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ABSTRACT This paper investigates a novel fuzzy Petri nets (FPNs) method based on q-rung orthopair
fuzzy sets (q-ROFSs) to provide an efficient solution to uncertain knowledge representation and reasoning.
It not only improves FPN’s flexibility in knowledge parameter representation and reasoning algorithms but
also addresses the challenges that most FPNs cannot implement backward reasoning, which is a common
reasoning task to infer condition statuses according to consequences reversely. Specifically, we first propose
the q-rung orthopair FPNs (q-ROFPNs) by integrating q-ROFSswith FPNs. It achieves an intuitive evaluation
of hesitancy information and a flexible adjustment of the knowledge representation ranges. And a reasoning
algorithm based on the ordered weighted averaging-weighted average (OWAWA) operator is developed to
accomplish the forward reasoning driven by q-ROFPNs, which can balance the proposition weights and its
position weights flexibly. Building upon q-ROFPNs, we further propose the q-rung orthopair fuzzy reversed
Petri nets (q-ROFRPNs) for backward reasoning task, where a decomposition algorithm for q-ROFRPNs
is designed for reducing the inference complexity, and an ordered weighted backward reasoning (OWBR)
algorithm is provided to backward reasoning suitable for different fuzzy environments. In addition, to ensure
the accuracy and rationality of reasoning results, we propose a knowledge acquisition method by power
average (PA) operator to eliminate the negative impact of outliers on knowledge parameter assessments.
A simulation experiment on the fault diagnosis of the air conditioning system demonstrates that the proposed
method can achieve a more flexible and reliable knowledge representation and reasoning than the state-of-
the-art FPNs methods.

INDEX TERMS Expert system, fuzzy petri net, knowledge representation and reasoning, q-rung orthopair
fuzzy sets.

I. INTRODUCTION
Fuzzy Petri nets (FPNs) initiate a graphical knowledge repre-
sentation and reasoning method by integrating fuzzy sets and
Petri nets (PNs) theories. They apply fuzzy sets to model the
uncertainty of knowledge information and exploit Petri nets
to realize the dynamic knowledge reasoning in a graphical
manner [1]. Because of their power in uncertainty model-
ing and graphical inference, FPNs have achieved sustained
attention in a wide range of applications, particularly in fault
diagnosis of power system [2], reliability evaluation [3],
workflow management [4]. Traditional FPNs advocate mod-
eling the uncertain knowledge by Zadeh’s fuzzy sets, which
characterizes the ambiguous perception by a membership

The associate editor coordinating the review of this manuscript and

approving it for publication was Chun-Hao Chen .

degree (MD). However, a crucial shortcoming of the above
method is that Zadeh’s fuzzy sets cannot deal with compli-
cated ambiguous or linguistic knowledge information [5].
In addition, traditional FPNs carry out knowledge reasoning
tasks only by the min, max, and product operators, thus
failing to ensure the precision and reliability of knowledge
reasoning [6]. In recent years, improving FPN’s knowledge
representation and reasoning ability has attracted a growing
interest in the research community [7].

To enhance the knowledge representation ability, various
advanced fuzzy sets and linguistic models are introduced into
FPNs to support complicated uncertainty modeling. In [8],
the grey reasoning PNs that integrate grey numbers with
FPN have been proposed to handle incomplete knowledge
information. In [9] and [10], the linguistic reasoning PNs
and cloud reasoning PNs are proposed to realize knowledge
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reasoning under the linguistic environments. To intuitively
reveal the hesitancy implied in the knowledge information,
two significant FPNs, namely intuitionistic FPNs (IFPNs)
and Pythagorean FPNs (PFPNs), have been proposed in [11]
and [12]. They assimilate intuitionistic fuzzy sets (IFSs)
and Pythagorean fuzzy sets (PFSs) with FPNs and leverage
the MD and non-membership degree (NMD) to intuitively
represent the hesitancy of knowledge information. However,
the knowledge parameters expressed in the form of IFSs
and PFSs require that the sum or square sum of MD and
NMD is less or equal to one, which limits the flexibility and
practicability of FPNs.

On the other hand, existing studies also made many works
on enhancing the effectiveness of knowledge reasoning of
FPNs. Over the past few years, the aggregation operator,
a significant aggregation function for information fusion, has
been applied widely in the reasoning algorithm of FPNs to
improve its flexibility and reliability. For example, a so-called
dynamic adaptive FPN is proposed in [13], which utilizes
the weighted averaging (WA) operator to fulfill knowledge
inference considering proposition weights. In [6] and [9],
the ordered weighted averaging (OWA) operator is used to
replace max or min operators of FPNs and enable the knowl-
edge inference considering position weights of propositions.
In addition, some FPN methods also introduce the hybrid
of WA and OWA to weigh both the propositions themselves
and their position information, as achieved in [10] and [14].
Unfortunately, the above methods ignore the situation where
the proposition and position weights may be assigned to dif-
ferent importance degrees due to the difference in inference
target.

In addition to the grievances in knowledge representa-
tion and reasoning, another pivotal shortcoming in existing
FPNs is that they only focus on forward reasoning tasks and
rarely consider backward reasoning driven by consequences.
In some knowledge reasoning tasks, the consequences may
be known, and the expert system needs to infer the status
of antecedent propositions according to consequent propo-
sitions. Reversed FPNs (RFPNs) [15] and reversed dynamic
adaptive FPNs (RDAFPNs) [16] were regarded as the solu-
tion providers for the above problem. They construct the
reversed reasoning mechanism oriented to FPNs to realize
the truth evaluation of antecedent propositions. However,
RFPNs and RDAFPNs only achieve simple backward reason-
ing by fuzzy sets and conventional Min and Max operators.
The FPN-based backward reasoning suitable for complex
and uncertain situations becomes imperative, yet the related
achievements are still scarce.

Motivated by the above shortcomings, this paper proposes
a new type of FPN method based on q-rung orthopair fuzzy
sets (q-ROFSs). It is constituted by q-rung orthopair FPNs
(q-ROFPNs) and q-rung orthopair fuzzy reversed Petri nets
(q-ROFRPNs), which not only enables a flexible adjustment
of the knowledge representation ranges but also realizes
forward and backward knowledge reasoning. In addition,
a knowledge acquisition method by power average (PA)

operator is developed to ensure the accuracy and rationality
of knowledge reasoning. The novelty and contributions of this
paper are as follows:

• We integrate the q-ROFSs with the FPNs to propose the
q-ROFPN model. Compared with IFPNs and PFPNs,
q-ROFPNs not only intuitively evaluate the hesitancy
implied in knowledge parameters but also avoid the
limitation that the sum or square sum ofMD andNMD is
less or equal to one, which achieves a flexible expansion
of knowledge representation ranges. Q-ROFPN can be
regarded as the generalization of IFPNs or PFPNs, and
it also can reduce to IFPNs or PFPNs by adjusting the
model parameter.

• We develop a reasoning algorithm based on the ordered
weighted averaging-weighted average (OWAWA) oper-
ator to fulfill the forward knowledge reasoning driven by
q-ROFPNs. Apart from considering both the proposition
weight and the position weight, the proposed algorithm
enables a flexible trade-off between them, which for-
tifies the reliability and flexibility of FPN knowledge
reasoning.

