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ABSTRACT When designing 3D V-NAND technologies with a gate induced drain leakage (GIDL) assisted
erase scheme, many experiments must be conducted to determine the optimal GIDL design targets to achieve
fast erase performance and secure yield characteristics. However, only a limited amount of data can be used
since V-NAND processes are time-consuming and expensive in the early stage of development. TCAD and
numerical methods also require a considerable amount of time and effort to calculate bit error rate (BER),
and it is impossible to explore the entire design spaces in time. In this paper, we propose a novel simulation
acceleration technique for bit error rate prediction and yield optimization in 3D V-NAND technology.
This acceleration framework includes a machine learning (ML)-based compact model for the lognormal
variability of GIDL currents and a physics-inspired slow cell model for the read margin reduction. Using a
combination of thesemodels with efficientMonte Carlo (MC) circuit simulations, we can accurately estimate
threshold voltage (Vth) distributions to explore the entire design spaces using a limited amount of data. Based
on the proposed technique, the predictive model achieves high accuracy in the current 176-layer V-NAND
technology, and it also provides high scalability with respect to GIDL transistor geometries, temperatures,
supply voltages, variabilities, and the number of stacking layers. Moreover, a contour map of bit error
rate is newly introduced for the efficient design space exploration and read margin prediction. Therefore,
the results indicate that the proposed framework can be further extended to large-scale experimental data
and new architectures to accelerate the yield optimization in next-generation 3D V-NAND flash memory
development.

INDEX TERMS Acceleration, artificial neural network, bit error rate, circuit simulation, compact model,
GIDL-assisted erase, machine learning, pathfinding, read margin, V-NAND flash memory.

I. INTRODUCTION
Three-dimensional vertical-NAND (3D V-NAND) devices
for high speed and capacity products have been extensively
utilized in data-driven computing environments, over conven-
tional computation-driven computing, and has been further
strengthened by the critical involvement of big data. This has
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also enabled the modern everywhere-always-connected life
through smart handheld devices, along with telecommunica-
tion technologies [1]. Based on vertical stacking technologies
of many memory layers, cell arrays of the 3D V-NAND
induced the tipping point into more aggressive scaling of the
bit storage density without relying on the reduction in cell
dimensions. Fig. 1(a) shows the structure of 3D V-NAND
devices with a single word line (WL) scheme which was the
leading candidate for the early 3D V-NAND technologies.
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FIGURE 1. The 3D V-NAND structures of (a) single word line and (b) word
plane scheme with the cell over peripheral (COP).

In this era of V-NAND development, the horizontal place-
ment of the cell arrays with peripheral circuits was common
and reducing the cell pitch (XY shrink) was a key driver.
However, it was extremely vulnerable to deep channel holes
because of leaning problems during the high aspect ratio
(HAR) plasma etch process [2]. Therefore, the word plane
scheme was utilized to overcome these HAR issues [3],
and it was specialized in the 3D vertical stacking process,
which has over 100 layers with the multiple-stack technolo-
gies, as shown in Fig. 1(b). However, it is estimated that
the allowed maximum number of stacking layers would be
limited to 400 stages without any cell dimension reductions
(Z shrink) [4]. To prolong the historical scaling trends of
the storage density, the cell over peripheral (COP) structure
is newly introduced [5], which offers the chance to reduce
the chip area by arranging the peripheral circuits under the
memory cell array rather than alongside the array. However,
the COP structure cannot operate the bulk erase scheme,
which increases the channel string potential (Vch) using direct
contact with the memory cells, as shown in Fig. 2(a). The
bulk erase has excellent erase performances and large read
voltage windows. To simplify the technological process and
increase the integration density of the COP structures, the
GIDL-assisted erase scheme (GIDL erase) has become the
gold standard for modern state-of-the-art 3D V-NAND prod-
ucts [6]. The problem is that its erase efficiency is very
poor and GIDL-related erase failures are frequent due to the
inherent GIDL generation process of hole carriers. The GIDL
erase is also sensitive to the supplying electric fields for band-
to-band-tunneling [7], and it causes the inevitable channel
potential delays, as shown in Fig. 2(b).

