper,
passengers submit information involving boarding and alight-
ing points, as well as expected departure and arrival time,
to the system before trips, and the dispatch center could
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FIGURE 2. The operating flowchart of DRT system with non-fixed stops.

flexibly determine vehicle types and driving routes accord-
ing to receiving demand. Only passengers who submit their
demands are required to take a ride. The driving routes with
one terminal is shown in Fig. 1 and the workflow is shown in
Fig. 2.

B. MODEL ASSUMPTIONS

The DRT scheduling model with non-fixed stops and multi-
vehicle type studied in this paper has the following assump-
tions [19], [35]:

(1) The vehicle speed is assumed to be constant, without
considering the influence of other occasional factors such as
congestion;

(2) Passengers’ boarding and alighting vehicle time is
assumed to be constant;

(3) Passengers are not allowed to modify their travel infor-
mation once submitting reservations;

(4) Each passenger is assumed to be served by one vehicle
without transfer;

(5) Vehicle must arrive at the departure point within the
time windows required by the passengers;
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(6) All riding requests of passengers must be served, and
each passenger can only be visited at once;

(7) The distance between stops is calculated by actual
distance;

(8) The vehicles are dispatched from the original depot and
are terminated at the same depot.

C. MODEL PARAMETERS
The notations used in the model formulations are shown in
Table 1, together with their description.

D. PENALTY FUNCTION
In order to ensure service quality and passenger satisfaction,
passenger time window is considered as a strict constraint,
that is, the vehicle must arrive at the demand point within the
boarding time window required by the passengers to provide
services. If not, the penalty cost is extremely high.

The formula of penalty function is shown in Eq. (1) below:

f(t)={0

p . 4P .
M 1, < egity; >l

. P .
€gi = 1}; = lql

ey

E. CONSTRUCTION OF DRT VEHICLE SCHEDULING
MODEL WITH NON-FIXED STOPS

According to the above parameters, the scheduling model
is constructed, the benefits of passengers, enterprises, and
society are considered comprehensively, and the constraints
of passenger travel time window, vehicle capacity and maxi-
mum vehicle travel time are used to establish the DRT vehicle
scheduling model with non-fixed stops and multi-vehicle

type.
(1) Vehicle setup cost C;

Cr=2.2 2 GXiy 2

keK pereNlJr
(2) Vehicle operating cost Co
=YY Y Y aux,  ©
keK peP ieN1U{0} jeN{U{O}

(3) Carbon emission reduction cost C3

Carbon emission reduction cost is the difference of the total
carbon emission cost of DRT and the counterpart of private
car.

C3

=Ca | DD D D WhdiXgi—Weax D hy
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TABLE 1. Notations.

TABLE 1. (Continued.) Notations.