• Based on the q-ROFPNs, we accomplish the
q-ROFRPNs for backward knowledge reasoning.
It comprises a decomposition algorithm that constructs
a subnet model of q-ROFRPNs to reduce the infer-
ence complexity and an ordered weighted backward
reasoning (OWBR) algorithm for executing backward
reasoning tasks. Compared with RFPNs and RDAFPNs,
q-ROFRPNs realize the backward reasoning suitable
for different fuzzy environments, including intuitionistic
fuzzy, Pythagorean fuzzy, and q-rung orthopair fuzzy
environments.

• To ensure the accuracy of knowledge reasoning, this
paper also concerns the knowledge acquisition of model
parameters. Traditional knowledge acquisition based on
WA or weighted geometric (WG) operators may provide
unreasonable aggregation results if there are outliers
in the evaluation of knowledge parameters. A knowl-
edge acquisition method based on the power average
(PA) operator is to this end presented herein, which can
eliminate the negative impact of outlier assessments on
knowledge aggregation results.

The rest of this paper is organized as follows. Section II
reviews the related works, including q-ROFSs, aggregation
operators under q-ROFSs, and FPNs. Sections III and IV
elaborate on the knowledge representation and reasoning
based on q-ROFPNs and q-ROFRPNs. Section V details
the PA-based knowledge parameter acquisition. Section VI
employs a case study on fault diagnosis of the air conditioning
system to validate the efficacy of the proposed method. The
summaries are given in the last section.

II. PRELIMINARIES
A. Q-RUNG ORTHOPAIR FUZZY SETS
The q-ROFSs [17] are the generalization of IFSs and PFSs.
It assigns an adjustable parameter q and allows the sum of
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the q-th power of the MD and the NMD to be less or equal
to one, which enables a flexible adjustment for the acceptable
fuzzy information space. The details of q-ROFSs is presented
as follows [17]:
Definition 1: Let X be a fixed set, then a q-ROFS A in X

is:

A = {⟨x |µA(x), vA(x) ⟩ |x ∈ X } (1)

where µA(x) ∈ [0, 1] and vA(x) ∈ [0, 1] are respectively
the MD and NMD of x in A, and satisfy 0 ≤ (µA(x))q +

(vA(x))q ≤ 1, (q ≥ 1) for all x ∈ X . For a q-ROFS A, hA(x) =(
1 −

(
µ
q
A(x) + vqA(x)

))1/q is defined as the hesitancy degree
of x to A. For convenience, the pair ⟨µA(x), vA(x)⟩ is called
as q-rung orthopair fuzzy number (q-ROFN), denoted by
⟨µA, vA⟩.
Definition 2: Given any two q-ROFNs a = ⟨µa, va⟩ and

b = ⟨µb, vb⟩, then the operational laws of q-ROFNs are
defined as follows [18], [19]:

1) a⊕̃b =

〈(
µ
q
a + µ

q
b − µ

q
aµ

q
b

)1/q
, vavb

〉
,

2) a⊗̃b =

〈
µaµb,

(
vqa + vqb − vqav

q
b

)1/q 〉,
3) λa =

〈(
1 − (1 − µ

q
a)

λ
)1/q

, vλa

〉
,

4) aλ
=

〈
µλ
a,
(
1 − (1 − vqa)

λ
)1/q 〉

,

5) a⊖̃b =

〈
0 ∨

(
µ
q
a−µ

q
b

1−µ
q
b

)1/q

, 1 ∧
va
vb

∧

(
1−µ

q
a

1−µ
q
b

)1/q
〉
,

6) a⊘̃b =

〈
1 ∧

µa
µb

∧

(
1−vqa
1−vqb

)1/q

, 0 ∨

(
vqa−v

q
b

1−vqb

)1/q
〉
,

Definition 3: Let a = ⟨µa, va⟩ be a q-ROFN, then the
score function and accuracy function of a are S(a) = µ

q
a− vqa

and H (a) = µ
q
a+ vqa, respectively. Further, a comparison rule

for any two q-ROFNs, i.e., a = ⟨µa, va⟩ and b = ⟨µb, vb⟩,
is defined as follows [18]:

1) If S(a) > S(b), then a ≻ b;
2) If S(a) = S(b), then

if H (a) > H (b), then a ≻ b;
if H (a) = H (b), thena = b.

B. OWAWA OPERATOR AND PA OPERATOR
The OWAWA operator, as a unification between WA and
OWA, not only weights the variables themselves and their
ordered positions but also considers the relative degree of
importance between them [20]. To deal with the knowledge
information expressed by q-ROFNs, we extend it in q-ROFSs
and propose a q-rung orthopair OWAWA (q-OWAWA) oper-
ator. Let � be the set of all q-ROFNs, then q-OWAWA is
defined as:
Definition 4: Let ai (i = 1, 2, . . . , n) be a collection of

q-ROFNs, ρi be the weight of ai (i = 1, 2, . . . , n), satisfying
ρi ∈ [0, 1] and

∑n
i=1 ρi = 1. Meanwhile, ϖi be the position

weight of ai (i = 1, 2, . . . , n), satisfying ϖi ∈ [0, 1] and

∑n
i=1 ϖi = 1, then an q-OWAWA operator of dimension n is

a mapping q-OWAWA: �n
→ � such that:

q-OWAWA(a1, a2, . . . , an)

= w1aσ (1)⊕̃w2aσ (2)⊕̃ · · · ⊕̃wnaσ (n) (2)

where aσ (i) is the i-th largest of the ai,(i = 1, 2, . . . , n) and
its weight wi is calculated as follows:

wi = βϖi + (1 − β)ρσ (i), β ∈ [0, 1] (3)

As pointed out in [20] and [21], q-OWAWA operator sat-
isfies monotonicity, idempotency, and boundary. By adjust-
ing the β, Eq.(3) enables a flexible trade-off between the
argument and position weights. Meanwhile, it can reduce
q-OWAWA to q-rung orthopair fuzzy OWA (q-OWA) opera-
tor or q-rung orthopair fuzzy WA (q-WA) operator by setting
β = 1 or β = 0, as given by

q-OWA(a1, a2, . . . , an) =

n
⊕̃
i=1

ϖiaσ (i) (4)

or

q-WA(a1, a2, . . . , an) =

n
⊕̃
i=1

ρiai (5)

The PA operator [22] provides a new information aggregat-
ing method. By constructing the support degree of variables,
PA allows variables to support and reinforce each other to
eliminate the negative impact of outliers. Ju et al. [23] further
expand the PA operator to q-ROFSs and propose the q-rung
orthopair fuzzy power weighted average (q-PWA) operator.
Let � be the set of all q-ROFNs, the q-PWA operator is
defined as follows [23]:
Definition 5: Let ai(i = 1, 2, . . . , n) be a collection of q-

ROFNs, then q-PWA operator of dimension n is a mapping
q-PWA: �n

→ � such that:

q-PWA(a1, a2, . . . , an) =

n
⊕̃
j=1

(
γi(1 + T (ai))ai∑n
j=1 γj(1 + T (aj))

)
(6)

where γi is the weight of ai(i = 1, 2, . . . , n), satisfying γi ∈

[0, 1] and
∑n

i=1 γi = 1. T (aj) =
∑n

i=1,i̸=j Sup(aj, ai), j =

1, 2, . . . , n and Sup(aj, ai) is the support degree for aj from
ai, which satisfies following properties:
1) Sup(aj, ai) ∈ [0, 1].
2) Sup(aj, ai) = Sup(ai, aj).
3) Sup(aj, ai) ≥ Sup(al, ak ), if d(aj, ai) ≤ d(al, ak );

d(aj, ai) is the distance measure of aj and ai.

