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ABSTRACT This paper surveys the short-term road traffic forecast algorithms based on the long-short term
memory (LSTM) model of deep learning. The algorithms developed in the last three years are studied and
analyzed. This provides an in-depth and thorough description of the algorithms rather than their marginal
description as performed in the existing surveys that focus on general deep learning algorithms. The chosen
algorithms are classified depending upon the use of LSTM in combination with other techniques for
processing input data features towards a final traffic forecast. The operational strategies of the algorithms
are described with merits and limitations. Moreover, a comparative analysis of the compared classes of
algorithms is also provided. These strategies are helpful in selection of the right algorithms and their classes
for the diverse traffic conditions and their future investigation for improvement. Besides, the applications
of these classes of algorithms to traffic forecast in various networks for the latest decade is graphically
depicted. Moreover, the applications of the LSTM in other fields involving a forecast are provided. Finally,
the challenges associated with the short-term traffic forecast using the LSTM are described and strategies
are highlighted for their future investigation.

INDEX TERMS Short-term traffic prediction, long short-term memory, LSTM, deep learning, intelligent
transportation.

I. INTRODUCTION
In intelligent transportation systems (ITS), short-term traffic
prediction is one of the major disciplines of research that
aims to ensure efficient traffic management by overcoming
or minimizing the traffic challenges [1]. Specifically, in road
traffic management, it helps in ensuring traffic lane manage-
ment, predicting traffic congestion, ensuring selection of the
optimal traffic paths and road safety by defining the optimal
traffic speed, prevention and detection of accidents, adaptive
identification of surrounding traffic and estimating the travel
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time to destination, to mention a few [2]. In particular, these
strategies are helpful and effective in governing the jour-
ney and interaction of human-driven as well as autonomous
vehicles [3].

The long short-term memory (LSTM) model is one of the
research paradigms of deep learning that has been recently
used for traffic prediction in ITS [4], [5], [6], [7]. It has the
inherent capability of modeling the stochastic nature of traffic
data and identifying their spatio-temporal characteristics. The
LSTM-based traffic networks retain the long and short-term
data in memory and use them for a prediction decision at the
current instant of time. This is contrary to the conventional
use of deep learning methods where no memory is involved
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in performing an output decision. In addition to traffic pre-
diction, the LSTM algorithms have also been recently used
in stock prediction [8], classification of plant diseases [9],
prediction of common diseases in humans [10], health and
effective lifetime forecast of electric vehicles [11], prediction
of carbon dioxide based on sensory data from vehicles [12],
weather forecasting [13] and channel estimation in wireless
communications [14], to mention a few.
This paper conducts a survey of the short-term road traffic

forecast algorithms using the LSTM designed in the last
three years. This strategy is helpful in choosing the latest
algorithms with a thorough and in-depth description rather
than providing a general description of the deep learning
algorithms as performed in the existing surveys [15], [16].
The algorithms are categorized based on use of the LSTM
in combination with other techniques for processing data
input towards the final output forecast. Every algorithm is
described with its operational strategy, merits and limita-
tions. A comparative analysis of the categorized algorithms
is also provided. These strategies are helpful in selection of
algorithms and their classes for traffic forecast in diverse
conditions. In addition, the applications of these classes of
algorithms to traffic prediction in various networks over the
latest decade is graphically depicted. Besides, applications
of the LSTM in other fields involving a forecast are also
given. Finally, challenges in LSTM-based traffic forecast
are identified and techniques are highlighted for their future
investigation.

In essence, the primary goals of this research include
reviewing and categorizing the LSTM-based traffic fore-
cast algorithms, analyzing their operational strategies, merits,
limitations and highlighting the future directions. The contri-
butions of this survey are:

• The LSTM-based traffic forecast algorithms developed
in the last three years are incorporated. This allows
an in-depth and thorough description of the algorithms
rather than their marginal description with other deep
learning algorithms as performed in some existing sur-
veys.

• The selected algorithms are classified into various cat-
egories based on the techniques combined with the
LSTM and a comparative analysis is performed. Every
algorithm’s key operation, merits and limitations are
described too. These strategies are helpful in the choice
of the appropriate algorithms for a specific type of
road traffic management. Besides, the applications of
the LSTM to other fields involving a forecast are
given. Moreover, the applications of each class of algo-
rithms in traffic prediction for various networks for one
decade: 2013 to 2023, are graphically depicted in various
networks.

• The challenges that prevail in the LSTM-based algo-
rithms for short-term traffic forecast are addressed and
techniques are highlighted for future investigation.

The rest of this paper is organized as follows: Section II
describes the organization of the manuscript. Section III deals

with the background of traffic forecast using LSTM and
Section IV highlights the origin of the LSTM model. The
architecture of the LSTM is addressed in Section V while
Section VI classifies the considered algorithms, performs a
comparative analysis and depicts their applications in various
networks for the latest decade. The challenges associatedwith
the short-term road traffic prediction are given in Section VII
while Section VIII concludes the paper with a description of
the future research strategies.

II. ORGANIZATION OF THE MANUSCRIPT
Figure 1 depicts the flow and organization of the manuscript.
The introduction part discusses the importance of the LSTM,
its applications, unique role in short-term traffic prediction
and the background for short-term traffic prediction followed
by the description of the basic architecture of the LSTM, basic
concepts and operation. The short-term traffic prediction
algorithms involving LSTM are then chosen, compared and
classified into various categories; depending upon whether
these algorithms use the single LSTM model or combine
it with other algorithms. Finally, the challenges associated
with the short-term forecast of traffic using the LSTM are
highlighted, conclusions are drawn and future strategies are
identified.

III. BACKGROUND OF SHORT-TERM TRAFFIC
PREDICTION
The short-term traffic prediction helps in defining traffic
routes for autonomous as well as human driven vehicles.
It allows the decision to know traffic conditions such as
number of vehicles passing a certain traffic route in a spe-
cific time, routes existence among various locations, defining
trajectories, identifying warning and rescue signals of traf-
fic, adapting secure and pollution free routes with minimal
obstructions and knowing the overall future traffic conditions
on the traffic routes to be followed, [17] to mention a few.
In the context of modern intelligent transportation, knowing
these parameters allows the selection of the optimal, safe,
secure and travel-friendly routes by the drivers and auto-
driving cars. This not only reduces the transportation cost but
ensures overall efficient traffic management and resources
utilization with minimized traffic fatality rate.

