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ABSTRACT RGB-D saliency object detection (SOD) is an important pre-processing operation for various
computer vision tasks and has receivedmuch attention in recent years. However, how to extractmore effective
features and how to effectively fuse RGB and depth modality features are still challenges that restrict the
development of SOD. In this paper, we propose an effective network architecture called FFMA-Net: 1) We
replace the backbone network of the baseline with a ResNet34 model to extract more effective features from
the input data; 2) We design the HAM module to refine the features extracted by the ResNet34 model at
different stages to ensure the effectiveness of features from each stage; 3) We propose the FFU module to
perform multi-scale fusion of features from different stages, resulting in more semantic-rich features that are
crucial for the decoding stage of the model. Finally, our model performs better than the latest methods on six
RGB-D datasets on all evaluation metrics, especially in terms of F-measure metric, which shows significant
improvement with approximately 5% on both SSD and LFSD datasets.

INDEX TERMS RGB-D salient object detection, forward feedback unit, hybrid attention mechanism.

I. INTRODUCTION
The human visual system is equipped with an attention mech-
anism that allows us to effortlessly concentrate on the most
prominent objects or regions within a scene. In computer
vision, the task of saliency object detection [1], [2] aims to
automatically identify the most significant region or object in
a given scene. In addition to perceiving the color appearance,
texture features, and physical size of an object, the human
visual system also possesses the capability to perceive its
depth. This depth perception contributes to our understanding
of three-dimensionality of the object and enriches our percep-
tion by providing more comprehensive information.

With the continuous advancements in camera technol-
ogy, depth cameras like Microsoft Kinect are being used to
capture depth maps of visual targets. In contrast to RGB
images, depth maps provide valuable geometric structure,
boundary information, and internal consistency of the visual
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target. On the other hand, RGB images offer detailed color
appearance, texture, and other relevant information. By effec-
tively incorporating RGB and depth information, saliency
object detection (SOD) models can tackle more challenging
visual scenes, including those with cluttered backgrounds or
low contrast. Consequently, the research on RGB-D image
saliency object detection has gained considerable attention
from scholars and has witnessed significant progress in recent
years [12], [19], [20], [21], [22], [23]. The utilization of
RGB-D image saliency object detection extends to various
fields, such as co-saliency object detection [3], [4], [5], image
retrieval [6], video segmentation [7], super-resolution [8],
[9], [10], visual tracking [11], depth estimation [13], super
pixel segmentation [14], remote sensing SOD [15], [16],
[17], light field saliency object detection [18], and more.
However, in traditional or deep learning-based methods, the
main emphasis has been on fusing and interacting depth
features with RGB features. Unfortunately, a crucial issue has
often been overlooked: the variability in the quality of the
depth maps within the dataset.When high-quality depth maps
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FIGURE 1. Examples of different quality depth maps are shown. The first
row is a better depth map, the second row is second, and the third row is
worse. A good quality depth map can display boundary information and
accurate positioning more clearly.

are accessible, they contain clearer boundary and internal
consistency information that is essential for accurate RGB-D
salient object detection.

For low-quality depth maps, their lack of reliable infor-
mation can impede the effective fusion of RGB and depth
features, consequently impacting saliency object detection
performance. Thus, it is crucial to ensure the quality of
depth maps when conducting RGB-D image saliency object
detection. Figure 1 illustrates several examples of depth maps
with differing qualities. The labeled best depth map exhibits
clearer boundaries and more accurate target position infor-
mation, whereas the labeled poor depth map fails to provide
reliable information and may even disrupt the fusion of RGB
and depth features, thereby compromising saliency object
detection performance.

The depth information of visual targets has been proven
to be highly effective in enhancing salient object detection,
as demonstrated in previous studies. However, the existing
research primarily emphasizes the successful fusion of depth
features and RGB features. As a result, this paper explores
two additional aspects to build upon this foundation. Firstly,
it focuses on extracting more efficient feature representa-
tions during the feature encoding stage. In RGB-D salient
object detection, the input comprises both RGB and depth
information from the target image. However, the quality of
captured depth maps can vary due to the use of different
devices for depth map acquisition. When low-quality depth
maps are used for feature extraction, they may adversely
affect the model’s inference and predictions. Therefore, it is
crucial to extract more effective features during the feature
encoding stage in order to enhance the model’s performance
in inference and predictions. Secondly, this paper intro-
duces the fusion of feature representations at different scales,
going beyond the previous emphasis on fusing depth map
and RGB map features exclusively. Generally, larger-scale

features convey more detailed information about the target,
such as color appearance and texture features. On the other
hand, smaller-scale features provide more semantic informa-
tion. By fusing information from multiple scales, this paper
aims to further enhance the expressive power of the features.

Inspired by the previous discussion, this paper presents a
novel architecture that enhances feature extraction capabili-
ties compared to the baseline model. We introduce the Mixed
AttentionMechanismmodule in the encoding stage to further
refine the extracted feature information from the backbone
network. These refined features enhance accuracy and effec-
tiveness, crucial for effective model learning. Additionally,
we incorporate Forward FeedbackUnit modules into adjacent
feature encoding stages, allowing the fusion of information
at different scales. The fusion of multi-scale features is well-
known to provide richer information as features at different
scales possess distinct characteristics. We effectively transfer
the fused multi-scale features to the decoding stage, ben-
efiting the model’s decoding process. Moreover, ablation
experiments support the effectiveness of our proposed For-
ward Feedback Unit module. Specifically, we replace the
backbone network of the baseline model with the ResNet34
model, which offers stronger feature extraction capabilities
compared to VGG16. This enables the extraction of more
diverse and effective feature representations. Considering the
varying quality of depth maps in the dataset and the redun-
dant nature of features extracted by the backbone network,
we design theMixed AttentionMechanismmodule. By refin-
ing RGB and depth features in the encoding stage, we ensure
the correctness and effectiveness of features at each stage.
Finally, our novel Forward Feedback Unit module facilitates
the multi-scale fusion of features from different encoding
stages. This fusion process combines the distinctive informa-
tion carried by features at various scales, resulting in richer
feature information, particularly beneficial for detection and
classification tasks.