C. FUZZY PETRI NETS
FPNs, originated by Looney [24], have emerged as a signifi-
cant knowledge representation and reasoning method, whose
key superiority is to assimilate the uncertain modeling of
fuzzy sets with the inference mechanism of PNs, thus realiz-
ing graphical and visual modeling and inference. A classical
FPN model is defined as follows [6], [25]:
Definition 6: An FPN is defined as an 8-tuple:

FPN = (P,T ,D, I ,O, f , α, β) (7)
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where
1) P = {p1, p1, . . . , pm} denotes a finite nonempty set of

places.
2) T = {t1, t2, . . . , tn} denotes a finite nonempty set of

transitions, P
⋂
T = ∅.

3) D = {d1, d2, . . . , dm} denotes a finite nonempty set of
propositions, |P| = |D|.

4) I : [P×T ] → {0, 1} is a m× n input incidence matrix,
each element Iij records the relation from place pi(i =

1, 2, . . . ,m) to transition tj(j = 1, 2, . . . , n). Iij = 1,
if there is a directed arc from pi to tj, otherwise, Iij = 0.

5) O : [P× T ]T → {0, 1} is a m × n output incidence
matrix, each elementOij records the relation from tran-
sition tj(j = 1, 2, . . . , n) to place pi(i = 1, 2, . . . ,m).
Oij = 1, if there is a directed arc from tjtopi, otherwise,
Oij = 0.

6) f : P → [0, 1] is an associated function which defines
a mapping from transitions to real values between 0
and 1.

7) α : T → [0, 1] is an associated function which defines
a mapping from places to real values between 0 and 1.

8) β : P → D is an associated function which defines
a bijective mapping from place pi to proposition di.
If β(pi) = di, pi is associated with proposition di.

Since the introduction of FPNs, a larger number of stud-
ies have been proposed to improve FPN’s performance,
including the extensions of modeling ability for uncertain
knowledge [26] and the enhancement of reasoning effi-
ciency [27], [28]. However, existing FPNs still lack flexibility
in knowledge parameter representation and reasoning algo-
rithms. Moreover, most FPN methods fail to accomplish
the backward knowledge reasoning driven by consequences
effectively. That will motivate us to propose a new FPN
method based on q-ROFSs, which is composed of q-ROFPNs
for forward knowledge reasoning, q-ROFRPNs for backward
knowledge reasoning, and PA-based knowledge acquisition.
The whole knowledge representation and reasoning process
is shown in Fig. 1, and details are elaborated in the following
sections.

III. Q-RUNG ORTHOPAIR FUZZY PETRI NETS
This section elaborates on the q-ROFPN and its knowl-
edge representation and reasoning. The q-ROFPN model is
firstly established, which inherits the merits of q-ROFSs
to flexibly adjust the representation range of knowledge
parameters while intuitively revealing the hesitancy implied
in knowledge information. Secondly, a forward reasoning
algorithm based on q-OWAWA is proposed to attain a flexible
trade-off between proposition weights and position weights,
thus enhancing the reliability of knowledge reasoning. The
above two parts form the knowledge representation and rea-
soning based on q-ROFPNs.

A. DEFINITION OF Q-ROFPNS
Let � be the set of all q-ROFNs, the q-ROFPNs are defined
as follows:

Definition 7: A q-ROFPN is a 11-tuple:

q-ROFPN = (P,T ,D, I ,O, β,Th,U ,WL ,WG,M) (8)

where
1) P, T , D, I , O, and β are same as those in Definition 6.
2) Th : P → � is an associated function, which assigns

a threshold λi represented by q-ROFNs to each place
pi(i = 1, 2, . . . ,m), and Th = (λ1, λ2, . . . , λm).

3) U : T → � is an associated function, which
assigns a certainty factor uj represented by q-ROFNs
to each transition tj(j = 1, 2, . . . , n), and U =

(u1, u2, . . . , un).
4) WL : [P × T ] → [0, 1] is an input function assigning

a local weight to each input arc of the transition. The
WL = (lwij)m×n(i = 1, 2, . . . ,m, j = 1, 2, . . . , n) and
element lwij ∈ [0, 1] indicates the impact of places pi
on transition tj.

5) WG : [P× T ]T → [0, 1] is an output function
assigning a global weight to each output arc of the
transition. The WG = (gwij)m×n

(i = 1, 2, . . . ,m, j =

1, 2, . . . , n) and element gwij ∈ [0, 1] indicates the
impact of transitions tj on place pi.

6) M = (α(p1), α(p2), . . . , α(pm))T is the marking vec-
tor of the q-ROFPN, where α(pi) is taken in form of
q-ROFNs and indicates the tokens contained in place
pi, which signifies the truth degree of the corresponding
proposition di (i = 1, 2, . . . ,m). The initial marking
vector is denoted asM0.

B. Q-ROFPN-BASED KNOWLEDGE REPRESENTATIONS
The knowledge representation of q-ROFPN intends to model
fuzzy production rules (FPRs) in a graphical way. FPRs are
a prevailing knowledge storage method in expert systems,
which employs an IF-THEN form to express the domain
knowledge. As such, we first propose the novel FPRs, namely
q-rung orthopair FPRs (q-ROFPRs), to express the knowl-
edge information.

The q-ROFPRs include following five basic forms:
Type 1: A simple q-ROFPR

R1 : IF a THEN c (λ; lw; u; gw)
Type 2:A composite q-rung orthopair fuzzy weighted con-

junctive rule in the antecedent
R2 : IF a1 AND a2 AND · · · AND am THEN c
(λ1, λ2, . . . , λm; lw1, lw2, . . . , lwm; u; gw)

Type 3:A composite q-rung orthopair fuzzy weighted con-
junctive rule in the consequent
R3 : IF a THEN c1 AND c2 AND · · · AND cm

(λ; lw; u; gw1, gw2, . . . , gwm)
Type 4: A composite q-rung orthopair fuzzy weighted dis-

junctive rule in the antecedent
R4 : IF a1 OR a2 OR · · · OR am THEN c

(λ1, λ2, . . . , λm; lw1, lw2, . . . , lwm; u1, u2, . . . , um;

gw1, gw2, . . . , gwm
)

Type 5: A composite q-rung orthopair fuzzy weighted dis-
junctive rule in the consequent
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FIGURE 1. Q-ROFPN based knowledge representation and reasoning.

FIGURE 2. q-ROFPN representation of Type 1 rule.

R5 : IF a THEN c1 OR c2 OR · · · OR cm
(λ; lw1, lw2, . . . , lwm; u; gw1, gw2, . . . , gwm)

where a and c is the antecedent and consequent propositions
and their truth degrees are expressed by q-ROFNs. λ and u,
in form of q-ROFNs, represent the threshold of the antecedent
proposition and the certainty factors of the rule, respectively.
lw ∈ [0, 1] is the local weight, which indicates the importance
degree of antecedent propositions to the outputs of the rule.
gw ∈ [0, 1] is the global weight that indicates the impact of
the rule to its consequent propositions.