The road traffic varies with the locations of roads and
their attributes, the number of vehicles, the speed of vehicles,
interconnection of roads and the time of travel, among the
many. Various external factors such as weather conditions,
pollution and cultural events or festivals, also affect the flow
of traffic. This shows that traffic patterns inherently vary in
space and time or have spatio-temporal variations or char-
acteristics that change in a dynamic fashion. In addition,
when a vehicle is at a certain position, its journey towards
a predicted position is dependent on a diverse set of parame-
ters, as described above. This indicates that correlations exist
among the spatio-temporal traffic patterns.

The short-term traffic prediction addresses the challenges
associated with the intelligent transportation. They include,
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FIGURE 1. Flow chart of manuscript’s organization.

for instance, processing of spatio-temporal traffic patterns for
predicting traffic parameters: travel time, roads occupancy,
road pollution, weather conditions during travel and identifi-
cation of the best routes. Moreover, it provides guidelines for
future traffic conditions that could be followed in anticipa-
tion to ensure overall efficient traffic management, resources
utilization and reduced emergencies.

IV. THE ORIGIN OF LSTM: RECURRENT NEURAL
NETWORKS (RNNs)
The LSTM model is a special case of the recurrent neural
network (RNNs) [18]. Therefore, a brief description of the
RNNs is given, which is then linked with the LSTM. Figure 2
depicts the basic architecture of RNNs [19]. It consists of
an input matrix x, a hidden state (memory) matrix h and an
output matrix o. At a specific time step t , these matrices,
along with other parameters, are related by

ht = Uxt +Wht−1 + bi, (1)

ot = φh(Vht + bo), (2)

ŷt = φo(ot ), (3)

where the weighting matrices are U ,W and V , the respective
biasing parameters at input and output are bi and bo and
the respective hidden states at time steps t and t − 1 are
ht and ht−1. The parameters φh and φo are the respective
activation functions of hidden and output stages and ot and ŷt
are the respective output and predicted output at time step t .
In training the RNNs, the error (or loss function) is computed
and back-propagated to adjust the weighting and biasing
matrices involved [20]. For certain activation functions (such
as sigmoid and tanh), the derivative values of the error
are smaller and their multiplication during back-propagation
makes the overall gradient negligibly small, a phenomenon
called vanishing-gradient problem. This challenges the learn-
ing of RNNs. In contrast, the derivative values get higher
during back-propagation due to computation of high weight
values (unlike the activation function values) that explodes
the gradient. The LSTM and gated recurrent unit-LSTM
(GRU-LSTM) are two of the techniques used for solving the
vanishing gradient problem [21], [22] in RNNs.

V. THE BASIC LSTM MODEL
The LSTMmodel was developed by SeppHochreiter and Jur-
gen Schmidhuber in 1997 [23] and since then it has been used
for many applications including traffic forecast. As depicted
in Figure 3, the LSTM model belongs to the group of
deep learning algorithms of machine learning, which further
traces back to artificial intelligence. Figure 4 shows the basic
architecture and working mechanism of the LSTM [23]. Its
architecture is made up of three gates: forget, input and output
gates. It has current and previous cell states (long memory)
and the hidden states (short memory). The gates involved in
the architecture of the LSTM are described one by one.

A. THE FORGET GATE
In this gate, at a specific time step t , an input data stream
xt and the previous hidden state ht−1 are processed by the
sigmoid function σ to produce values in the 0 and 1 range in
the form of the vector ft . These values are then element-wise
multiplied with the previous cell state ct−1 to decide whether
or not to preserve the previous states. A 0 value corresponds to
forgetting the previous cell state; as some new critical infor-
mation is fed to the system while a 1 value means preserving
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FIGURE 2. The basic architecture of the recurrent neural networks (RNNs).

FIGURE 3. The LSTM is one of the deep learning algorithms and belongs
to the class of machine learning, which further originates from artificial
intelligence.

the previous cell state value. Mathematically, the operation
performed by the forget gate is written as

ft = σ (Wf [ht−1, xt ] + bf ), (4)

whereWf and bf are the respective weighting and bias matri-
ces.

B. THE INPUT GATE
This gate consists of the tanh and the second sigmoid func-
tions whose output values are element-wise multiplied, which
updates the cell state. The tanh function uses input data and
the previous hidden state (short-term memory) and produces
a vector C̃t having values in the −1 to 1 range. However,
it does not contain any knowledge about the significance
of the current input data (to pass further or retain). For this
purpose, the sigmoid function output vector it is element-wise
multiplied with C̃t and the result is added to the previous cell
state to update the current cell state. The output values [−1,1]
of the tanh function, after multiplication with the sigmoid
function, decide how much significance a current input data
stream has to forget or pass in updating the new cell state. The

mathematical description of the various vectors at the input
gate is given by

it = σ (Wi[ht−1, xt ] + bi), (5)

C̃t = tanh(Wc[ht−1, xt ] + bc), (6)

where Wi and Wc are the respective weighting matrices at
input gate of the sigmoid and tanh functions (the subscript
c represents the cell state updating process). The parameters
bi and bc represent the biasing factors corresponding to Wi
and Wc, respectively.

C. THE OUTPUT GATE
This gate uses three vectors: Ct , xt and ht−1 and produces
the present hidden state ht corresponding to the following
mathematical relationships

ot = σ (Wo[ht−1, xt ]) + bo, (7)

ht = ot tanh(Ct ), (8)

where ot is the sigmoid function’s output with weighting
matrix W0 and bo is the biasing factor with respect to Wo.
The element-wise multiplication multiplies the correspond-
ing elements of the matrices.

For prediction of short-term traffic data, the LSTM requires
large datasets in accordance with the usual requirement by the
deep learning models. To predict the short-term traffic, first
the datasets are processed before input to the LSTM. This
processing usually involves removing outlier data, computing
the missing data, deleting the data from the failed sensors
and normalizing the data for better presentation. The pro-
cessed data are then divided into training and testing sets.
The training datasets are input to the LSTM that processes
them to extract the traffic information. The forget gate of the
LSTM decides whether to allow or block the incoming data
to the input gate depending upon their weight values. New
data values are multiplied by 1 and are allowed to the input
gate otherwise they are forgotten by multiplication with 0.
The input gate of the LSTM processes the output of the forget
gate that further normalizes the data and passes the data with
high weight values to the output gate and updates the current
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FIGURE 4. The basic architecture of the long short-term memory (LSTM) model.

cell state as well. The cell state is used by the output gate
in combination with the input data and previous short-term
values of the data to compute the short-term traffic values
(output). In the testing phase, the unseen data are input to the
LSTM that uses the learned patterns during the training phase
to predict the output. Sometimes a data validation process is
also used to tune the deep layers parameters of the LSTM
before forecasting.