In the flash memory industry, technology computer aided
design (TCAD) and numerical simulations are actively uti-
lized to resolve these GIDL-related failures and yield prob-
lems, because many experiments must be conducted to obtain

the optimal design parameters in the early stages of develop-
ment. However, the numerical methods require a considerable
amount of time and effort to predict the bit error rate (BER),
and it is nearly impossible to explore the whole design space
for optimizing product yield in time. In addition, we cannot
perform as many experiments as desired in a process devel-
opment step because only a limited amount of experimental
data can be obtained since the V-NAND processes are time-
consuming and expensive.

Therefore, an efficient and accurate BER estimation tech-
nique is essential to evaluate the various design options and
optimize the yield in a timely manner. However, prior stud-
ies investigating BER estimation in the GIDL-assisted erase
scheme have been very limited. In [8] and [9], an analytical
compact model is presented to describe the time dynamics
of the GIDL-assisted erase operation in the 3D V-NAND
structures. This analytical model is suitable for reproducing
the GIDL-assisted transient analysis results from TCAD sim-
ulations. However, this approach does not support a scalable
model for widely different channel sizes, bias voltages, and
temperatures. This lack of scalability makes it difficult to
perform an evaluation with various technological options
accurately in circuit simulators. In addition, considering pro-
cess variation is essential for the bit error rate prediction,
and this approach does not provide the variability mod-
els for GIDL characteristics. In [10] and [11], the authors
proposed a machine learning approach that reproduces the
variations of threshold voltage (Vth) and current (Ion) in
the 3D V-NAND cells. The model is based on an artificial
neural network (ANN) whose inputs are variability sources
and electrical parameters. However, this method focuses on
predicting the variations of Vth and Ion for the wear-out in
pre-production steps that can achieve the same accuracy of
TCAD simulations. However, this model cannot reproduce
I-V characteristics that can be implemented in SPICE simu-
lators for accurate bit error prediction. In [12], [13], [14], and
[15], an analytical fitting method, ANN model, and support
vector regression are proposed to predict the bit error rate as
a function of program/erase (P/E) cycle, read cycle, retention
time, and the total ionizing dose effects. However, these
predictive models are entirely based on the data measured
from an experiment with various P/E cycle and retention
time. They aim to improve the error correction codes and
the wear equalization algorithms regardless of time and cost.
Therefore, these approaches cannot be applied to acceler-
ate and evaluate the read margin loss of the GIDL-assisted
erase operations. In [16], the authors present a parameter
estimation algorithm to find the means and variances of the
threshold voltage distribution that is modeled as a Gaussian
mixture. However, this approach has limits on predicting
the read margin of GIDL-assisted erase, because the distri-
butions are approximated to the Gaussian mixture and the
errors from non-Gaussian characteristics are relatively large.
To overcome this limitation, the work proposed in [17] to
choose from the various distributions as well as Gaussian
mixture are evaluated to find the accurate predictive model
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FIGURE 2. Threshold voltage distributions of the body erase and GIDL-assisted erase scheme. (a) The body erase scheme
operates bulk erase, which increases the channel potential using the direct contact with p-doped substrates and has
excellent erase performance. (b) The GIDL erase scheme of COP is built on n+doped poly-silicon and increases the
channel potential using GIDL current, which has an inherent channel potential delay and slow cells (Vth loss and small
read margin).

of the threshold voltage distribution. However, the evaluation
results show that the average accuracy is 95%, and it also
causes a large error in the bit error rate prediction at the
very low probability density. Because of the lack of effective
yield estimation methods in the GIDL-assisted erase scheme,
we propose a novel simulation acceleration technique for bit
error rate prediction and optimization using an ANN-based
compact model and Monte Carlo circuit simulations.

The rest of this paper is organized as follows. Section II
describes the mechanisms of channel potential delay and
read margin reduction in the GIDL-assisted erase scheme,
section III discusses the methodology of the acceleration
models with their scalability and accuracy, and also describes
a Monte Carlo (MC) simulation technique, and section IV
highlights the bit error rate prediction and yield optimization
for next-generation candidate structures. The last section con-
cludes by outlining the efficient yield prediction framework
to deal with the challenges of the extreme high stack flash
memories.