Notation Description Notation Description Notation Description Notation Description
The set of Vehicle arrival
+ . . :
N, ! passengers C2 Vehicle operating cost ; time af derfland I (t) Time window penalty
booking demand i point 1 cost
N~ . The set of C Carbon emission cost ieNi
1 alighting demand 3 The time window of
The set of total passenger ¢ atthe
boarding and .
N, alighting demand C Total system cost demand point 1,
points € is the earliest
The set of all @ o
demand points Unit setup cost value boarding time of
N’ preceding the G for vehicle type p Average passenger ¢ atthe
demand point ! peP La boarding ot [eqi ’ lqi:| demand point 7, and
i {1 ) i 1} alighting time ’
T lql. is the latest
Unit transportation L
. boarding time of
) cost of vehicle type
q Passenger index Cp p passenger ¢ atthe
qeQ peP demand point 1 .
ieNi qgeQ
0 Set of passengers C Unit cost vglue of The arrival and
a carbon emission cost departure times of
The distance between vehicle k for type
Vehicle depot ints i Maximum DRT P P ;
0 - {Op} d,-j demand points 1 T max operating time [y ki &ki ] P serving the
index Poiq .
and J. 1,] € N demand point 1
peP ieN
Passenger . .
i, ] demand point Vehicle speed Blflary variable, 1,
’ . .. v P vehicle K of type p
index 1, ] € Ni The number of .
L ehicles for will visit ] after
i Vehicle index A large enough R e\;ch pe p X7 .
keK M positive value ! p v 1,0, otherwise.
The number of pPe peP i,jeN
boarding passengers in keK
vehicle k for type Binary variable, 1,
K Set of vehicles Dpki p when it arrives at T o of when passenger ¢
e capacity o
the demand point l vehicle for type 7 gets on at demand
peP ieN QP p ugi point 1,0,
1
peP therwise. ¢ €
The number of otherwise. 4 €0
Vehicle type boarding passengers at ie Ni
index p e P U the demand point I Binary variable, 1,
ie N Unit carbon when passenger ¢
! emission of gets off at demand
The number of we vehicle for type 7 L.
P Ga bqi point 1,0,
Set of vehicl alighting passengers at p
P et of vehicle b. L. cP otherwise. ¢ € Q
types i the demand point I p
ieN ieNi
Boarding time of Binary variable, 1,
assenger when passenger ¢
tu(q) p ger 4 A~ A A, Weight coefficient
ge Q Unit carbon v chooses vehicle k of
The total travel time Wea emission of car a type P, 0. otherwise.
Alighting time of
p pagssenier q » for vehicle k of peP qe Q
d(q) 0 T type p kekK
q€ Vehicle setup
keK peP C cost
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By integrating Eq. (2)-(4), the objective function of the
scheduling model can be obtained as follows:

minC = A1 C; + 1, C + A3C3 6)

The constraints are as follows:

> Xp=lkeK,peP ©)
jeNn;t
> Xip=1keK.peP ®)
IEN_
2D XigjsRpeP ®)
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0<Dpki§Qpi€N1,k€K,p€P (10)
pkl = Z kij (u; — by) (1)
ieN’
Ui = z uqi kq (12)
q€Q
b= ZugYf, (13)
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0 <tag) —twg <Tyq €0 14
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ieN;"
tag = D, Zogyy (16)
JEN[
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d;iX
= > > v "” +1 > max b))  (18)
ieN1U{O} jeN1U{O} ieN
D Xp=1keK,pePjeN, i#] (19)
ieN;U{O}
> x; b= ZX,‘;ikeK,peP,ieNlu{O} (20)
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> Xp=D XbkeK,peP,ieN U{O) 1)
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d; X/’?,, . .
+gh < yij,keK,peP,zeNl U {0},je Ny U{0)}
(22)
l] k
o= > > l]+ta2max(u,,b) (23)
ieN1UO0 jeN1 U0 ieN;
gij = ij + t, max (Ltj, bj) (24)
Zuq,qu /a]’ eNi,qeQ,peP,keK,VjeN; (25)

Zogi¥{, = Xpjg €Ni,q€ Q. pe Pk eK,YieN  (26)
egi <t <lgieN 27)

Eq. (6) is the objective function. Objective C is the vehicle
setup cost, objective C; is the vehicle operating cost, and