A number of traffic features; such as travel time, traffic
flow and traffic volume (density), can be normalized and
input to the LSTM that processes them and learns about
the traffic flow patterns using the forget, input and output
gates operation, as described above. This capability of the
LSTM makes it superior than the traditional algorithms in
forecasting traffic in diverse traffic scenarios.

VI. TRAFFIC FLOW PREDICTION USING LSTM AND ITS
VARIANTS
This section classifies the algorithms and provides a descrip-
tion of each class. The algorithms are classified into various
categories based on the use of the LSTM alone or com-
bining one or more techniques with the LSTM for obtain-
ing and processing the traffic features. These techniques
include recurrent neural networks, gated recurrent neural net-
works, convolution operation, graph convolution operation
and graph attention. In all the classes of the algorithms, the
LSTM is used for the traffic prediction while the techniques
combined with the LSTM are useful in capturing the traf-
fic features and making the prediction process meaningful,
effective and accurate. In addition, only the LSTM-based
algorithms developed in the last three years are considered.
This strategy provides a thorough and in-depth description
of the LSTM-based techniques for traffic prediction rather
than providing a general description of the deep learning
techniques.

A. TRAFFIC PREDICTION USING LSTM
This section describes the algorithms using only the LSMT
as the algorithm for traffic forecast. The approach designed
in [24] uses the LSTM for data prediction that evaluates
data input to the network and, depending upon the effective-
ness of information, data are either discarded or retained in
the network. The data are obtained for various city zones
from the concerned department and aggregated into a five
minutes interval in linear datasets. The LSTM algorithm is
then applied to forecast the traffic flow and the error is esti-
mated. A multivariate LSTM algorithm is proposed in [25]
that considers a number of parameters such as flow of traf-
fic, speed and occupancy, which provide better performance
over the univariate schemes. An LSTM-based approach is
used for speed forecast of vehicles in [26]. The datasets are
obtained from a traffic simulator dealing with real world
data. The model is evaluated for both univariate and mul-
tivariate features involved in traffic speed prediction. The
authors in [27] develop an LSTM model to cope with the
stochastic and time-varying nature of the traffic flow pat-
terns, which involves dynamic traffic patterns forecasting
than static patterns and conditions. The authors in [28] argued
that sometimes a simple model also produces promising
results with reduced complexity of computation. Therefore,
an LSTM network for traffic forecasting combines the traffic
features in time and space for traffic forecast. The authors
in [29] argued that the conventional deep learning is one of the
recent approaches for traffic prediction. However, due to its
stochastic nature, error in data prediction follows, especially
the data distribution imbalance over-fitting problem, in which
the predicted model diverges from the true prediction behav-
ior and involves high error. To cope with it, an algorithm
is developed that uses a network that learns online by itself
and maps the data. It learns and equalizes the statistics
of data flow. Moreover, the uncertainty in the stochastic
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FIGURE 5. Flow chart of LSTM’s operation. The yellow, pink and green blocks indicate the forget, input and
output gates, respectively. The forget gate allows important data to pass to the input gate that normalizes the
data and further passes it to the output gate for further processing to produce the output.

nature of data is reduced by the deep bidirectional LSTM
(DB-LSTM). Finally, data forecasting is made by the LSTM.
The sequences in which data flow at various time slots are
identified and assigned different weights. Then a bidirec-
tional LSTM (B-LSTM) mechanism is proposed that iden-
tifies periodic features in data flow on daily and weekly basis
from both directions: previous data and the data obtained after
processing the previous information.

The concept in [30] first macroscopically analyzes the
real traffic lanes to obtain traffic data, which are then
used for testing and training the LSTM that obtains better

results than GRU and the stacked auto-encoders. The authors
in [31] recorded the data of vehicles at an exit station on an
expressway in Shanghai, China. The collected data are pre-
processed, split, aggregated and normalized. Then the LSTM
algorithm is applied for learning the data features in com-
bination with traffic flow at the corresponding exit station.
It is argued in [32] that traffic flow prediction based on the
use of GPS data contains data coming from certain limited
devices and has high cost as well. To overcome this problem,
a travel mode classification method using cellular data is
given that obtains travel mode characteristics, converts the
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TABLE 1. Traffic flow prediction schemes using LSTM.

time information in the datasets into the time characteristics.
Then it inputs them with traffic flow data into the LSTM for
improved prediction accuracy. The authors in [33] combined
the noise pollution with traffic data as input to the LSTM to
forecast traffic at major roads of Mardid, Spain. Previously,
this approach has been combined with air pollution for traffic
prediction. The authors in [34] used the big data frameworks
of Spark and Kafka for traffic forecast in real time using the
LSTM with an effective prediction accuracy. It is mentioned
in [35] that environmental parameters such as snowfall, rain-
fall, fog and wind affect the eyesight of the drivers, the
density and speed of vehicles. Therefore, the effect of road
traffic due to rainfall is studied using data from roadside
installed sensors. The data are processed by the LSTM and
recurrent neural networks with the LSTM providing the best
prediction accuracy. The LSTM model is applied in [36] to
note an increase or decrease in the traffic flow based on an
event (periodic events such as cultural or political events)
and context (tourist towns or mountain towns) and, there-
fore, identify the anomalies in flow of traffic. The sensors
placed at entry and exit points of highways provide the data.
The authors in [37] predict driving intention and trajectory
prediction at intersections. A large number of trajectories,
their clustering and paths are statistically analyzed using the
trajectories model of intersection priority. This is combined
with the fitted probabilistic density model that approximates
the distribution of a trajectory of interest and then uses it as a
standard to evaluate the credibility. The LSTM then forecasts
the intention and is also used for trajectory forecasting at early