II. INVESTIGATION ON READ MARGIN REDUCTION
Fig. 3(a) shows the structure of the 3D V-NAND flash mem-
ory addressed in this work. It includes repeated vertical cell
arrays and a transistor to generate hole carriers by band-
to-band-tunneling (BTBT). The cell array has a cylindrical
poly-silicon channel with an oxide layer filling the channel
cavity. The charge trap layer (CTL) plays the role of storage
node for the memory cells and the SiO2/SiNx /SiO2 (O/N/O)
gate stack runs all along the channel string.

FIGURE 3. (a) The structure of the 3D V-NAND for GIDL-assisted erase in
this work. (b) The schematic figure of an equivalent circuit for
GIDL-assisted erase operations. The parameters are summarized in
Table 1.

A. MECHANISMS OF CHANNEL POTENTIAL DELAY
To understand the mechanism of the hole carrier accumula-
tion process, we performed a TCAD simulation by solving
the Poisson and drift-diffusion equations with the dynamic
nonlocal BTBT model in a channel string structure. Fig. 4
shows the simulated channel potential (Vch), external biases
(Vd and Vg), internal potential differences (Vgs, Vds) in the
floating body, and hole current injected into the channel
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FIGURE 4. The simulation results for the transient behaviors of the
GIDL-assisted erase operation.

string.VBTBT is the supply voltage (Vg-Vd ), which determines
the BTBT electron-hole pair generation rate, and Vds is the
internal bias, which affects the hole injection rate into the
channel.

The GIDL-assisted erase scheme has two operation
regimes, (ramp-up and execution), and they have distinct
phases (I-VI) and singular points (1)-(6). Phase I is the
quasi-static region before the start of pulse-type ramp-up at
point 1 to prevent the slow BTBT response. Phase II is the
acceleration region, which has the biggest increase rate of Vch
before the Vds reaches a peak at point 2. During phase III, the
BTBT rate faces its maximum limit with the deceasing Vds
due to the stored hole carriers in the floating channel, and the
hole current has its peak at point 3. During phase IV, these
exponential behaviors of Vch increase (1Vch>1Vd ) come
to the finish with the start of the constant VBTBT at point 4,
and the linear behavior of Vch increase (1Vch=1Vd ) starts,
and the hole current is saturated during phase V in the ramp-
up regime. During phase VI (also in the execution regime),
it works in a negative feedback configuration due to the accu-
mulated carriers in the floating channel region. Therefore, the
erase execution always finishes without reaching the body
erase potential (Vd ), and this channel potential delay makes
the GIDL-assisted scheme vulnerable to erase performance
variations.

FIGURE 5. The simulation results for the transient behaviors of different
GIDL transistor performances.

Fig. 5 shows the simulation results with three different
GIDL transistors. In this simulation, we used the same exter-
nal voltages and cell array structure, except for the BTBT
rates of the GIDL transistors. The transient results show that
the injection levels of the GIDL currents are significantly
different in only small VBTBT phases (II, III, and IV) due
to the increasing Vds and VBTBT . However, the small VBTBT
phases are relatively short, and they are less than 20 percent
of the total erase operation. In contrast, the injection GIDL
currents start to saturate after their peak levels, and they
finally converge to similar levels in the high VBTBT phases
(V and VI) due to decreasing Vds and the negative feedback
configuration. These high VBTBT phases take most of the
erase operation time and Vds is bound to stay low for the
entire period. This shows that high VBTBT and low Vds are the
general operating conditions in the GIDL current trajectories,
and the industry normally extract the characteristic current
(Igidl) from these conditions to represent the delay of channel
potential instead of using the entire GIDL current values.
Therefore, we define the characteristic current (Igidl) as a
condition of Vgs= −8V and Vds=3V in this work.

B. MECHANISMS OF READ MARGIN REDUCTION
In the GIDL-assisted erase, the Vth distribution can be sepa-
rated into two independent components, as shown in Fig. 6(a).
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FIGURE 6. (a) The Vth distribution of the GIDL-assisted erase, (b) The two
independent variation components in the Vth distribution, and the Vth
shift of slow cells (variance of Vth_gidl ).