objective C3 is the carbon emission cost. Egs. (7)-(27) are
related formulas of constraint conditions. Eq. (7) and Eq. (8)
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indicate that vehicles can only start from the depot O and
return to the same depot. Eq. (9) ensures that the number
of vehicles participating in scheduling does not exceed the
total number of vehicles available. Eq. (10) ensures that the
number of passengers in vehicle does not exceed the vehicle
capacity. Eq. (11) calculates the number of people in the
car when the k bus of model p reaches the demand point i.
Eq. (12) and Eq. (13) calculate the number of people boarding
and alighting at the demand point i. Eq. (14) is the boarding
and alighting time limitation for each passenger. Eq. (15) and
Eq. (16) calculate the actual boarding and alighting time of
passengerq. Eq. (17) is the maximum operation time con-
straint for each vehicle. Eq. (18) calculates the one-way travel
time of the k type p bus. Eq. (19) and Eq. (20) ensure that
each demand point can only be visited once by one vehicle.
Eq. (21) ensures that each vehicle that arrives at the demand
point must leave from the same demand point. Eq. (22) is the
vehicle arrival time limitation. Eq. (23) and Eq. (24) calculate
the time for the k type bus to arrive and leave the demand
point j. Eq. (25) and Eq. (26) ensure vehicle that stops at a
pick-up point must stop at the corresponding drop-off point
for each passenger. Eq. (27) ensures that the vehicle arrives
at demand point within the time window that the passenger is
willing to board.

Ill. SOLUTION OF DRT VEHICLE SCHEDULING MODEL
WITH NON-FIXED STOPS

The DRT vehicle scheduling model with non-fixed stops
established in this paper has many constraints, complex
objective functions, and a large amount of data at the base,
so many factors such as time and space need to be considered
at the same time. Given the complexity of the problem, this
paper aims to utilize a genetic algorithm to address the model,
based on the characteristics of the model, the traditional
genetic algorithm is briefly modified.

The algorithm flowchart is shown in Fig. 3.

As can be seen from Fig. 3, the specific steps of the genetic
algorithm in this paper are as follows:

(1) Input information of stops, vehicle capacity, passenger
travel demand, and other parameters.

(2) Coding design. In this paper, points involving demand
points and vehicle depot are encoded into the chromosome
structure by natural number coding. Firstly, passengers that
meet the requirements of the time window constraints are
attempted to be put in the same vehicle. Then, remove the
repeated-location demand points. Finally, if the number of
passengers exceeds the capacity of the vehicle, another vehi-
cle will be dispatched to provide delivering service until all
passengers are allocated.

The genes for each trip chromosome include the depar-
ture depot, demand points, and returning depot. The coding
method is shown in Fig. 4. 0 and 9 represent the starting and
ending points of vehicles (0 and 9 represent the same station
in this paper, and are represented by different numbers to
easily distinguish). The chromosome code below indicates
that vehicle 1 departs from station 0 and returns to station
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vehicle speed, maximum running time
and other parameters
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in the population
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Yes
v

Output the optimal solution and
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FIGURE 3. The flowchart of improved genetic algorithm.

Individual

FIGURE 4. Encoding method.

9 after serving passengers 3, 8, and 6, while vehicle 2 departs
from station 0 and returns to station 9 after serving passengers
5 and 2. The boarding and alighting sequences of the passen-
gers are determined by the constraints of maximum in-vehicle
time, departure time window, and other factors.

(3) Set algorithm parameters. The maximum evolutionary
iterations, cross mutation probability, and other parameters
are defined.

(4) Initial population. Generate an initial population with
random size.

(5) Fitness function. In this paper, the objective function is
selected as the fitness function to solve the optimal value.

(6) Crossover operation. Crossover operation is carried
out within individuals. Starting from the first chromosome,
it is judged whether there is a point that can be crossed
in subsequent chromosomes according to the passenger’s
boarding time window. If exists and satisfies the constraints,
the two chromosomes can be crossed. If not, crossover will
not be carried out, and the next chromosome will continue to
be selected until all chromosomes are checked. If no point
can be crossed, the chromosome will remain unchanged.
The crossing points in each chromosome do not include the
first and last points. The cross-operation diagram is shown

92652

c

NE I 1o
T

Chromosome 1 Chromosome2  Chromosome 3 Chromosome 4 Chromosome S Chromosome 6 Chromosome 7

Individual 1

Cross figure 1

Cfiromosome I Chromosome 2 Chromosome 3 * Ch 4 Chron ¢S Chron

Cross figure 2

me6  Chromosome 7

al bly a2 b2 cl

Chromosome I Chromosome 2

Chromosome 3 Chromosome 4~ Chromosome S Chromosome 6 Chromosome 7

FIGURE 5. Intra-individual crossover.