stage. The structural-LSTM proposed in [38] predicts the
trajectories of surrounding roads for autonomous vehicles.
It treats every interacting vehicle as a single LSTM cell and
shares its cell state and hidden state with its spatial neighbors
through a radial connection and evaluates its own and the
neighbor output states. These output states are then used for
the prediction of surrounding trajectories. The authors argue
in [39] that the traditional time-series forecasting algorithms
use large values of historical data to forecast the output.
Therefore, these algorithms struggle in performance when
a huge amount of data is not available. To overcome this
problem, an algorithm is proposed based on the time-series
concept of few-shots that uses the Siamese twin network
approach to compute the time-series difference between data
pairs rather than using the established trends of data. The data
types not observed during the training phase of the LSTM
are also learned. The LSTM is compared with the forecast
algorithms that use the concepts of back-propagation, clas-
sifying and regressing the trees, the geographically closest
neighbor and the regression based on a support vector in [40].
The LSTM provides the best accuracy among the compared
techniques over a number of traffic conditions. Table 1 sum-
marizes the key aspects of the algorithms using LSTM as the
major forecast algorithm. Figure 5 shows the flow chart of
the working of the LSTM. The forget gate allows specific
important data to the input gate that applies sigmoid and tanh
functions and element-wise addition and multiplication. The
data from the input gate are further processed by the output
gate to produce the final output.
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B. TRAFFIC PREDICTION USING RECURRENT NEURAL
NETWORKS LSTM (RNNs-LSTM)
This section describes the algorithms combining the RNNs
and LSTM (RNNs-LSTM) for effective prediction of the
short-term traffic. The authors in [41] argued that the tradi-
tional forecasting algorithms use continuous data input from
history to perform the prediction decisions that do not accu-
rately calculate the time delay. Therefore, an algorithm is
proposed that uses three memory blocks that work together
in a multiplicative manner to best calculate dime delay.
Unlike the algorithms that consider only traffic conditions
and use single data processing mechanism, weather con-
ditions are combined with LSTM and GRU modules to
design an algorithm that uses a hybrid neural network with
a queue in [42]. Optimization of the results is accomplished
to accurately predict the traffic conditions. The authors in [43]
combined the tensor analysis with RNNs and developed
three algorithms: tensor-based-LSTM, tensor-base GRU and
tensor-based vanilla RNNs. These algorithms use tensors as
high order input and output parameters. The weights are
compressed and the traffic flow is predicted. The authors
in [44] combined federated learning with RNN-LSTM, the
former performed the model interaction and data privacy
protection while the latter performed traffic forecast. The
authors compared the three structures in [45]: LSTM, GRU
and stacked-auto-encoders and concluded that the LSTM
error is minimal for specific road traffic conditions. Table 2
summarizes the key aspects of RNNs-LSTM algorithms (see
[41], [42], [43], [44], [45]).

C. TRAFFIC PREDICTION USING GATED
RECURRENT/RECURSIVE UNIT NEURAL NETWORKS LSTM
(G-RUNNs-LSTM)
This section discusses the LSTM algorithms combined with
the gated recurrent/recursive unit. The GRU, as mentioned
above, is one of the techniques designed to cope with the
RNNs inherent issue in which the gradient vanishes and the
learning of the networks becomes negligible. The gated recur-
sive unit is a generalization of the gated recurrent unit (suit-
able for hierarchical patterns than sequences) [46]. A brief
description of the GRU is first given to provide an insight
to the way it overcomes the vanishing gradient problem. The
Figure 6 shows the basic architecture of the GRU having the
reset and forget gates. It does not include the cell states in
output computation rather uses only the hidden states due to
which it is faster than LSTM.

1) THE RESET GATE
The reset gate controls the flow of information between the
previous hidden state (memory) ht−1 and the present input xt .
It decides the extent by which past information is allowed to
pass or forget and is governed by the following mathematical
model [47], [48]:

rt = σ (Wr [ht−1, xt ] + br ), (9)

where rt is the memory rate, Wr and br are the respective
weighting matrix and biasing factor.

2) THE UPDATE GATE
The update gate forgets or passes the information from the
past for processing with the current information. This con-
trols the vanishing gradient problem in that the information
processing from the past is controlled. The mathematical for-
mulation of the current hidden state ht (output) is computed
using the update gate and other operations as [47]:

zt = σ (Wu[ht−1, xt ] + bu), (10)

where Wu and bu are the respective weighting and biasing
matrices and zt is the sigmoid functions’ output. The other
mathematical operations involved in the output computation
are:

ht = h̃tzt + ht−1(1 − zt ), (11)

h̃t = tanh(Wo[rtht−1, xt ] + bo), (12)

where Wo and bo are the respective weighting and biasing
vectors and h̃t is the output of the activation function corre-
sponding to the update gate. The rest of this section follows
the description of the G-RUNNs-LSTM algorithms.

The authors in [49] first used the LSTM to obtain the
characteristics of traffic in space and time followed by a
bidirectional GRU (Bi-GRU) having positive as well as nega-
tive feedback mechanisms. The shortcomings of the common
optimizer are overcome by the rectified adaptive algorithm
for further accuracy. The cosine, scientific andmodel learning
control the algorithm’s convergence. The authors in [50] first
reduced the error in the traffic actual and sampled data using
a piece-wise and constant co-efficient scheme. Then a gated
recursive unit LSTM is applied to forecast the flow of trucks.
The RNNs are considered for the traffic flowmodeling in [51]
with the LSTMmodel is used to improve the former and solve
its problem of vanishing gradient. An attention mechanism
is further introduced to ensure engineering of traffic features
and improve the prediction accuracy. Table 2 summarizes
the key aspects of G-RUNNs-LSTM algorithms ( [49], [50],
[51]). Figure 7 shows the flow chart of the operation of
the G-RUNNs-LSTM. The yellow and pink blocks show the
respective reset and update gates of the GRU whose output is
fed to the LSTM for traffic forecast.

D. TRAFFIC PREDICTION USING CONVOLUTIONAL
NEURAL NETWORKS LSTM (ConVNNs-LSTM)
This section first describes the basic architecture of the
ConVNNs-LSTM followed by their combination with the
LSTM for forecasting short-term traffic. The ConVNNs
are effective in combining the spatio-temporal features in
predicting traffic behavior rather than considering a single
feature [52]. They are also efficient for large size networks.
Figure 8 represents the fundamental architecture of the con-
volutional neural network [53]. The convolutional layer pro-
cesses the input with a certain filter to extract information (or
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FIGURE 6. The basic architecture of the gated recurrent unit (GRU).

features map). The mathematical operation of the convolu-
tional layer is governed by [54]:

O(i, j) = S ∗ F=

L∑
k=1

L∑
l=1

S(i+k−1, j+1−l)F(k, l), (13)

where S is the input signal (for example a 2D image) havingm
rows and n columns, F is the filter or kernel of size L×L, the
symbol ∗ shows convolution operation, O(i, j) is the element
of the output matrix at the ith row and jth column, assuming a
single channel for the convolution. The values of i and j vary
from m− L + 1 to n− L + 1, respectively. All the elements
of the output matrix are summed to generate the features map
Mf (for the assumed single channel) as:

Mf =

∑
Of (i, j). (14)

The pooling layer acts on the signal and sub-samples it to
reduce its dimension. For the case of 2D image as the input
signal, the pooling operation is mathematically written as:

O(i, j) = maxi≤l≤i+R−1,j≤k≤j+R−1S(l, k), (15)

where O(i, j) is the element of the output matrix at the ith

row and jth column, R is the size of the filter used by the
pooling, which extracts the maximum values of the features
(hence max pooling, where average pooling is also used). The
fully connected layer connects all the features maps obtained
in the previous (convolution and pooling) layers to construct
a bigger features map (a one-dimensional array or vector),
which is modeled as:

Ofc = f (W [S]) + b), (16)

where S is the input signal vector that represents the features
collected by the prior layers, W is the weight vector, b is the
bias vector, f is the activation function and Ofc is the output
of the fully connected layer.