One is (1) Gaussian distribution (Vth_med , Vth_std ), which
comes from the random variations of tunneling oxide thick-
ness, gate critical dimension, trap site, and Fowler Nordheim
(FN) tunneling sensitivities, and this component is identical
to the distribution of a body erase scheme. The other is (2)
tail distribution, which originates from the inherent channel
potential delay of GIDL generation process and its impact
on the slow cells. Therefore, the read margin reduction and
threshold voltage loss of slow cells (1Vth_gidl in Fig. 6(b))
caused by the potential delay can be defined as

1Vth_gidl = Vth(t = ters) − Vth_med (1)

To investigate the relationship between the channel poten-
tial delay and the Vth loss of slow cells, we performed TCAD
simulations in a 176-layer V-NAND structure. In this sim-
ulation step, we ignored the random variations of Gaussian
distribution (Vth_std=0) to reproduce the tail distribution only,
and the programmed cells are erased with different channel
potential delays using random variables of the BTBT rate,
channel string resistance, and capacitance which are signif-
icantly related to the delays. Fig. 7(a) shows the simulation
results based on the random variables, and we can define the
channel potential delays (1VFN ) on the reference of the body
erase scheme, which is primarily responsible for the tail shift
of slow cells, as follows,

1VFN (t) = Vd (t) − Vch(t) (2)

During the erase operation, the carriers are gradually
removed from the floating gates due to FN tunneling, and
the tunneling effects finish at the erase execution time (ters).
In addition, the amount of Vth shift can be determined by the
number of carriers remaining in the floating gates at ters, and
it is significantly related to the shortages of applied electric
field (1EFN ) for the FN tunneling as

1EFN (t) =
1VFN (t)
tONO

(3)

These field quantities (1EFN (t)) during the erase operation
are shown in Fig. 7(b). Therefore, the cumulative factor of

FIGURE 7. (a) The variation of channel potential delay on the reference
potential (Vd ) of the body erase scheme, (b) The cumulative field factor.

channel potential delay and read margin loss from the slow
cells is the areas under the curves, and it is the integral
1EFN (t) from tFN to ters as follows,

1Egidl =

∫ ters

tFN
1EFN (t)dt (4)

where tFN is a model parameter depending on the ramp-up
slops and FN tunneling parameters which vary throughout the
technologies and processes.

III. FAST SIMULATION MODELS FOR BIT ERROR RATE
PREDICTION AND YIELD OPTIMIZATION
A. SLOW CELL MODEL
The bit error rate prediction of slow cells and yield optimiza-
tion can be accelerated based on the computational efficient
and accurate circuit simulation based on the physics-inspired
slow cell model and GIDL variability compact model. Using
large-scale Monte-Carlo (MC) circuit simulations with these
computationally efficient models, the analysis on the Vth shift
of slow cells and yield loss in the GIDL-assisted erase can be
easily performed by the accelerated data.

To obtain the cumulative field factor (1Egidl in Eq. (4))
in the current 176-layer V-NAND technology, we used
tFN=200µs and ters=1400µs, and the result of the calculation
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FIGURE 8. The probability density functions (PDF) of the two random variables of the Vth shift of slow cells and the
cumulative field factor of the channel potential delay in the GIDL-assisted erase scheme. The distributions that trap high
correlation have a relationship represented by a slow cell model.

is plotted in Fig. 8 with the Vth shift of slow cells (1Vth_gidl
in Eq. (1)). It shows that the two random variables are highly
correlated, therefore, the slow cell model can be described as
follows,

1Vth_gidl = AFN exp
(

−
BFN

1Egidl

)
(5)

where AFN is a threshold voltage coefficient parameter and
BFN is a FN tunneling exponential coefficient of the slow
cell which depend on the processes. In this work, these fitting
parameters are extracted with 1.85 × 101 and 8.9 × 104 for
AFN and BFN , respectively, and the slow cell model has good
agreement with the numerical simulation data, as shown in
Fig. 8.