in Fig. 5. For example, for individual 1, the point al in
chromosome 1 can be crossed with point a2 in chromosome 4.
Then, fragment A and fragment D constitute a new chromo-
some 1, and fragment B and fragment C constitute a new
chromosome 4. Then continue to seek for points that can be
crossed in subsequent chromosomes. If point bl in chromo-
some 2 and point b2 in chromosome 4 can be crossed, then
fragment A and fragment D constitute a new chromosome 2,
and fragment B in chromosome 2 and fragment C in chromo-
some 4 constitute a new chromosome 4. The population after
crossing is shown in Crossover figure 2. Each chromosome is
judged in turn until all chromosomes are finished, and finally
anew individual is obtained, presented in Crossover figure 3.

(7) Mutation operation. A local search algorithm is selected
for mutation. Two positions referred to randomly generated
natural numbers in the randomly selected chromosome from
parent chromosome are exchanged while the remaining main-
tains unchanged, so as to obtain a new offspring.

(8) Calculate the initial fitness of each schedule and select
the optimal one to put into the iteration list.

(9) Cross-mutation operation is carried out on each popula-
tion successively to obtain a series of vehicle schedules, then
calculate the fitness of each population and select the best one
and put it into the iteration list, afterwards, set gen=gen+1,
and finally exit until the maximum number of iterations is
reached or the difference between the global optimal values
in the nearest two iterations is very low.

Compared with the traditional genetic algorithm, the
genetic algorithm designed in this paper has the following
improvements:

(1) Vehicle capacity, time window and picking-up and
delivering location constraints are considered in the improved
algorithms, instead of only regarding to capacity in the tradi-
tional algorithm. Therefore, it is easier to get a better solution.

(2) The cross operation of traditional genetic algorithm
adopts external cross for two individuals in a population,
resulting in spending a lot to solve thousands of the duplicate
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segments. However, inter cross is utilized in improved genetic
algorithm, ensuring that each gene code is different.

(3) The traditional genetic algorithm adopts out-of-order
mutation, while the improved genetic algorithm adopts 2-opt
for mutation with higher solution efficiency.

IV. CASE ANALYSIS

A number of demand points from the downtown area in Shiji-
azhuang (mainly including residential communities, schools,
commercial facilities and entertainment venues, etc.) is
selected to verify the capability and applicability of DRT
with non-fixed stops. The proposed solution algorithm is
programmed in python 3.8. The real road network in the
specific area is shown in Fig. 6, and the topology diagram
with non-fixed DRT stops grouped by the K-means clustering
method based on the submitted demand points is shown in
Fig. 7.

A. PARAMETERS DESCRIPTION
In order to verify the effectiveness of the model, two types of
vehicles are referred to provide travel services for passengers.
The parameters of the two types of vehicles are shown in
Table 2:

The shortest distance between each demand point is calcu-
lated using Amap. The parameters of the vehicle initial route
optimization model are set as follows:
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TABLE 2. Vehicle type and related parameters.

Carbon
Vehicle Vehicle Setup cost Fuel cost emission
type capacity P (yuan/km) cost
(yuan/km)
A 10 15 2.1 3.9
B 25 25 2.7 4.9
4200

—— Minimum Fitness

4000

3800

Fitness

3600

3400

3200 +— T T T T T
0 20 40 60 80 100
# Gen

FIGURE 8. Results of improved genetic algorithm solution.

The weight coefficients in the objective function are set
to 1. The passenger average boarding or alighting time is
3 seconds per person. The unit driving cost of 10-seat vehicle
is set as 2.1 yuan per kilometer, and that of 25-seat vehicle
is 2.7 yuan per kilometer [37]. The number of vehicles for
type A and B is set to 20 respectively. Vehicle running time is
no more than 120 minutes, the passenger travel time window
is set to 5 minutes, the number of potential points (or stops)
providing service is set to 22, and the departure and terminal
depot is Great Wall Bridge Stop. The locations of all points
are shown in Table 3 below.