The design in [55] used ConVNNs in combination with the
LSTM model to extract the prominent aspects of traffic data
in time and space, which are then used for traffic forecast.
An algorithm is proposed in [56] for multi-lanes traffic that
combines multiple features of data traffic, considers the rout-
ing among the lanes, traffic flow in both directions and pre-
dicts the traffic in a recursive manner. In [57], it is argued that
majority of the deep learning approaches for traffic forecast
do not explore data features patterns of intra and inter-day nor
they correlate the parameters with traffic flow such as weather
conditions. Therefore, an approach is adopted in which the
ConVNNs capture the inter and intra-day patterns of traffic,
which are fed to the LSTM to acquire traffic features in time
and perform the traffic forecast. In [58], a hybrid traffic-
flow forecasting model (HTFM) is proposed in which the
spatio-temporal characteristics of the vehicles data flow on a
large scale are addressed. The time characteristics are learned
by the LSTM mechanism while the space characteristics are
obtained by the ConVNNs. These two models are then com-
bined and the obtained characteristics are analyzed for data
prediction. The temporal and spatial features are correlated
by the maximum information coefficient in [59] to forecast
the traffic. The authors in [60] design an algorithm that used
ConVNNs to derive the historical data traffic features while
features exhibiting periodicity are acquired by the LSTM.
The wavelet-based transformation decomposes frequency
components of the data for obtaining the useful information.
The authors in [61] argued that existing traffic flow prediction
models usually consider roads in a specific region. Therefore,
a road-network is considered based on high-order spatio-
temporal road conditions and a generative adversarial nets
(TrafficGAN) algorithm is developed. The spatio-temporal
features of the traffic flow for days and weeks are analyzed
in [62] to forecast traffic speed. The authors in [63] state that
most approaches use the hourly data to predict the traffic for
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FIGURE 7. Flow chart of G-RUNNs-LSTM. The yellow and pink blocks show the reset and update gates of the
GRU, respectively, whose output is fed to the LSTM for forecast.

FIGURE 8. The basic architecture of the convolutional neural networks (ConVNNs).

the upcoming hours and that is not effective in forecasting
daily and weekly traffic. Therefore, a design is utilized that
uses multiple convolutional-LSTM networks to obtain traffic
features for days and weeks. An LSTM network is also used
for predicting the output in a sequential manner. Every input
sequence is assigned a weight in response to its role in output
prediction. A snapshot of the traffic map is taken in [64] from
an online source and then a combination of ConVNNs, LSTM
and transpose ConVNNs (TCNNs) is made to obtain the
spatio-temporal characteristics of the traffic and use them for
predicting traffic congestion. Themeasured speed of a vehicle

is used in [65] to forecast the driving speed and weather
conditions for six hours inmountains. Theweather conditions
are taken from weather stations. The driving speed of the
vehicles and the weather conditions forecast are input to the
proposed algorithm and processed by the multi-scale hybrid
convolutional LSTM. Moreover, model training is performed
by the established data trends and is further applied it to
real-time forecast. The effect of the implementation of a
number of decomposition algorithms are studied to analyze
the performance of neural networks [66]. A decomposition
algorithm decomposes traffic flow parameters into various
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FIGURE 9. Flow chart of ConVNNs-LSTM showing the convolution
operation to extract features followed by pooling and fully connected
layers for dimension reduction and classification, respectively. The
features are fed to the LSTM for forecast.

components that are further clustered into volatile, periodic
and residual components. These components were then sub-
jected to a bidirectional LSTM to predict traffic flow. The
authors used the convolutional LSTM (ConV-LSTM) in [67],
in which the time features are extracted by the LSTM and the
spatial features are obtained by the convolutional part. The
combined features are further processed to obtain the traffic
prediction. The convolutional part is operated to prepare the
input data that are then processed by the LSTM layer instead
of the pooled layer of ConVNNs. The historical, seasonal,
weather and pollution features of data traffic are combined
for high speed traffic in [68] that designs a convolutional
bidirectional deep LSTM model for accurate prediction of
traffic in complex traffic networks. These features provide
traffic prediction over a diverse set of possible traffic condi-
tions. A function for the measurement of the spatial traffic
features is modeled in [69] that quantifies the correlation
among the traffic flow parameters. It is followed by the
learning of the spatial features by the convolutional LSTM
(ConV-LSTM). Rules for the ensemble diverse convolutional
LSTM are established to robust the prediction algorithm.

The optimization of the weights of the ensemble elements
is performed and the variations in the traffic are tracked.
A regression analysis model of vectors in [70] first eval-
uated the correlations among the variables of traffic. Then
a convolution LSTM is used to predict traffic speed with
multiple features for a single location first and then for multi-
ple locations later. It is also revealed that forecast accuracy
varies with the spatial variations in parameters of traffic.
The authors in [71] argued that the existing deep learning
models for forecasting short-term traffic have the accuracy
constraints beyond a certain threshold due to the presence
of noise, insufficient extraction of features and aliasing in
the components of the data signals. Therefore, an algorithm
is proposed that decomposes the traffic modalities by the
variational mode decomposition and redistributes them by
the self-attention approach, which has improved accuracy.
The authors in [72] argued that the ConVNNs cannot retain
the information in time after the first layer. In addition, the
retaining of short-term spatio-temporal information by the 3D
ConVNNs is not effective for retaining the long-term infor-
mation. The LSTM can extract the long-term information,
it cannot extract the spatial information extraction single-
handedly. Therefore, a framework is given that makes use of
the 3D ConVNNs for extracting the short-term correlations
in space and time and the ConV-LSTM for extracting the
corresponding long-term correlations. Table 2 summarizes
the key aspects of ConVNNs-LSTM algorithms ( [55], [56],
[57], [58], [59], [60], [61], [62], [63], [64], [65], [66], [67],
[68], [69], [70], [71], [72]). Figure 9 shows the flow chart of
the the ConVNNs-LSTM in which the convolution operation
extracts features, the pooling layer reduces the dimensions
of the features and the fully connected layer classifies the
features that are then fed to the LSTM for forecast.