B. GIDL VARIABILITY MODEL
Firstly, TCAD model and parameters were calibrated to
176 layer V-NAND technology based on the assumed values
such as geometries of a GIDL transistor (W, L), temper-
ature (T), bias conditions for GIDL generation (Vg, Vd),
GIDL current characteristics (Igidl , δIgidl), and RC delay net-
work and its variations (Rch, Cch, δRch, and δCch). For the
GIDL-assisted erase operations in this paper, GIDL transis-
tors with channel width (W) and length (L) of 201nm and
24nm, respectively, are used under external bias conditions
with gate voltage (Vg) of 0-10V and drain voltage (Vd ) of

0-18V. In this condition, the GIDL current is 0.9nA, and it is
set up to drive a 176 layer delay network of poly-silicon with
a resistance of 2.4×10−6� and a capacitance of 3.2×10−17F
per layer. Table 1 summarizes these calibration parameters of
TCAD and circuit simulations.

The accelerated circuit simulation requires an accurate
compact GIDL transistor model, which can reproduce the
logarithmic characteristics of the hole injection into a
macaroni-shaped floating channel and its variability of log-
normal distribution. Based on the measured I-V data, we take
the natural logarithm of the corresponding current values
to generate a normal distribution, which has a mean (µY ),
standard deviation (σY ), and its coefficient of variation
(CV). Then, we arrange the log-transformed data into the
ANN-based compact model [18], [19], [20] for feeding,
as shown in Fig. 9(a). This ANN-based compact model has
two hidden layers with 20 and 15 neurons in each layer
(N1=20, N2=15). The input features are channel width (W),
length (L), temperature (T), and bias voltages (Vg,Vd ,Vs, and
Vb), and the targets are the log-transformed current values
(ln(Id ), ln(Is), and ln(Ib)), as shown in fig. 9(b). In the Verilog-
A implementation step for the SPICE circuit simulations,
we multiply the inference results of the ANN-based compact
model by a multiplication factor, which follows a normal
distribution of N(1,σY ), and then take the exponential of them
to change the distribution back into a lognormal, as shown in
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FIGURE 9. The flowchart for lognormal variability modeling of the GIDL
transistor using machine learning. (a) Generation of the dataset for
machine learning model feeding, (b) a fully connected artificial neural
network-based compact model, and (c) the Verilog-A implementation for
the computationally efficient circuit simulation.

FIGURE 10. The inference results of the artificial neural network-based
compact model. (a) I-V curve inferences (lines) versus TCAD targets
(symbols), and (b) Inferences of the GIDL characteristic currents following
the lognormal distributions in the cumulative probability plot at different
VBTBT values.

Fig. 9(c). After 8,000 epoch training cycles, high accuracy of
99.3% (1-mean absolute percentage error, 1-MAPE) can be
achieved, as shown in Fig. 10(a). In an MC simulation, the
inference results of the characteristic current, Igidl follow the
lognormal distributions in the cumulative probability plot for
three different VBTBT values, as shown in Fig. 10(b).

C. SCALABILITY OF THE PROPOSED MODELS
The high generality of an ANN-based compact model enables
high scalability in modeling complex characteristics of tun-
neling physics. Therefore, we perform additional simulations
at different transistor geometries and temperatures to evaluate
the model scalability and accuracy. In the TCAD simulations,
the GIDL current changes nonlinearly with the channel width
because a stronger electric field is applied and a higher BTBT
current density is generated at the channel edge region as
the channel width decreases. The ANN-based compact model
is trained and verified with the nonlinear simulation data
and shows high average accuracy of 99.3% as shown in
Fig. 11. The GIDL current also has a positive temperature
dependence because the bandgap narrows as temperature

increases, resulting in an increasing BTBT rate. In this pro-
cess, the BTBT rate is varied by a factor of 10.8 from 248K
(cool temperature, CT) to 358K (hot temperature, HT). The
ANN-based compact model is also jointly trained with the
temperature dependent data and shows high average accuracy
of 99.2% as shown in Fig. 12.