The parameters of the genetic algorithm are set as follows:
The population size is 100, the crossover probability is 0.8,
the mutation probability is 0.1, and the number of evolution-
ary iterations is set as 100.

B. RESULT ANALYSIS AND EVALUATION
239 passenger demands are assumed to be submitted to the
DRT system from 8 a.m. to 9 a.m. on working days. The vehi-
cle route and number of passengers served for each vehicle
are obtained using the improved genetic algorithm, as shown
in Table 4. All demands submitted are fully served within
the given constraints delivered by 20 vehicles, among which
9 vehicles of type A and 11 vehicles of type B are used, and
the number of iterations reaches 100, as shown in Fig. 8. The
population has almost converged to the optimal solution at
the 60th iteration, and the optimal objective function value is
3244 .4 yuan. The vehicle routing topology of all scheduling
vehicles is shown in Fig. 9, where lines of different colors
represent the travel paths of different vehicles. (The horizon-
tal coordinate and vertical coordinate represent transformed
geographical coordinate values of stop locations).

The parameters of the GA are set as follows: the population
size is 100, the crossover probability is 0.8, the mutation
probability is 0.1, and the evolution generation is 100. The
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TABLE 3. Stop location.

] ] X- Y-
Stop Name Longitude  Latitude coordinate  coordinate
Starting point 14 44309 380510  36329.734  4255.5278
0 (Great Wall 37 734 66 03
Bridge)
11446397  38.0851  36331.182  4259.5119
1 Water Park 3 563 o4 19
5 Beichen 11451960  38.0829  36336.104  4259.7738
Square 51 736 25 69
3 Beicheng 11452689  38.0842 36336730  4259.9864
International 08 869 4 81
4 Z‘EZP?;Z; 114.54108  38.0794  36338.035  4259.5804
34 787 14 54
Center
. 114.55209 380742  36339.065  4259.0969
5 Aobei Park 76 343 28 04
6 Peace Time  114.55617  38.0600  36339.588  4257.5515
Home 55 226 57 91
Huabei 1) 54130 380595 36338284  4257.3676
7 Pharmaceutic P 904 14 59
al Co. LTD
§  JianheBridge 1451811 380603 36336233 42572440
82 775 56 15
The Second
Hospitalof 14 ye77 380635 36333520 42573197
0 Hebei 08 379 9 36
Medical
University
Shijiazhuang
0 North 11447205 380727  36332.035 42582079
Railway 35 896 54 64
Station
" Peace 11445877  38.0510 36331115  4255.6687
Hospital 4 662 04 27
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change of the optimal fitness value of each generation is
shown in Fig. 8, where the algorithm reaches the state of
local convergence at the time of 20th-50th, so the fitness
shows a straight-line state, and then jumps out of the local
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FIGURE 9. Figure of the driving routes.

TABLE 4. Vehicle optimization routing schemes.

Vehicle Route ()I}Ig:lrt::d
1 0—-17-22—15—-12—-9—-0 5
2 0— 16— 20— 21—-13—-0 7
3 0—10—2— 5> 7—-22-4—0 23
4 0— 18— 13- 11-0 10
5 0—-22—17-15-0 9
6 0— 7—6— 16— 17— 130 10
7 0— 11— 8— 14— 20—18 —»16—17—-0 16
8 0—2—-3-7-6—5-17-0 7
9 0—11-9—-8—-0 6
10 0— 9— 14— 20— 18—11-0 18
11 0—20—21-18—17-0 6
12 0—11-9— 8- 6—17—0 16
13 0— 3— 8—6— 16— 17—0 8
14 0— 19— 18— 13—0 10
15 0— 5—6— 7—16 -»17—15-22—-0 9
16 0— 10— 20— 21-7— 17-0 11
17 0—1-4—5>3—> 15— 22—6—0 25
18 0—1-2—>3—> 6—-5—16—>17—-13—0 18
19 0—7— 16— 13— 11-0 13
20 0—8— 15— 17-21-16— 12— 1459—0 12

convergence in the iterative mutation process, and reaches the
convergence state again after the 85th generation.