E. TRAFFIC PREDICTION USING GRAPH CONVOLUTIONAL
NEURAL NETWORKS LSTM (G-ConVNNs-LSTM)
This section describes the algorithms using the graph
convolutional neural networkswith the LSTM (G-ConVNNs-
LSTM). The G-ConVNNs part functions similar to Con-
VNNs but it uses graph structures as data input [73], where a
graphG = (V ,E) represents the flow of data over the vertices
set V = {v1, v2, . . . , vn} and the set of edges E ⊆ V × V
with p and q being the total number of respective vertices and
edges [74]. A feature adjacency matrix A of dimension p× p
also represents the graph with Ai,j = 1 if an edge exists from
vertex vi to vertex vj else Ai,j = 0. The output Hl+1 of the l th

layer of the G-ConVNNs is modeled as [75]:

H l+1
= σ (D̂−1/2ÂD̂−1/2H lWl), (17)

where σ is the activation function, Â = A + IN , IN is the
identity matrix and D̂ii =

∑
j Âij is the diagonal node degree

matrix of Â and represents the number of edges for a node i.
The W l is the trainable weight matrix of the l th layer and H l

is an N × F features matrix with N representing the number
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of nodes and F expressing the features of each node in the
l th layer.

According to spectral graph theory, an undirected graph is
represented by the normalized Laplacian L̂ as [76]:

L̂ = IN − D̂−1/2ÂD̂−1/2
= U3UT , (18)

where U is an orthogonal matrix that consists of the eigen-
vectors of L̂ and 3 is a diagonal matrix consisting of the
eigenvalues of L̂. The graph convolution operation is defined,
in the spectral domain as [76]:

x ∗g F = U (UT x ⊙ UTF) = U3UT x, (19)

where ∗g represents the graph convolution operation between
the input signal x and the kernel (or filter) F , UT x is the
Fourier transform of x and ⊙ shows the Hadamard product.
The convolution used by the G-ConvNNsmay also be applied
in different domains such as using spatial domain or wavelet
transform (among the many) [77].

The authors in [78] argued that knowing the traffic features
in space and time is necessary in predicting behavior of the
traffic. Temporal characteristics are significantly explored by
most of the algorithms while spatial characteristics are not
significantly explored due to their variations and complexity.
In this direction, an algorithm is designed that combines the
various features of vehicles such as the distance, distance cov-
ered in a unit time and the angle. These features are combined
in multi-weighted adjacency matrices and the similarities in
the features are learned. Temporal dependencies are learned
by inputting the output of the algorithm to an LSTM model.
A graph convolutional network and LSTM algorithms are
combined in [79] to forecast traffic data. The graph convo-
lution connects the vehicles in the form of graph structures
and the correlation and dependencies are determined among
the graphs, which are then passed to the LSTM that learns and
predicts the traffic trends. A traffic graph convolution LSTM
(TGC-LSTM) algorithm is proposed in [80]. The network is
considered as a graph and interaction among the roadways is
considered in the network. The graph is described in terms of
its physical topology and various convolutional weights are
assigned to the different physical features and a loss function
is computed.

In [81], an attentive traffic flow machine (ATFM)
algorithm is proposed that consists of two convolutional
LSTM parts. The first part takes traffic input and processes it
to generate traffic flow features and the second part processes
them to obtain dynamic weighted spatio-temporal character-
istics. Moreover, the short and long term traffic predictions
are made by interacting with the sequential and periodic
data and the external parameters that influence them. The
authors in [82] proposed a framework that involves dynamic
and non-linear data with high complexity. The network is
considered as a graph and the spatio-temporal characteristics
are obtained and predicted by ConVNNs. The authors in [83]
argued that the existing traffic prediction algorithms mainly
focus on time correlations of traffic data and ignore the cor-
relations in space as well as their mutual correlations, which

affects the prediction by not providing a through correla-
tional analysis of data features. These issues are addressed by
designing an algorithm that reduces data dimension by prin-
cipal component analysis. The graph convolution network
algorithm learns network’s topology and the LSTM corre-
lates the data features in time. The authors in [84] applied
spatial densities to the LSTM and evaluated the missing
values of the densities using interpolation. They concluded
that the spatial densities are better than the speed input in
predicting traffic congestion and travel time. The interpola-
tion process inserts extra computational time to determine the
missing values. An attention based graph Bi-LSTM (AGBN)
algorithm is developed in [85]. It uses graph convolution
networks for obtaining spatial features and Bi-LSTM tem-
poral features. Table 2 summarizes the key aspects of the
G-ConVNNs-LSTM algorithms ([78], [79], [80], [81], [82],
[83], [84], [85]).

F. TRAFFIC PREDICTION USING
GRAPH-ATTENTION-BASED LSTM (GA-LSTM)
TheGA-LSTM algorithms use the graph data structures at the
input and an attention layer that adaptively assigns weights
to the data depending upon the data they process. The graph
attention layer captures prominent features from the data
for future ease of use [86] and uses a set of features h =

{h⃗1, h⃗2, . . . , h⃗N } of N nodes with each node having features
F to produce a set of new features h′

= {h⃗′

1, h⃗
′

2, . . . , h⃗
′
N }with

each node having featuresF ′ [87]. For any two nodes i and j in
the graph, the features of these nodes are linearly transformed
by a weight matrix W of dimension F × F ′ and then a self
attention mechanism in the form of a parameterized weight
vector a is applied to obtain the attention co-efficients eij
as [87]:

eij = a(Wh⃗i,Wh⃗j), (20)

which is computed for every node j in the first-link neighbors
set Ni of node i and then normalized for every neighbor j of i
by the softmax function as [87]:

αij = softmaxj(ij) =
exp(eij)∑

k∈Ni exp(eik )
, (21)

where αij is the normalized attention co-efficient, which
is further processed by the attention mechanism using
leakyReLu function as [87]:

αij =
exp(leakyReLU (a⃗T (Whconc)))∑
k∈Ni exp(leakyReLU (a⃗T (Whconc)))

, (22)

where a⃗T is the transposition of the parameterized weight
vector a⃗ of dimension 2F ′,Whconc = Wh⃗i ∥ Wh⃗j and ∥ is the
symbol of concatenation (conc) operation that transfers the
learned features from one layer to another. Figure 10 shows
the operation of graph-attention while Figure 11 shows the
flow chart of GA-LSTM.