Next, q-ROFPNs are used to model the above five rule
types, as shown in Figs. 2-6, in which propositions are
denoted as places, and the firing of rules is regarded as the
firing of transitions. Note that Type 4 and Type 5 will not be
discussed below because they can be transferred into several
rules of Type 1.

C. EXECUTION RULES OF Q-ROFPNS
For any a transition t ∈ T , let I (t) = {pI1, pI2, . . . , pIm}

be the input place set with thresholds λI1, λI2, . . . , λIm
and local weights lwI1, lwI2, . . . , lwIm. O(t) = {pO1, pO2,
. . . , pOn} be the output place set with the global weights
gwO1, gwO2, . . . , gwOm. The u(t) indicates the certainty

FIGURE 3. q-ROFPN representation of Type 2 rule.

FIGURE 4. q-ROFPN representation of Type 3 rule.

factor of transition t , then the enabling and firing rules of
q-ROFPNs are defined as following:

1) Enabling rule: the transition t ∈ T is enabled, if

∀pIj ∈ I (t) : α(pIj) ≥ λIj, j = 1, 2, . . . ,m; (9)

where α(pIj) is the tokens contained in place pIj.
2) Firing rule: when enabled transition t is fired, the token

α(pIj) of its input places pIj(j = 1, 2, . . . ,m) are copied and
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FIGURE 5. q-ROFPN representation of Type 4 rule.

FIGURE 6. q-ROFPN representation of Type 5 rule.

a token with certain degree of fuzzy truth is deposited into its
output places pOk for k = 1, 2, . . . , n. If the output place pOk
has only one input transition t , then the token value of pOk is
calculated by

α (pOk) =q-OWAWA ( lwI1α(pI1),

lwI2α(pI2), . . . , lwImα(pIm)) ⊗̃u(t) (10)

If the place pOk has more than one input transitions tj with
global weight gwi

Ok for i = 1, 2, . . . , l, then the values of
token of pOk is calculated by

α (pOk) =q-OWAWA
(
gw1

Okα(p
1
Ok ),

gw2
Okα(p

2
Ok ), . . . , gw

l
Okα(p

l
Ok )
)

(11)

where α̃(piOk ) (i = 1, 2, . . . , l) is the token values of output
place pOk determined by k-th input transitions.

D. REASONING ALGORITHM OF Q-ROFPNS
According to the execution mechanism of q-ROFPNs,
we propose the forward reasoning algorithm based on
q-OWAWA, which intend to infer the truth degree of goal
places from the known starting places. Before introducing
the algorithm, some basic matrix operations are defined as
follows:

1) Operator ⊕:

A ⊕ B = D (12)

where A = (aij)m×n, B = (bij)m×n and D = (dij)m×n,
dij = max{aij, bij} for i = 1, 2, . . . ,m,j = 1, 2, . . . , n

2) Operator ⊙:

A ⊙ B = D (13)

where A = (aij)m×n, B = (bij)m×n and D = (dij)m×n,
dij = aij × bij for i = 1, 2, . . . ,m,j = 1, 2, . . . , n.

3) Operator ⊗:

A ⊗ B = D (14)

where A = (aij)m×l , B = (bij)l×n and D =

(dij)m×n,dij = max
1≤k≤l

{aik × bkj} for i = 1, 2, . . . ,m,j =

1, 2, . . . , n.
4) Operator ▷:

A ▷ B = D (15)

where A = (aij)m×n, B = (bij)m×n and D = (dij)m×n,
then dij = 1, if aij ≥ bij;dij = 0, if aij < bij for i =

1, 2, . . . ,m, j = 1, 2, . . . , n.
Further, the details of forward reasoning algorithm are

given as follows:
Input: I , O, WL , WG are m × n dimensional matrices; U

is an n dimensional vector; Th and M0 is an m dimensional
vectors.

Output:Mk is an m dimensional vector.
Step 1:Let k = 1, k is iteration times.
Step 2:Calculate the enabled input place vector D(k),

as given by

D(k)
= (di)

(k)
m×1 = Mk−1 ▷ Th, i = 1, 2, . . . ,m;

(16)

Step 3:End the reasoning, if D(k) is zero vector; otherwise,
calculate the vector 0(k) of equivalent fuzzy truth
values regarding to transitions, as given by

0(k)
= q-OWAWA

(
(WL)

T , M̃k−1

)
, (17)

Step 4:Calculate the enabled transition vector F (k),
as given by

F (k)
= (fi)

(k)
1×n =

((
D(k)

)T
× I

)
▷ (E × I ) (18)

where E = [1, 1, . . . , 1]1×m.
Step 5:End the reasoning, if F (k) is zero vector; otherwise,

calculate output truth degree vector 9̃(k) of the
transition, as given by

9̃(k)
=

(
F (k)

⊙ 0(k)
)

⊗̃Ũ (19)

Step 6:Calculate the new marking vector M̃k , as given by

M̃k = M̃k−1 ⊕ q-OWAWA
(
WG, 9̃(k)

)
(20)

Step 7:End reasoning, if M̃k = M̃k−1; otherwise, let k =

k + 1 and go back to Step 2.
Remark 1: Q-ROFPNs accomplish a flexible and reliable

knowledge representation and reasoning. On the one hand,
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q-ROFPNs can change the parameter q to release the restric-
tion of IFPNs and PFPNs that the sum or square sum of
the MD and the NMD is less or equal to one. On the other
hand, the adjustment of parameter β in q-OWAWA enables
the knowledge reasoning capable of flexibly balancing the
importance degrees between propositionweights and position
weights. In addition, the forward reasoning algorithm based
on OWA or WA can also be realized by setting β as 0 or 1.

IV. Q-RUNG ORTHOPAIR FUZZY REVERSED PETRI NETS
In many knowledge reasoning tasks, the consequences are
often known, and the expert system needs to infer the
status of antecedent propositions according to consequent
propositions. In this section, we investigate the backward
knowledge reasoning driven by q-ROFRPNs, where the prin-
cipal constituents include: 1) Constructing the q-ROFRPN
model under the framework of q-ROFPN; 2) Developing the
decomposition algorithm of q-ROFRPNs, which intends to
eliminate the propositions and rules unrelated to the inference
task and enhance the inference efficiency. 3) Developing
the OWBR algorithm for reliable and flexible backward
reasoning.

A. DEFINITION OF Q-ROFRPNS
Based on the framework of q-ROFPN, the q-ROFRPNs are
defined as follows:
Definition 8: Let q-ROFPN = (P,T , I ,O,D, β,Th,U ,

WL ,WG,M ) be the original q-ROFPN model, then,
a q-ROFRPN is an 9-tuple:

q-ROFRPN = (P̃, T̃ , Ĩ , Õ, D̃, β̃, T̃h, Ũ , M̃ ) (21)

where P̃ = P, T̃ = T , Ĩ = O, Õ = I , D̃ = D, β̃ = β,
T̃h = Th, Ũ = U and M̃ = M .
Q-ROFRPN is obtained by reversing the input-output rela-

tionship between the places and transactions of the original
q-ROFPN.More specifically, the output matrix of the original
model is changed into the input matrix of the reverse model,
and its input matrix is changed into the output matrix of the
reverse model. The places, transitions, proposition, etc., are
consistent with the original model. Note that WL and WG of
the original model don’t include in the reverse model due to
the change in input and output relationships.