1) COMPARATIVE EXPERIENMENTS OF DIFFERENT VEHICLE
TYPES

In order to verify the superiority of the multi-vehicle type in
this paper, 239 demands are served by vehicles of type A
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TABLE 5. Comparison results for different vehicle types.

Average
Total Vehicle Number in-vehicle Total
. . Number . Average Passenger
Vehicle cost operating of time of travel .
¢ | ¢ of ) time load service
ype vaue cos trips people passenger . ratio/% rate/%
/yuan /yuan served /min /min
A/B 32444 1589.6 20 239 19.8 1327.6 74.0 100
A 4861.0 21183 29 239 18.9 2017.4 824 100
B 3859.5 1789.8 19 239 21.7 12914 50.9 100
TABLE 6. Comparison of results for different vehicle types.
Average
Total Vehicle Number in-vehicle Total
. . Number . Average Passenger
Vehicle cost operating time of travel .
¢ 1 ¢ of 1 time load service
ype value cos trips peopie passenger . ratio/% rate/ %
/yuan /yuan served /min /min
A/B 2309.5 1083.9 15 10.2 951.6 71.2 100
A 2719.0 1222.4 17 8.4 1164.2 84.7 100
B 2750.4 1222.6 14 8.2 905.6 454 100

and B respectively. The parameters are the same as above.
Results for each iteration and vehicle routes of different
vehicle types are obtained from 8 a.m. to 9 a.m. on working
days.

From the results in Table 5, compared with the mode
of multi-vehicle type, total cost value in the result of type
A increases by 33.3%, the total travel time increases by
34.2%, and the average load ratio of vehicles increases by
8.4%. Although the average load ratio is improved due to
the smaller capacity, more trips are increased, resulting in
additional vehicle setup cost and total travel time. Counter-
intuitively, vehicles of type B reduce one trip, the total cost
value increases by 15.9%, the total travel time reduces by
2.7%, the average load ratio reduces by 23.9%. It is shown
that the average load ratio is decreased sharply, which is easy
to cause the waste of in-vehicle space and the increase of
operating cost. Therefore, the multi-vehicle type operating
mode could effectively reduce the total cost and improve the
vehicle utilization rate.

In order to further verify the superiority of the
multi-vehicle type operating mode in this paper, 144 and
336 demand points are provided, and the results are shown
in Table 6 and Table 7. It can be seen that the results are
almost consistent under different requirements. Therefore,
it is verified that the service mode of multi-vehicle type is
better than the service mode of single-vehicle type with lower
total cost and relatively higher average load ratio.

VOLUME 11, 2023

2) COMPARATIVE EXPERIMENTS OF DIFFERENT SERVICE
MODES

In order to verify the advantages and effectiveness of DRT
with non-fixed stops, the service mode of DRT with fixed
stops [26], [27], [36] is selected in the comparative experi-
ment. In the downtown area of Shijiazhuang defined in Fig. 6,
17 public transit lines are concluded in the service area.
The locations of fixed stops and demand points are shown
in Fig. 10, where the yellow stops are fixed stops and the
red ones are non-fixed stops. The experiments using two
service modes with the same submitted demand information
are performed and results are shown in Table 9. The service
route and number of passengers of each vehicle are shown in
Table 8.