A GA-LSTM algorithm is proposed in [88] in which the
traffic network is an un-weighted directed graph and the
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TABLE 2. Traffic flow prediction using RNNs-LSTM [41], [42], [43], [44], [45], G-RUNNs-LSTM [49], [50], [51], ConVNNS-LSTM [55], [56], [57], [58], [59], [60],
[61], [62], [63], [64], [65], [66], [67], [68], [69], [70], [71], [72] and G-ConVNNs-LSTM [78], [79], [80], [81], [82], [83], [84], [85].

dependencies that are present among the nodes in the graph in
space and time are extracted. The attentionmechanism is used
for modeling the non-Euclidean data while the LSTMmodels
the data in time sequences. A recurrent attention unit (RAU)

concept integrating LSTM with an attention mechanism is
given in [89] that learns about the inner data features to be
used for traffic forecast. The authors in [90] considered the
traffic of a region as a directed graph that is un-weighted and

VOLUME 11, 2023 94383



A. Khan et al.: Short-Term Traffic Prediction Using Deep Learning Long Short-Term Memory

FIGURE 10. In graph-attention, a node (A) applies self-attentions to its neighbors’(B, C and D) features
to compute attention co-efficients normalized by the softmax fuction.

FIGURE 11. Flow chart of GA-LSTM. Nodes obtain features of neighbors
by graph attention mechanism that involves obtaining neighbors features,
applying self-attention to determine attention co-efficients and
normalizing them to be fed to the LSTM for forecast.

acquires the data features in time and space among the nodes
of the graph. It models the non-Euclidean data structures with
graph-attention mechanism and the time-series modeling by
the LSTMwith an effective prediction accuracy. An attention
mechanism based LSTM is proposed in [91] in which the
past values from the long sequences of the data traffic are
used to learn more features for the current values. This allows
better prediction accuracy than the simple LSTM. Table 3
summarizes the key aspects of the GA-LSTM algorithms (see
[61], [89], [90], [91]).

G. TRAFFIC PREDICTION USING MISCELLANEOUS
VARIANTS OF LSTM
This section describes the short-term road traffic forecasting
algorithms involving the LSTM and one or more other algo-
rithms that are not distinguishable enough to be placed in
the classes described above. An algorithm utilizing ensemble
learning of the LSTM with no negativity constraint theory
and using the integration of weights and the optimization
of extremal population methods is proposed in [92]. It first
produces a cluster of LSTM network and its forecasting
is made with respect to different time tags and then the
weight co-efficients of the cluster elements for prediction are
specified using no negativity constraint and the population
extremal. The authors in [93] proposed the stack auto-encoder
LSTM (SAE-LSTM). The SAE part acquires the the features
in space and the LSTM acquires the time features, which are
then combined to forecast the traffic. The vehicle trajectory is
predicted in [94] by using an LSTMwith an encoder-decoder
model that captures the features in time while the features
in space among vehicles are acquired by a graph learning
representation mechanism. A mechanism that aggregates the
attention is also used to know about the attention paid by the
drivers to other vehicles in the neighborhood. An edge-native
LSTM with encode-decoder approach is used for traffic data
prediction in [95] that takes multivariate data input from the
micro-boxes of a selected network.

The authors in [96] combined performance evaluation
of LSTM, LSTM encoder-decoder, ConVNNs-LSTM and
ConV-LSTM. It is found that the ConV-LSTM is the best
in acquiring the data features in time and space. A linear
LSTM scheme is proposed in [97] that forecasts the loss
function by the mean square error (MSE) to measure the
prediction accuracy and then uses the Adam algorithm to
measure, comprehend and learn the extracted features and
optimize them for prediction (MSE-Adam). A dilated LSTM
based algorithm is proposed in [98] for dealing with the
problem of exploding and vanishing of gradient in the RNNs.
The data are obtained from vehicles over a wide network
and preprocessed and organized in time-series of five minute
resolution. Then they are subjected to the LSTM networks;
that consist of four hidden layers with multi-steps dilation
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TABLE 3. Traffic flow prediction using GA-LSTM [61], [89], [90], [91] and miscellaneous variants of LSTM [92], [93], [94], [95], [96], [97], [98], [99], [100],
[101], [102], [103], [104], [105], [106], [107], [108], [109], [110], [111], [112], [113].

to predict the traffic. The authors in [99] fine tune the
time-series analysis of the already existing algorithms using
global position system (GPS) data by introducing dynamic
time wrapping (DTW) algorithm to the LSTM to design the
D-LSTM system. It introduces the attenuation effect in the
data and further enhances the accuracy of the already existing
data processed by deep learning algorithms so that theymatch
more with the historical trends. It also excludes the effect of
special treatment of data on holidays. The authors in [100]
evaluated the spatio-temporal dependencies not only for a
single traffic path but for the adjacent paths as well. This
results in effective traffic flow prediction than the case when
traffic over a single trajectory is considered.

The authors in [101] argued that the most of the traffic
prediction algorithms do not consider the time that is left
until the prediction results become prevailing in the real-time
data traffic. To overcome this problem, a method is designed
that considers traffic incident data and traffic flow data to
forecast the remaining time for which the traffic is impacted.
The framework in [102] addressed that the LSTM has limited
memory and it does not significantly remember the traffic
data from the past. Therefore, a memory time-series network
having additional memory is designed. The data are classified
into long and short-term data, the former represents the over-
all traffic patterns while the latter models the recent traffic
trends. The imputation of missing data is addressed in [103]
to improve data traffic accuracy by imputing the missing

data using the tensor completion method. Various tensor
methods are used to impute the missing data. Four methods
are used to predict the traffic: support vector regression, the
nearest neighbor technique, gradient boost regression tree
and LSTM. The data missing may occur in time, space or
element-wise in a random manner. The results showed that
improving the accuracy of missing data imputation increases
the forecast accuracy. The authors in [104] argued that the
traditional forecast algorithms do not fit well in traffic fore-
casting for automatic driving vehicles when they use the lane
map for navigation. The bias in the model is reduced by
the selection of the features while its variance is reduced by
the random forest algorithm based on bagging. The temporal
trends in traffic data for a lane is obtained by the LSTM
that are also optimized [105]. The method of grid search is
used to select the window size for the spatial and temporal
characteristics so as to achieve accuracy. The time steps for
the features at the input define size of the temporal window
while the size of geographical neighborhood is termed as the
optimal size of the window. The window size is optimized
for the features in time and space and forecast is made by
the LSTM. A Kalman-LSTM model is presented in [106].
First the LSTM model stores the pre-order data followed by
Kalman filter that dynamically adjusts the data to forecast
the traffic. The LSTM is combined with the particle swarm
optimization in [107] that considers the speed of vehicles and
the traffic flow to and from a checkpoint. The rate with which
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TABLE 4. Comparative analysis of the classified categories of algorithms.