In addition, the slow cell model (read margin reduction
model) is implemented in the SPICE simulator. The model
verification results of the different GIDL transistor widths
show good agreement (averageR2 score is 0.991)with TCAD
simulation data as shown in Fig. 13. For the temperature
variation, the effects of an increase in GIDL current (Igidl)
and a decrease in channel potential delay (VFN ) accord-
ing to increasing temperature needs to be considered in a
GIDL-assisted erase scheme. The operating temperature can
be different from the nominal temperature (TNOM) at which
the slow cell model parameters are extracted. In this work,
the slow cell model parameters (tFN AFN , and BFN ) are
extracted and verified at the nominal room temperature (RT),
TNOM=298K. Therefore, the slow cell model can account
for the effects of temperature by making parameter BFN
temperature dependent, as follows:

1Vth_gidl = AFN exp
(

−
BFN (T )

1Egidl

)
(6)

where

BFN (T ) = BFN0

(
T

TNOM

)FNT

(7)

FNT is introduced as a FN tunneling temperature exponent
for the exponential coefficient (BFN ) which is an image of
the potential barrier that corresponds to the effective band
gap of the barrier materials. The temperature dependence
model shows good agreement (average R2 score is 0.992)
with TCAD simulation data from 248K (CT) to 358K (HT) as
shown in Fig. 14. Table 2 summarizes these fitting parameters
of the slow cell model for bit error rate prediction and yield
optimization.

IV. ACCELERATION SIMULATION FOR BIT ERROR RATE
PREDICTION AND YIELD OPTIMIZATION
Based on the ANN-based compact model and the slow cell
model, the Vth shift evaluation and BER estimation can be
accelerated in the efficient circuit simulation domain. The
flow of this acceleration work is demonstrated in Fig. 15(a):
(1) the Gaussian distribution of Vth is generated using the
agauss(Vth_med ,Vth_std ) function of the SPICE simulators, (2)
the random variables of the Vth shift (1Vth_gidl) are obtained
based on the large-scale analysis data from the accelera-
tion simulation using the instantaneous calculation of Eq.
(5). Finally, we can obtain the entire Vth distribution of the
GIDL-assisted erase operation by calculating the sum of the
two independent random variables and also evaluate the tail
bit of the slow cells using a metric, Vth loss in Fig. 15(b).

We performed the large-scaleMC circuit simulations based
on the present generation of a 176-layer V-NAND technology
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FIGURE 11. The inference results (lines) of the artificial neural
network-based compact model compared to TCAD targets (symbols) and
GIDL characteristic currents following the lognormal distributions in the
cumulative probability plot at different transistor widths.

as shown in Table 1. The circuit simulation includes the
fast models which is trained and calibrated with the same
TCAD simulations of the 176-layer V-NAND supplying -8V
BTBT voltage (VBTBT= −8V). Fig. 16 shows the comparison
results of the calibrated TCAD simulation (ground truth)
and the acceleration simulation. The fast models show good
agreement with the ground truth depending on the various
medians of the GIDL currents. Fig. 17 represents the com-
parison results of the ground truth and the proposed models
depending on the variation levels of the GIDL current, which
have good agreement. The temperature dependent models in
Eq. (6) and (7) are also implemented and performed in the
accelerated circuit simulation. Fig. 18 shows good agreement
between the ground truth and the temperature dependent
models.

To explore the design space and evaluate the impact of
the GIDL transistor performances on the Vth loss and yield,
we can perform a large-scale simulation based on the accel-
erating models. Fig. 19(a) shows the acceleration simulation
results of Vth loss according to the GIDL transistor perfor-
mances of VBTBT= −8V in the 176-layer structure. The
optimal design target of the GIDL transistor performances
(Igidl , CV of Igidl , and VBTBT ) is the value set when the Vth
loss becomes small enough to distinguish the erase from the
programmed states. It generally depends on the valid window
and bit error rate criteria of various technologies. In this work,

FIGURE 12. The inference results (lines) of the artificial neural
network-based compact model compared to TCAD targets (symbols) and
GIDL characteristic currents following the lognormal distributions in the
cumulative probability plot at different temperatures.