As can be seen from Table 9, compared with the service
mode of DRT with fixed stops, the non-fixed stops service
mode requires 3 more trips, 52 more passengers to serve,
and the objective function value is reduced by 293.9 yuan.
It is evident that the service mode with non-fixed stops has
significant improvements in both the passenger service rate
and the average load ratio. This is because a more reasonable
schedule is created based on the actual travel information
submitted prior to the traveling. Besides, some unnecessary
detours can be reduced and more travel time can be saved,
thus more passengers can be served in a trip. The same con-
clusion can be obtained from experiments with the different
number of requirements, seen from Table 10 and Table 11.
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TABLE 7. Comparison of results for different vehicle types.

Average
' Total Vehlc{le Number Number mjvehlcle Total Average Passenger
Vehicle cost operating of time of travel .
¢ | ¢ of | oer time load service
ype vaiue cos trips peopie passenge . ratio/% rate/%
/yuan /yuan served /min /min
A/B 3588.8 1893.3 27 336 16.6 1579.6 68.4 100
A 6634.0 2905.1 41 336 21.9 2766.8 82.0 100
B 4059.8 2037.9 26 336 15.6 1509.6 45.4 100
TABLE 8. Vehicle routes.
. Number
Vehicle Route of Served
1 0—10—11-54—8—14—13—0 14
2 0— 20— 21— 18— 17— 16— 14— 0 8
3 0—6— 22— 16— 15— 14—11—-0 5
4 0— 19— 18— 13— 11— 0 24
5 0— 5> 7> 16—515—>14—-11-0 7
g { &
T | 6 0— 1= 10— 2— 6—14—11— 0 9
] Station A Non-fixed stop Fixed stop Landmark building
Road — . Raivay Metro Line 7 0—2—> 7> 6—5-16—>18 —-17—0 4
FIGURE 10. Distribution of public transit line stops. 8 0 1 10— 5 15522 —4—6—0 12
—— Minimum Fitness 9 0—4— 14— 15— 18— 110 16
4700 A
4600 10 0—20— 18— 21— 11—-0 17
4500 A
% 11 0—3—-9—17-20—19—18—0 5
£ 4400
" 13001 12 0 48— 155 16 170 8
42001 13 0 32 55 17516 —11-0 1
4100 4
T T T T T 15 0— 6— 17— 16— 15—18—11—-0 8
0 20 40 60 80
# Gen
16 0—6— 16— 17> 13— 0 15
FIGURE 11. Results of traditional genetic algorithm.
17 0— 10— 16— 17— 7—13—11 -0 13

3) EXPERIMENTS WITH TWO ALGORITHMS

In order to verify the superiority of the improved genetic
algorithm proposed in this paper, the traditional genetic
algorithm is selected to solve the vehicle scheduling problems
under the service mode of DRT with non-fixed stops, and
the solution results are compared. The parameters of the two
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algorithms are the same, population size is 100, crossover
probability is 0.8, mutation probability is 0.1, and number of
evolutionary iterations is 100. The results of the two algo-
rithms are shown in Fig. 11 and 12, respectively.
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TABLE 9. Comparison of two service modes.

Total Vehicle Number _Avera_ge Total
. . Number in-vehicle Average Passenger
Service cost operating of . travel .
of time of . load service
mode value cost . people time o N
trips passenger . ratio/% rate/%
/yuan /yuan served . /min
/min
N"‘S‘t'of;‘ed 3244.4 1589.6 20 239 15.6 1327.6 74.0 100
Fixed stop 3538.3 1437.1 17 187 17.9 1195.2 63.0 79.3
TABLE 10. Comparison of two service modes under 144 requirements.
Total Vehicle Number 'Avera.ge Total
. . Number in-vehicle Average Passenger
Service cost operating of . travel .
of time of . load service
mode value cost - people time s o
trips passenger . ratio/% rate/%
/yuan /yuan served . /min
/min
Non-fixed 2309.5 1083.9 15 144 102 951.6 71.2 100
stop
Fslt’é;d 2436.7 947.5 10 99 19.4 904.8 61.8 68.8
TABLE 11. Comparison of two service modes under 337 requirements.
Total Vehicle Number _Averqge Total
. . Number in-vehicle Average Passenger
Service cost operating of . travel .
of time of . load service
mode value cost - people time - o N
trips passenger . ratio/% rate/%
/yuan /yuan served Jmi /min
‘min
NO;‘{Of;"ed 3588.8 1893.3 27 336 16.6 1579.6 68.4 100
Fslt):;)d 4029.0 1501.6 17 236 18.3 1371.6 72.1 70.2
TABLE 12. Comparison results of different algorithms.
Average
Total Number . . Total
. Number in-vehicle Average Passenger
Solving cost of . travel .
. of time of - load service
algorithm value . people time o o
trips passenger . ratio/% rate/%
/yuan served i /min
‘min
The traditional 4066.8 27 239 153 1528.1 56.7 100
genetic algorithm
The improved 3244 .4 20 239 15.6 1327.6 74.0 100