the algorithm learns, the batch size and neurons count are
optimized for the LSTM by the particle swarm algorithm.
The model predicts the traffic in a more accurate manner
than some traditional algorithms. The authors in [108] argued
that the existing traffic prediction schemes suffer from the
issues of compromised accuracy and adaptability, difficulty in
real-time applications and the challenging nature of extract-
ing spatial and temporal features. Therefore, a neural network
based on Chebeshev graph is designed. The traffic data fea-
tures are first transformed to new features in the form of a
matrix using a fully connected layer. It is followed by the
LSTM model that learns about traffic state changes for the
sake of capturing temporal dependencies. To address the com-
plex road traffic conditions and spatio-temporal dependencies
of data, the LSTM, GRU, and ConVNNs-LSTM models are
compared in [109] with the conclusion that the GRU is the
best in handling the complex traffic conditions and that a
complexmodel such as ConVNNs-LSTM is not always better
than the less complex models such as LSTM and GRU. The
authors in [110] proposed a stacked LSTM algorithm. They
considered real time and historical data from Google Map
using three different urban road conditions. The predicted
speed of the algorithm is then mapped into the predicted
flow of traffic using a correlation algorithm. A dynamic opti-
mization based LSTM is proposed in [111] that performed
traffic data pre-processing and classified them into normal
and outlier data. The training of the LSTM is performed
only by the normal data to further perform traffic prediction.
A chaotic particle swarm optimization (CPSO) algorithm

dynamically optimizes the hidden layer of the LSTM so as
to achieve robust performance. The feature selection is com-
binedwith the LSTMmodel in [112]while features extraction
in space and time is performed in [113] for forecasting with a
bi-directional LSTM. Table 3 summarizes the key aspects
of the miscellaneous variants of the LSTM algorithm (see
[92], [93], [94], [95], [96], [97], [98], [99], [100], [101],
[102], [103], [104], [105], [106], [107], [108], [109], [110],
[111], [112], [113]). These algorithms opt various diverse and
varied strategies and mechanisms to process the data before
input to the LSTM. In addition, they also combine one or
more strategies with the LSTM. Based on the description
of the classified algorithms, Table 4 provides a compara-
tive analysis. Every algorithm class has its own operational
strategy, merits and demerits that make it applicable to var-
ious traffic conditions and other applications as well. The
limitations of these algorithms are helpful in further improv-
ing them. Applying a specific class of algorithms to the traffic
conditions depends upon the types of the traffic networks.
In addition, the nature of the data these classes of algorithms
generally process is described for their use in various fields.
The complexity of algorithms processing spatio-temporal
data is generally higher than algorithms using temporal data.
Figure 12 shows the number of publications made per year
from 2013 to 2023 for traffic prediction. These publications
include the traffic prediction in various applications, such as
railway, aerial, pedestrian, vehicular and computer networks,
to mention a few. Some of the values; especially the smaller
values, have been normalized for the sake of better graphical
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FIGURE 12. The publication count per year involving LSTM for traffic (aerial, vehicular, pedestrian, vehicular and computer network traffic, to mention
a few) prediction from 2013 to 2023. As the graph depicts, the LSTM has been one of the widely used algorithms for traffic prediction in the
mentioned decade. Data taken from: https://app.dimensions.ai.

visibility and presentation. It also shows the the LSTM is
one of the utmost important algorithms of deep learning
that has been extensively used for traffic forecast in various
applications.

VII. CHALLENGES IN SHORT-TERM TRAFFIC PREDICTION
USING LSTM
There are some challenges inherently associated with the
LSTM and the short-term road traffic prediction algorithms,
which are described in the following lines.

• The LSTM model requires a significant amount of
input data for training the network before performing
prediction. This not only challenges the availability of
data but also enhances the computational complexity of
the algorithm. Moreover, when the datasets are large,
the training process becomes cumbersome and time-
consuming.

• The past information retention capability of the LSTM
model degrades for large datasets, which requires more
sophisticated strategies to be addressed. This also causes
the vanishing gradient problem to become significant
with heavy data size. This is because the gradient values
are multiplied and the smaller values of the gradient with
heavy data load significantly reduce the overall gradient.

• The accuracy of prediction of the LSTM hampers with
highly nonlinear traffic variables and noise. Therefore,
information extraction from the data in such scenarios is
challenging.

• The application of the LSTM is limited to datasets
that exist in the form of sequences (time-series).
It poorly performs in dealing with non-sequential dat-
sets, such as tasks prediction and classification in online
learning.

• In applications involving the use of multiple features of
data for prediction, optimal information extraction from
the stochastic and random data is challenging.

• The designed traffic prediction strategies are gener-
ally valid for a small network with specific conditions
and parameters (such as dependency on geographic
locations, weather conditions, to mention a few).
Designing prediction strategies applicable to a diverse
set of traffic networks takes into account multiple design
and prediction strategies.

VIII. CONCLUSION AND FUTURE WORK
This paper addressed a survey of the latest and state-of-
the-art short-term road traffic algorithms using the LSTM
deep learning model. The algorithms developed in the last
three years are studied and analyzed to provide an in-depth
and thorough description rather than a marginal description
of deep learning algorithms. The algorithms dealing with
the short-term traffic prediction in intelligent transportation
are useful in forecasting travel time, traffic volume, clean,
safe and secure roads. They are also helpful to predict the
optimal travelling trajectories for the vehicles, especially for
the driverless vehicles during travelling. They are useful to
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estimate accident and fatality rate of the road conditions
and allow the traffic management authorities to adopt robust,
efficient, secure and travel-friendly policies for traffic man-
agement. They are also effective to forecast the adverse
weather conditions (snow, rain, wind, flood, among themany)
and provide an alarm before they actually take place to cause
road emergencies. The challenges associated with the LSTM-
based short-term traffic forecast are addressed and strategies
are mentioned for their solutions in future investigation.

As future work, the following research strategies are
promising to address the challenges associated with the
LSTM-based short-term traffic prediction [114].

• The use of an attention mechanism will ease the features
extraction process by focusing on the important features
of the input data. This will reduce the computational
complexity to a significant extent.

• The application of noise removal techniques to the input
data such as filtering the image data and leveraging
the data numbers to practically existing values would
improve the accuracy of prediction.

• The use of transformer architecture allows parallel pro-
cessing of time-series data that can be applied to reduce
the training time and expedite the output prediction.
Moreover, they can also be used to capture dependen-
cies among the elements of sequences, even for long
sequences. This can be helpful in dealing with the van-
ishing gradient problem.

• The investigation in the use of transfer learning tech-
niques will be helpful in learning the parameters from
the input data and then applying it again on the similar
network or the same network in different time slots. This
will reduce the computational time. This is particularly
helpful in diverse traffic networks with complex data.

• The use of the concept of cloud computing could reduce
the computational delay and ensure efficient utilization
of the resources, especially in training the LSTM and
other deep learning algorithms, as the cloud resources
are used for these purposes.
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