B. SUBNET MODELS OF Q-ROFRPNS
Compared with the forward reasoning task, backward reason-
ing is a process of inferring antecedent propositions accord-
ing to consequent propositions. Therefore, we can search
these propositions and rules relevant only to the consequence
and then implement the backward reasoning task. Such a
strategy avoids the interference of irrelevant propositions on
the reasoning task and enhances reasoning efficiency.

To achieve the above purpose, we propose a decomposi-
tion algorithm to construct the subnet model of q-ROFRPNs
(S-q-ROFRPNs), which only involves the places and transi-
tions related to the appointed goal place. Before constructing
the S-q-ROFRPNs, two vectors are introduced as follows:

1) Place vector: Let X = (x1, x2, . . . , xm)T be an incident
place vector, the element xi is related to place pi for i =
1, 2, . . . ,m. If pi is an appointed goal place or a place
related to appointed goal place, xi = 1. Otherwise,
xi = 0.

2) Transition vector: Let Y = (y1, y2, . . . , yn)T be an
incident transition vector, the each element yj is related
to transition tj for j = 1, 2, . . . , n. If tj is a transition
related to appointed goal place, yi = 1. Otherwise,
yi = 0.

With the place and transition vectors, we propose the
decomposition algorithm to identify all places and transitions
related to the goal places. Let q-ROFPN = (P,T ,D, I , O,

β,Th,U ,WL ,WG,M) be the original q-ROFPN model, the
procedure of algorithm are presented as follows:

Step 1:Initialize incident place and transition vectors
X (0)

= (x1, x2, . . . , xm)T and Y (0)
= y1, y2, . . . ,

yn)T , where xi = 1, if pi is the appointed output
place, otherwise xi = 0, and yj = 0 for j =

1, 2, . . . , n. Meanwhile, let be k = 1, k denotes the
iteration time.

Step 2:Calculate the incident transition vector Y (k) by

Y (k)
= OT ⊗ X (k−1) (22)

Step 3:Calculate the incident place vector X (k) by

X (k)
=

(
I ⊗ Y (k)

)
⊕ X (k−1) (23)

Step 4:Let k = k + 1 and repeat Step 3 and Step 4, until
X (k)

= X (k−1) and Y (k)
= Y (k−1) are satisfied.

After obtaining vectors X (k) and Y (k), the S-q-ROFRPN is
generated from the original q-ROFPN model. Let � be the
set of all q-ROFNs
Definition 9: Definition 5. A S-q-ROFRPNs is an 9-tuple:

S-q-ROFPN = (P̃′, T̃ ′, Ĩ ′, Õ′, D̃′, β̃ ′, T̃ ′
h, Ũ ′, M̃ ′) (24)

where

1) P̃′ ⊆ P, the element p̃′ in P̃′ corresponds to the nonzero
element x(l)i in X (l), and p̃′ ∈ P.

2) T̃ ′ ⊆ T , the element t̃ ′ in T̃ ′ corresponds to the nonzero
element y(l)j in Y (l), and t̃ ′ ∈ T .

3) D̃′
⊆ D is a finite nonempty set of propositions,

P̃′
⋂
T̃ ′
⋂
D̃′

= ∅, |P̃′
|=|D̃′|.

4) Ĩ ′ = O
⋂

(P̃′
× T̃ ′)

T

5) Õ′
= I

⋂
(P̃′ × T̃ ′).

6) β ′
: P̃′ → D̃′ is an associated function defining

a bijective mapping between places and propositions,
such that β ′(p̃′) = β(p̃′), ∀p̃′

∈ P̃′.
7) T̃ ′

h: P̃
′ → � is an associated function defining a

threshold λ̃′ to place p̃′, T̃ ′
h(p̃

′) = Th(p̃′).
8) Ũ ′ : T̃ ′ → � is an associated function defining a

certainty factor ũ′ to transition t̃ ′, Ũ ′(t̃ ′) = U (t̃ ′).
9) M̃ ′ ⊆ M is the marked vector of S-q-ROFPN, such that

M̃ ′(p̃′) = M (p̃′), ∀p̃′
∈ P̃′.
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It can be seen that the S-q-ROFRPN model is generated
based on the original q-ROFPN model. It only preserves
the places, transitions, thresholds, certainty factors, and their
mapped relationship relevant to the goal place. The above
strategy simplifies the model structure and avoids unneces-
sary inference computation.

C. REASONING ALGORITHM OF Q-ROFRPNS
Next, we investigate the backward reasoning driven by
q-ROFRPN. To address the limitation in the reliability and
flexibility of backward reasoning caused by Min and Max
operators, we develop an OWBR algorithm that embeds the
q-OWA into backward reasoning to adapt to various inference
situations.

Input: Ĩ ′ and Õ′ are m× n dimensional matrices, Ũ ′ is an
n-dimensional vector; T̃ ′

h and M̃
′

0 is an m-dimensional vector.
Output: M̃ ′

k is an m-dimensional vector.
Step 1:Let k = 1, k is iteration times.
Step 2:Calculate the enabled input places vector D̃′

(k),
as given by

D̃′

(k) = (d̃ ′
i )
(k)
m×1 = M̃ ′

k−1 ▷ T̃ ′
h, i = 1, 2, . . . ,m;

(25)

Step 3:End the reasoning, if D̃′

(k) is zero vector; Otherwise,
calculate the vector 0̃′

(k) of equivalent fuzzy truth
values regarding to transitions, as given by

0̃′

(k) = q-OWA
(
Ĩ ′, M̃ ′

k−1

)
(26)

Step 4:Calculate the enabled transitions vector F̃ ′(k),
as given by

F̃ ′(k) = (f̃ ′
i )

(k)
1×n =

((
D̃′

(k)

)T
× Ĩ ′

)
▷ (E × Ĩ ′)

(27)

where E = [1, 1, . . . , 1]1×m.
Step 5:End the reasoning, if F̃ ′(k) is zero vector; Otherwise,

calculate output truth degree vector 9̃ ′

(k) of the tran-
sition, as given by

9̃ ′

(k) =

(
F̃ ′(k) ⊙ 0̃′

(k)

)
⊘̃Ũ ′ (28)

Step 6:Calculate the new marking vector M̃k , as given by

M̃ ′
k = M̃ ′

k−1 ⊕ q-OWA
(
Õ′, 9̃ ′

(k)

)
(29)

Step 7:End reasoning, if M̃k = M̃k−1; Otherwise, let
k = k + 1 and go back to Step 2.

Remark 2: Q-ROFRPNs has the ability to fulfill back-
ward reasoning task in various complex situations. Like
q-ROFPNs, q-ROFRPNs can execute the backward reason-
ing task in different fuzzy environments, including IFSs,
PFSs, and q-ROFSs. By constructing the OWBR algorithm,
q-ROFRPNs enable backward inference considering position
weights, thus avoiding inflexible and imprecise inference
due to min and max operators. It should be noted that the
OWBR algorithm can also degrade to the Max-Min inference
mechanism by adjusting the position weight vector.