genetic algorithm

It can be seen from Figs. 11 and 12 that the improved
genetic algorithm proposed in this paper has great advantages
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in terms of convergence speed and objective function results.
As shown in Table 12, compared with the traditional genetic

92657



IEEE Access

C. Song et al.: Optimization Model for the DRT With Non-Fixed Stops and Multi-Vehicle Type

4200

—— Minimum Fitness

4000

3800 4

Fitness

3600 -

3400 4

3200

0 20 40 60 80 100
# Gen

FIGURE 12. Results of improved genetic algorithm.

algorithm, although the average passenger in-vehicle time is
increased by 1.9%, the number of trips and the total travel
time are significantly reduced by 25.9% and 13.1% respec-
tively, which can effectively improve the vehicle utilization
rate. The running time of the improved genetic algorithm is
4.8% lower than the traditional algorithm, which indicates the
effectiveness of the proposed method.

V. CONCLUSION

This paper presents a scheduling system of DRT by consid-
ering passengers’ submitting information before trips based
on the advantages of the Internet environment. The strate-
gies combining non-fixed stops and multi-vehicle type are
introduced into the developed DRT system, and a scheduling
model is adopted to decrease the total system cost, involving
vehicle setup cost, operating cost and carbon emission cost.
An improved genetic algorithm is then developed to solve the
problem and enhance actual applications of the DRT service.
A case study in Shijiazhuang downtown area is carried out
to verify the effectiveness of the proposed DRT service with
non-fixed stops and the computing efficiency of the improved
algorithm. Results show that the multi-vehicle type schedul-
ing method significantly reduces the vehicle operating cost by
25.0% and the number of trips by up to 31.0% compared with
single small-capacity vehicle type, and the average load ratio
is reduced by 23.9% compared with single large-capacity
vehicle type. DRT with non-fixed stops increases the average
load ratio by 11.0% and the passenger service rate by 21.7%
compared with fixed stops service mode. It can be seen that
vehicle scheduling of DRT with non-fixed stops and multi-
vehicle type performs better in reducing total travel time as
well as increasing average load ratio. The operating mode of
public transit and scheduling method proposed in this paper
is expected to enhance both vehicle utilization efficiency
and the operational efficiency, which can help operators and
administrators assess the quality of service, user satisfac-
tion and social efficiency, especially under environmental
concerns. In order to verify the superiority of the improved
genetic algorithm in this paper, the comparison with the tra-
ditional genetic algorithm shows that the proposed improved

92658

genetic algorithm has great advantages in convergence speed
and solving accuracy. Although this study provides a new
DRT service mode combining both non-fixed stops and multi-
vehicle type considering operators, passengers and social
benefits, the following limitation should be concerned: The
vehicle operating speed in this paper is selected as a fixed
value in vehicle scheduling, instead of dynamic vehicle
speed; Only the subscription demand is considered, but it fails
to consider real-time or short-time demand. Further research
will be conducted in these aspects.
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