FIGURE 13. The slow cell model (line) and TCAD targets (symbols) for the
two probability densities of Vth shift and the cumulative field factor of
the channel potential delay in the GIDL-assisted erase scheme at
different transistor widths.

we define the Vth loss of 0.5V or less (Vth_loss≤0.5) at the
probability density of 1 × 10−3 as an optimal boundary to
achieve the successful read operation in this demonstration.
A small Vth loss indicates larger read voltage window, higher
error correction probability, and a smaller number of read
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FIGURE 14. The slow cell models (lines) and TCAD targets (symbols) for
the two probability densities of Vth shift and the cumulative field factor
of the channel potential delay in the GIDL-assisted erase scheme at
different temperatures.

FIGURE 15. The flow of acceleration simulation for generating the Vth
distribution of the GIDL-assisted erase. (a) Independent generations of
two independent Vth distributions, (b) the sum of two distributions and a
new metric, Vth loss for the tail bit evaluation.

TABLE 1. The calibration parameters for TCAD and Monte-Carlo circuit
simulations.

retry. In addition, the yield characteristics is determined by
bit error rate, which strongly depends on the error correction

TABLE 2. The fitting parameters of the slow cell model for bit error rate
prediction and yield optimization.

FIGURE 16. The comparison of TCAD simulation (top) and accelerating
circuit simulation results (bottom) as a function of GIDL transistor
performances. (a) Igidl =0.6nA with CV=26%, T=298K, (b) Igidl =1.2nA
with CV=26%, T=298K, and (c) Igidl =1.8nA with CV=26%, T=298K.

FIGURE 17. The comparison of TCAD simulation (top) and accelerating
circuit simulation results (bottom) as a function of GIDL current
variations. (a) CV of Igidl =28% with Igidl =0.9nA, T=298K, (b) CV of
Igidl =23% with Igidl =0.9nA, T=298K, and (c) CV of Igidl =18% with
Igidl =0.9nA, T=298K.

abilities and read retry techniques of each industry. To demon-
strate the flow of yield prediction and optimization in this
176-layer V-NAND technology, we assume that the optimal
boundary criterion of valid window (Vth_loss≤0.5) is equiva-
lent to a bit error rate of 0.1%, and it increases by a factor
of 3 for every 0.5V increase in Vth loss. Therefore, a contour
map of bit error rate for yield analysis can be derived from
the Vth loss as shown in Fig. 19(b).

Based on the acceleration simulations combined with the
bit error occurrences, we can obtain a metric for predictive
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FIGURE 18. The comparison of TCAD simulation (top) and accelerating
circuit simulation results (bottom) at different temperatures. (a) T=273K
with CV=26%, (b) T=298K with CV=26%, and (c) T=298K with CV=26%.

FIGURE 19. (a) The acceleration simulation results of Vth loss in the
176-layer V-NAND technology. (b) The contour map of yield based on the
bit error rate in the 176-layer V-NAND technology. To describe the flow of
yield optimization in this technology, we assume the Vth loss of 0.5V is
equivalent to 0.1% bit error rate and the rate increases exponentially for
every 0.5V increase in the Vth loss.

yield modeling in the 176-layer V-NAND structure, as shown
in Fig. 20. Starting with the reference point of this cur-
rent GIDL transistor (R in Fig. 20), any performance shifts

FIGURE 20. The contour map of yield based on the bit error rate and its
projection to the 3D plot of Vth loss in VBTBT = −8V according to the
characteristic current Igidl and the CV of Igidl in the 176-layer V-NAND
technology.

of the median Igidl or its CV immediately will reduce the
read margin (Vth_loss>0.5V) and degrade the bit error rate
(BER>0.1%). However, we can boost the read margins by
supplying the higher BTBT voltage from −8V to −10V to
drive the same GIDL transistor, as shown in Fig. 21, which
must be carefully examined from various side effects on the
degradation of reliability and program-erase cycles.

V. PATHFINDING FOR NEXT GENERATION 3D V-NAND
CANDIDATE STRUCTURES
Based on the calibrations in the current 176-layer
V-NAND technology, the bit error rate prediction and yield
optimization of the next-generation candidate technologies
can be performed for the pathfinding activity. We extend the
acceleration simulations to the next-generation 256 and 352-
layer V-NAND technologies to determine the impact of the
high aspect ratio etch processes of vertical stack-up on the
GIDL-assisted erase characteristics.