TABLE 1. Linguistic term set to corresponding Q-ROFNs.

V. ACQUISITION OF KNOWLEDGE PARAMETERS
After constructing q-ROFPN and q-ROFRPN models, deter-
mining knowledge parameter values becomes an imperative
mission. In evaluating knowledge parameters, unreasonable
assessments may be obtained if experts provide some out-
liers. In this section, a novel knowledge parameter acquisition
method based on the q-PWA operator is proposed to derive
the truth values of thresholds, certainty factors, and weights
of propositions. The acquisition process includes 1) Evaluat-
ing knowledge parameters through interacting with experts;
2) Aggregating individual assessments; and 3) Defuzzifizing
and normalizing the aggregation results if necessary.

A. ASSESSMENT OF KNOWLEDGE REPRESENTATION
PARAMETERS
Suppose that there are N fuzzy rules {R1,R2, . . . ,RN }with L
antecedent or consequent propositions {P1,P2, . . . ,PL}. For
a given rule Ri (i = 1, 2, . . . ,N ), the thresholds and weights
(e.g., local weights and global weights) are associated with
propositions, and the certainty factors are associated with
fuzzy rules. In what follows, we select the weights of proposi-
tions as an example to illustrate the acquisition of knowledge
parameters.

We assume that there are K domain experts {E1,E2, . . . ,
EK } responsible for evaluating the proposition weights.
In view of the complexity and diversity of expert systems,
the q-ROFNs and linguistic terms are employed for evalu-
ating the knowledge parameters. A linguistic term set with
seven cardinalities and its corresponding q-ROFNs is listed in
Table 1 [29]. As such, an evaluationmatrix for the proposition
weights by experts is given by:

Wi =

E1 E2 · · · EK
P1
P2
...

pL


wi1,1 wi1,2 · · · wi1,K
wi2,1 wi2,2 · · · wi2,K

...
...

. . .
...

wiL,1 w
i
L,2 · · · wiL,K

 (30)

where wijk = (µi
j,k , v

i
j.k ) represents the weight assessments

associated with proposition Pj (j = 1, 2, . . . ,L) given by
expert Ek (k = 1, 2, . . . ,K ). Note that if there is only one
antecedent or consequent proposition in a rule, the local
weight or the global weight is 1 and does not need to be
evaluated.
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B. AGGREGATION OF KNOWLEDGE REPRESENTATION
PARAMETERS
Based on the obtained evaluation matrix Wi = [wijk ]L×K

,
we implement the aggregation of proposition weights.
Assume that the expert weight vector is γ = (γ1, γ2, . . . , γK ),
satisfying γk ∈ [0, 1] and

∑K
k=1 γk = 1. Then, the aggrega-

tion process of proposition weights is presented as follows:
Step 1:Calculate the support degree Sup(wijk ,w

i
jl) between

wijk and w
i
jl (k, l = 1, 2, . . . ,K ), as given by

Sup(wijk ,w
i
jl) = 1 − d(wijk ,w

i
jl)

(i = 1, 2, . . . ,N ; j = 1, 2, . . . ,L);
(31)

where d(wijk ,w
i
jl) is the normalized Hamming dis-

tance between of q-ROFNs wijk and w
i
jl [30].

Step 2:Calculate the power weight θ ijk by

θ ijk = γk

(
1 + T (wijk )

)
/

K∑
k=1

γl

(
1 + T (wijk )

)
(i=1, 2, . . . ,N ; j = 1, 2, . . . ,L; k = 1, 2, . . . ,K );

(32)

and

T
(
wijk
)
=

K∑
l=1,l ̸=k

Sup
(
wijk ,w

i
jl

)
,

(i = 1, 2, . . . ,N ; j = 1, 2, . . . ,L; k = 1, 2, . . . ,K )
(33)

Step 3:Aggregate the individual assessments wijk (k =

1, 2, . . . ,K ) into a collective assessment by

q-PWA(wij1,w
i
j2, . . . ,w

i
jK ) =

K
⊕̃
k=1

(
θ ijk⊗̃w

i
jk

)
(34)

According to the above aggregation steps, the overall
assessment vector of the proposition’s weight is obtained as
Wi = (wi1,w

i
2, . . . ,w

i
L). Similarly, the overall assessment of

threshold values and certainty factors can be acquired in the
same way.

By assigning a power weight θ ijk to each assessment wijk ,
q-PWA enables the parameter assessments to support and
reinforce each other, which eliminates the influence of unrea-
sonable outliers on final knowledge parameter values.

C. DEFUZZIFICATION AND NORMALIZATION
The threshold values and the certainty factors can be directly
determined based on the above overall assessments. However,
the assessments of local weights and global weights need
to be defuzzified and normalized. Yager develops a defuzzi-
fication method [31], which assigns a crisp value to each
intuitionistic fuzzy number. Since IFSs is a special case of
q-ROFNs [17], we extend the above defuzzification method
into q-ROFSs to convert each knowledge parameter denoted
by q-ROFN into a crisp value.

For a q-ROFN (µ(x), v(x)), its defuzzification result is
calculated as follows:

V (x) = (µ(x))q + 0.5(h(x))q, q ≥ 1 (35)

where hA(x) is the hesitancy degree of x.
As such, the overall assessments of the proposition weight

are defuzzified by using (35) and a crisp evaluation vector be
formed as Vi = (V i

1,V
i
2, . . . ,V

i
L). Next, the crisp evaluation

vector are normalized by

w̃ij = V i
j /

L∑
j=1

V i
j i = 1, 2, . . . .N ; j = 1, 2, . . . ,L (36)

where w̃ij is the local weight or global weight corresponding
to proposition Pj of rule Ri.

VI. ILLUSTRATIVE EXAMPLE
In this section, a practical case regarding fault diagnosis of a
variable refrigerant flow (VRF) air-conditioning system [32]
is employed to demonstrate the effectiveness and advantages
of the proposed method. In recent years, energy manage-
ment of heating, ventilation, and air conditioning (HVAC)
systems has become an important research issue in energy-
saving. VRF is a newly emerged air-conditioning system
with advanced control and energy efficiency. Unfortunately,
equipment faults will result in much energy waste and the
service life decrease of the VRF system. Therefore, fault
diagnosis is significant for the energy-saving operation of
VRF systems. Due to the specialization of domain knowledge
of HVAC, the expert system is still a prevailing method in
HVAC fault diagnosis. We utilize the proposed q-ROFPNs
method to solve the diagnosis problems of the VRF system,
and the experimental details are presented in the following
sections.

A. KNOWLEDGE ACQUISITION OF Q-ROFPRS
We first conduct the acquirement of q-ROFPRs. As pointed
out in [32], the fault of VRF mainly consists of sensor faults
and indoor unit faults, where each type of fault involves a
series of equipment faults. According to the domain knowl-
edge provided by [32], q-ROFPRs are used to model the fault
rule of the VRF system.

Let dj (j = 1, 2, . . . , 14) be fourteen propositions, and the
q-ROFPRs for VRF system faults are identified as follows:

R1: IF d1 THEN d8 AND d9;
(λ1, λ8, λ9; lw1,1, u1; gw1,8, gw1,9)
R2: IF d2 THEN d8 AND d9;
(λ2, λ8, λ9; lw2,2, u2; gw2,8, gw2,9)
R3: IF d3 AND d4 THEN d10;
(λ3, λ4, λ10; lw3,3, lw4,3, u3; gw3,10)
R4: IF d5 THEN d10 AND d11;
(λ5, λ10, λ11; lw5,4; u4; gw4,10, gw4,11)
R5: IF d6 THEN d11; (λ6, λ11; lw6,5; u5; gw5,11)
R6: IF d7 THEN d11; (λ7, λ11; lw7,6; u6; gw6,11)
R7: IF d8 AND d9 THEN d12;
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TABLE 2. Places in the Q-ROFPN model and their propositions.

TABLE 3. Assessment information of thresholds by the expert panel.

(λ8, λ9, λ12; lw8,7, lw9,7; u7; gw7,12)
R8: IF d10 THEN d13; (λ10, λ13; lw10,8; u8; gw8,13)
R9: IF d11 THEN d13; (λ11, λ13; lw11,9; u9; gw9,13)
R10: IF d12 THEN d14; (λ12, λ14; lw12,10; u10; gw10,14)
R11: IF d13 THEN d14; (λ13, λ14; lw13,11; u11; gw11,14)
The fourteen q-ROFPRs mentioned above are mapped into

a q-ROFPN, as shown in Fig 7. Note that the labels are
omitted, if lwij = 1 or gwij = 1, and the corresponding
propositions of places are presented in Table 2.
Next, we apply the knowledge acquisition based on q-PWA

to determine the knowledge parameters of rules. An expert
panel consisting of five teammembers uses the q-ROFNs and
linguistic terms (in Table 1) to evaluate the knowledge param-
eters of the q-ROFPN, including thresholds, certainty factors,
local weights and global weights. Tables 3-5 present the
assessment results of parameters, where the local and global
weights equaling 1 are not evaluated. Suppose the expert
weights are γ = (0.25, 0.2, 0.2, 0.15, 0.2), then the q-PWA
operator (setting q = 1) is used to aggregate individual
assessments into a collective assessment. In addition, we also

TABLE 4. Assessment information of certain factors by the expert panel.

TABLE 5. Assessment information of weights by the expert panel.

apply the traditional WA operator to aggregate individual
assessments, thus validating the effectiveness of the PA-based
knowledge aggregation. The aggregation results by q-PWA
and q-WA are shown in the last two columns of Tables 3-5.
From Tables 3-5, we can observe that the overall assess-

ments given by the q-PWA are different from those by the
q-WA when individual assessments by expert members vary
greatly. For example, TM4 assesses the threshold λ2 as
(0.6,0.4), which is much larger than those by the other four
experts. The overall assessment λ2 given by the q-PWA is
(0.278, 0.623), which is smaller than the result (0.289,0.617)
by the q-WA. That is because the q-PWA assigns a power
weight to each assessment, which reduces the impact of
the outlier (0.6,0.4) on aggregation results. Further, we also
observe that the results by the q-PWA are the same as that
by the q-WA, when the differences are small among expert
assessments. For example, the assessments of λ1 by five
experts are slightly different, and the overall assessment λ1
by q-PWA is (0.302,0.619), which is same as the ones by
q-WA operator. It is proven that q-PWA based knowledge
acquisition method can eliminate the negative effects of out-
liers on aggregation results, thus guaranteeing the veracity of
knowledge parameters.

B. FORWARD REASONING BASED ON Q-ROFPNs
In the following, the forward reasoning is conducted to esti-
mate the fault probability of air condition system. We assume
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FIGURE 7. q-ROFPN of example.

the initial marking vector of q-ROFPN is

M0 = [ (0.77,0.1)(0.68, 0.25)(0.84, 0.05)

(0.79, 0.15)(0.81, 0.1)(0.8, 0.15)(0.75, 0.1)

(0, 1)(0, 1)(0, 1)(0, 1)(0, 1) (0, 1)(0, 1)]T

According to the aggregation results of Tables 3-5 and
Fig 7, the fault reasoning of VRF is carried out by the
q-OWAWA reasoning algorithm, and the inference processes
are the same as those in Steps 1-7 in Section III-D. The
parameter q = 1, β = 0.5, and ω = (0.5, 0.5), when n = 2;
ω = (0.2429, 0.5142, 0.2429), when n = 3 [33]. After four
iterations, the final marking vector is obtained as follows:

M4 = [ (0.77, 0.1)(0.68, 0.25)(0.84, 0.05)(0.79, 0.15)

(0.81, 0.1)(0.8, 0.15)(0.75, 0.1)(0.62, 0.25)

(0.62, 0.25)(0.734, 0.091)(0.706, 0.114)

(0.571, 0.305)(0.655, 0.131)(0.575, 0.241)]T ,

which shows the final truth values of all propositions in
the considered situation. For the fault diagnosis problem,
we can obtain that the VRF system may have the fault of
d14 with q-rung orthoapir fuzzy truth degree (0.575, 0.241),
in which the 0.575 and 0.241 indicate degree of supporting for
and against the proposition ‘‘the VRF system have faults’’,
respectively.

Next, we investigate the influence of parameter β on the
diagnosis results. We conduct the simulations of the VRF
system fault diagnosis under different β. Table 6 delineates
the truth values of non-initial places. From 6, we can observe
that the truth values of the places become smaller and smaller
as the value of parameter β increases. The parameter β indi-
cates the relative degree of importance between proposition
weights and the position weights. The greater the parameter
β, the more importance is assigned to the position weights.
Conversely, the smaller the parameter β, the more impor-
tance is assigned to the proposition weights. Note that the
q-OWAWA can reduce to the q-WA (when β = 0), which
only weighs the proposition itself. And the q-OWAWA also

TABLE 6. Truth values of intermediate and terminating places with
different β.

FIGURE 8. q-ROFRPN of example.

reduces to the q-OWA ( when β = 1), which only considers
the ordered positions of propositions. In practical reasoning,
the parameter β can take any values between 0 and 1, thus
assigning different degrees of importance to the place and
position weights depending on the analyzed problem.

C. BACKWARD REASONING BASED ON Q-ROFRPNs
In fault diagnosis, the fault status may be known, and the
expert system needs to identify the fault’s causes and their
probability based on known outcomes. For the VRF sys-
tem fault diagnosis problem, we assume the indoor unit p13
has faults with a truth degree of (0,655,0.131), and we use
q-ROFRPN to identify its fault causes and truth degrees.

With the decomposition algorithm, the S-q-ROFRPN
associated with the appointed goal place p13 is first con-
structed from the original q-ROFPN model. The detailed
steps are shown in Steps 1-4 in Section IV-B, and the
obtained S-q-ROFRPN is presented in Fig. 7. Next, the
OWBR algorithm is performed according to Steps 1-7 in
Section IV-C, which determines the truth values of the
S-q-ROFRPN model. We set q = 1, and the final marking
vector is obtained as follows:

M̃ ′

3 =[ (0.793, 0.131)(0.793, 0.131)(0.805, 0.085)

(0.795, 0.055)(0.8, 0.055)(0.719, 0.131)

(0.721, 0.055)(0.655, 0.131)]T

We can observe that the faults causes of p13 are p3, p4,
p5, p6, and p7 with truth degree (0.793,0.131), (0.793,0.131),
(0.805,0.085), (0.795,0.055), and (0.8,0.055), respectively.
The MD and NMD indicate degree of supporting for and
against the cause propositions.
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TABLE 7. Reasoning results with different reasoning operators.