A. 256-LAYER 3D V-NAND STRUCTURE
Fig. 22(a) shows the contour map of yield and its projection
ot the 3D plot of Vth loss in the 256-layer V-NAND structure
with the same −8V BTBT voltage (VBTBT= −8V) as the
previous 176-layer V-NAND. The prediction results show
that the Vth loss will be degraded by up to 1.2V due to
the extra RC delay (R in Fig. 22(a)), and three paths of
yield improvement are possible. Firstly, nearly 1.3nA GIDL
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FIGURE 21. The contour map of yield based on the bit error rate and its
projection to the 3D plot of Vth loss in VBTBT = −10V according to the
characteristic current Igidl and the CV of Igidl in the 176-layer V-NAND
technology.

FIGURE 22. The contour map of yield based on the bit error rate and its
projection to the 3D plot of Vth loss in (a) VBTBT = −8V, (b) VBTBT = −10V
according to the characteristic current Igidl and the CV of Igidl in the
256-layer V-NAND technology.

injection current is required without any variation reduction
techniques (A1 in Fig. 22(a)). Secondly, the CV of the GIDL
currents needs to be reduced up to 20% while the median
remains the same (A2 in Fig. 22(a)). Lastly, only 1.1nA
injection current will be sufficient if the CV can be reduced to
22% as a compromise. In addition, we can supply the higher
BTBT voltages in the identical GIDL transistor to avoid any
process challenges. In Fig. 22(b), the same GIDL transistor of

FIGURE 23. The contour map of yield based on the bit error rate and its
projection to the 3D plot of Vth loss in (a) VBTBT = −8V, (b) VBTBT = −12V
according to the characteristic current Igidl and the CV of Igidl in the
352-layer V-NAND technology.

the previous technology is successfully reused to operate the
erase in the 256-layer V-NAND structure, and it represents
the minimum BTBT voltage of -10V required for ensuring
the yield criteria (Vth_loss≤0.5 and BER≤0.1%).

B. 352-LAYER 3D V-NAND STRUCTURE
Fig.23(a) shows the prediction results for the 352-layer V-
NAND structure with the same -8V BTBT voltage (VBTBT=

−8V) as the current 176-layer simulation. The results indicate
that Vth loss is increased to 2.2V (R in Fig. 23(a)) due to the
extra delays of additional layers. In the 352-layer V-NAND,
there are also three possible paths for yield improvement.
Firstly, the GIDL injection current is required to increase to
1.7nA without any variation reductions (A1′ in Fig. 23(a)).
Secondly, the CV needs to be improved up to 18% (A2′ in
Fig. 23(a)). Lastly, both the 1.3nA GIDL injection current
and the 21% CV can be one of the optimal design targets as
a compromise solution. To retain the same GIDL transistor
process of the current 172-layer V-NAND technology, a min-
imum of -12V BTBT voltage is required to obtain the same
readmargin and bit error rate in the next-generation 352-layer
V-NAND, as shown in Fig. 23(b).

VI. CONCLUSION
In this paper, we proposed a variability-aware artificial neural
network compact model and a fast Monte Carlo circuit sim-
ulation technique that accelerate the bit error rate estimation
and yield optimization of the GIDL-assisted erase scheme in
state-of-the-art flash memories. The GIDL-induced channel
potential delay and time dynamics are thoroughly investi-
gated, highlighting the read margin reduction mechanism due
to the Vth loss of slow cells in the GIDL erase operation.
The ANN-based compact model accurately reproduces the
GIDL current and its lognormal statistical variations, and
the physics-inspired slow cell model is efficiently imple-
mented in circuit simulation to regenerate the underlying
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relationships between the two probability distributions of
electric field and read margin loss. This acceleration simu-
lation technique is a valuable tool for exploring the GIDL
design space, yield optimization, and pathfinding activities
in next-generation 3D V-NAND flash memory.
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