TABLE 8. The truth values of intermediate and goal places by different FPN models.

TABLE 9. The final marking vectors by different RFPN models.

We further validate the flexibility of the OWBR algorithm
in backward inference. The identification of fault causes of
the indoor unit p13 is carried out by two particular cases of
the OWBR algorithm (e.g. minimum and maximum). Table 7
presents the final marking vector obtained by the Min, Max
and q-OWA reasoning operators. It can be known that the
obtained truth value of p5 by q-OWA is different from that
given by the other two operators. That is because the q-OWA
considers the ordered positionweights of places when dealing
with the conjunctive rule types. This also indicates that the
proposed OWBR algorithm can execute the Max and Min
inference mechanism by adjusting the position weight vector.

D. COMPARISON AND DISCUSSION
In this section, we demonstrate the efficacy of the proposed
method by comparing them with five representative FPNs,
i.e., IFPNs [6], PFPNs [12], the q-rung orthopair fuzzy lin-
guistic Petri nets (q-ROFLPNs) [14], the RFPNs [15], and
the RDAFPNs [16].We employ the above five FPNmodels to
solve the VRF system’s fault diagnosis problem and conduct
an in-depth look at the experiment results.

1) KNOWLEDGE REASONING VIA IFPN, PFPN AND
Q-ROFLPNs
To confirm the efficacy of the proposed method in forward
reasoning, we will compare the knowledge representation
and reasoning ability of q-ROFPNs with IFPNs, PFPNs, and
q-ROFLPNs. The fault diagnosis case in part B of Section VI
is used to evaluate their performances. To guarantee the
comparability of results, the knowledge parameters and the

initial marking vectors of the IFPN and PFPN models are
the same as the data in part B of Section VI. For the
q-ROFLPN model, we assume the linguistic variables of
all knowledge parameters are s8, and their membership and
non-membership degrees are the same as the data in part B of
Section VI. The inference results of all non-initial places are
presented in Table 8.
From Table 8, we can observe that the place truths by the

q-ROFPN model (β = 1 and q = 1) are equal to those
by the IFPN model, and the results of the q-ROFPN model
(β = 0 and q = 2) are the same as those by the PFPN model.
The above results demonstrate the validity of q-ROFPNs and
further prove that q-ROFPNs can reduce to IFPNs or PFPNs
by setting q = 1 or q = 2. On the other hand, unlike IFPNs
and the PFPNs, q-ROFPNs also can set the parameter q to any
values greater than or equal to one, which enables q-ROFPNs
to eliminate the limitation to MD and NMD and realizes the
flexible adjustment of the representation range of knowledge
parameters.

In addition, we also find that the inference results given by
the IFPN and PFPN models are different from that given by
the q-ROFPN model (β = 0.5, and q = 1 or q = 2). This
is because IFPNs and PFPNs employ the OWA and WA as
reasoning operators, which are incapable of both considering
the place weights and their position weights. Instead, the
q-ROFPNs can both weigh proposition themselves and their
ordered positions when parameter β = 0.5.

Comparing q-ROFLPNs with q-ROFPNs, we can observe
that the equivalent fuzzy values of places given by the
q-ROFLPN are different with that inference results by the
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q-ROFPN (β = 0.5 or q = 1). Although they both consider
the weights of the proposition themselves and their position
weights, the internal mechanism of the reasoning algorithm
are greatly different. In the former, the WOWA operator is
embedded into the reasoning algorithm, which unifies the
OWA and WA by interpolation functions, whereas the latter,
which integrates the OWAWA operator, can be regarded as a
convex combination of the WA and the OWA. However, the
reasoning algorithm based on q-OWAWA can assign different
degrees of importance to the proposition weights and the
position weights, thus fortifying the reliability and flexibility
of knowledge reasoning.

2) KNOWLEDGE REASONING VIA RFPN AND RDAFPN
To demonstrate the efficacy of the proposed method in back-
ward reasoning, the comparison among q-ROFRPNs, RFPNs
and RDAFPNs is undertaken through the fault diagnosis case
in part C of Section VI. To guarantee the comparability
of results, the Min-Max and Max-Max are selected as the
reasoning operators in the q-ROFRPN model, respectively.
We assume the truth degree of certain factors of the RFPN
and RDAFPN models are equal to the membership degree
values of the data in Table 4, and their initial marking vector
are 20 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.655, 0]T .
Table 9 presents the final reasoning results of differ-

ent models. The reasoning results by the RPFN model
exactly match the memberships of results by the q-ROFRPN
model with Mix-Max operators. Similarly, the results by
the DRAFPN model exactly match the memberships of the
results obtained by the q-ROFRPN model with Max-Max
operators. Therefore, the validity of the q-ROFRPN model is
proved. However, we also know that RFPNs and DRAFPNs
employ traditional fuzzy values between 0 and 1 to represent
uncertain information, which ignores the non-membership
and hesitancy in knowledge information.

In addition, the backward reasoning by RFPNs and DRAF-
PNs is oriented to the whole original network, which will
lead to more computing loss with the increase of the
scale of the model. In contrast, the backward reasoning by
q-ROFRPNs simplifies the model structure by the decompo-
sition algorithm. It is worth stressing that the reasoning results
produced by q-ROFRPNs are different from those by the
RFPNs and DRAFPNs if other cases of reasoning operators
are applied. This further proves the flexibility of q-ROFRPN
in backward reasoning.

VII. CONCLUSION
This paper proposed a novel FPN method based on q-ROFSs
to achieve a flexible and reliable knowledge represen-
tation and forward and backward knowledge reasoning.
A prominent aspect of the proposed method was constructing
the q-ROFPNs and the corresponding reasoning algorithm
based on q-OWAWA for knowledge representation and
forward knowledge reasoning. Building upon q-ROFPNs,
we proposed q-ROFRPNs, which involved a decomposi-
tion algorithm of the model and an OWBR algorithm to

accomplish reliable and efficient backward knowledge rea-
soning. In addition, a PA-based knowledge acquisition
method was introduced to guarantee the accuracy of model
parameter acquisition.

By a fault diagnosis case of the VRF system, the results
demonstrated that the q-ROFPNs and q-ROFRPNs could
intuitively characterize the hesitancy of knowledge informa-
tion and allow for a flexible adjustment of the represen-
tation range of knowledge parameters. By developing the
q-OWAWA-based reasoning algorithm, q-ROFPNs accom-
plished the forward reasoning capable of flexibly balancing
the proposition and position weights. Experiment results
also showed the decomposition algorithm of q-ROFRPNs
can avoid the interference of unrelated propositions, and its
OWBR algorithm enabled more reliable and flexible back-
ward reasoning than existing RFPN methods.

In knowledge representation and reasoning of the
q-ROFPN method, the reasonable determination of rule
knowledge and its parameters is a key challenge. In future
works, we will focus on the adaptive learning of q-ROFPNs,
which intend to train model structure and parameters in a
data-driven way and thus automatically accomplish knowl-
edge reasoning tasks. In addition, the proposed method can
also be used to solve other domain problems, such as relia-
bility assessment, failure mode and effects analysis, etc.
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