Overall, our contributions in this paper can be summarized
as follows:

• We designed a novel Hybrid AttentionMechanismmod-
ule to refine and correct features in the encoding stage,
ensuring the effectiveness and accuracy of features at
each encoding stage.

• We proposed a Forward Feedback Unit module, which
can fuse multi-scale encoded features to achieve richer
semantic information, essential for feature decoding.

• To further improve the performance of the proposed
model, we explored the effects of different backbone
networks on the model. In this section, we replaced
the backbone of Baseline with ResNet34 and ResNet50
models to enhance the feature extraction ability of the
model.

The structure of this paper is briefly outlined as follows:
Section II introduces related work. Section III describes the
overall architecture of the model, the implementation of the
Hybrid AttentionMechanismmodule, and the Forward Feed-
back Unit module. Section IV provides a detailed analysis of
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experimental performance and results. Section V concludes
this work.

II. RELATED WORKS
In this section, we mainly introduced some related work of
the proposed model in this paper, including RGB-D salient
object detection, forward feedback unit module, and attention
mechanism.

A. RGB-D SALIENT OBJECT DETECTION
There are primarily two categories of RGB-D salient
object detection methods: traditional detection methods and
deep learning-based detection methods. Traditional detec-
tion methods primarily utilize manually extracted features
for object detection, such as image contrast [26], target
shape [27], local background closure [23], [24], etc. However,
the performance of traditional methods is typically unsatis-
factory when dealing with complex visual scenes due to the
limited expressive power of handcrafted features. In recent
years, deep learning-based RGB-D salient object detection
methods have made significant progress, benefiting from the
rapid development of deep learning in the field of computer
vision.

For instance, Fu et al. [28] designed a Siamese network for
joint learning and devised a dense collaborative fusion strat-
egy to fuse features. Zhang et al. [30] integrated cross-modal
feature information through a tightly connected structure
and then built a dynamic filtering network. Liu et al. [29]
designed a residual fusion module to integrate depth decoded
features into the RGB branch during the feature decod-
ing stage. Zhang et al. [30] primarily studied the interaction
between RGB and depth modalities in cross-modal set-
tings and proposed an inconsistent interaction mode, i.e.,
the interaction between RGB modality and depth modality.
Zhao et al. [31] introduced depth quality-aware control to
mitigate the impact of low-quality depth maps while per-
forming interactions in cross-modal settings. Zhao et al. [31]
trained an enhanced contrastive network primarily to improve
the quality of depth maps, resulting in clearer and more
consistent depth maps and their regions, which in turn leads
to better performance during model inference. Similarly,
Chen et al. [32] proposed an enhancement and fusion frame-
work that first generates a guidance map to address the
low-quality issues of depth maps. Wang et al. [62] proposed
a cross-modal network design along with a multi-cross atten-
tion module, which combines spatial attention and channel
attention in a multi-cross manner to better utilize the rich
detailed information of salient objects, thus improving the
performance of the model. Kanwal et al. [63] introduced a
local detail enhancement module that effectively captures
intra-modal features at lower levels of the base network using
a novel operation-level shuffling channel attention module,
thereby enhancing the performance of the model. In com-
parison to the aforementioned works, the hybrid attention

mechanism proposed in this paper has the advantages of
having a simpler structure and achieving better results.

B. FORWARD FEEDBACK UNIT MODULE
Recently, the forward feedback unit module has been widely
adopted in various network architectures to tackle computer
vision tasks. For example, in semantic segmentation [35], the
aim is to extract high-level linguistic information by employ-
ing topological loss. The obtained higher-level language
information is then fed back to the shallow network to correct
low-level semantic details. Consequently, this approach trans-
forms significant outputs into input information for image-
related problems, effectively addressing visual classification
challenges within computer vision tasks.

The forward feedback unit module offers an efficient way
to integrate two tensors of different sizes. In deep learning
models, this mechanism enables the reuse of tensors with the
same size across multiple dimensions, resulting in reduced
parameter count and improved inference calculation speed.
This feedback mechanism can be applied to various network
models associated with visual tasks [33], [34], making it ver-
satile for fulfilling different computer vision objectives such
as object detection, semantic segmentation, instance segmen-
tation, among others. In semantic segmentation tasks specif-
ically, there are endeavors to extract high-level language
information utilizing topological loss, with the potential for
feeding back the resulting higher-level information to the
shallow network for refining low-level semantic information.

C. ATTENTION MECHANISM
Traditional convolutional neural networks (CNNs) are pri-
marily focused on extracting features from input data,
often overlooking the important relationships and dependen-
cies between these features. However, incorporating these
dependence relationships can greatly enhance the perfor-
mance of CNNs. As a result, researchers have increasingly
directed their attention towards exploring and leveraging
these dependencies.

Several mechanisms have been introduced to address this
issue. The spatial attention mechanism [36] enables a neural
network model to automatically identify regions of interest
within an image. The channel attention mechanism [37],
on the other hand, learns the importance of each channel and
assigns corresponding weights to enhance the overall model
performance. The self-attention mechanism [38] is designed
to capture long-range dependencies in feature information,
leading to improved model performance. Researchers have
also developed text attention mechanisms [39] for multi-
modal reasoning and matching, as well as recurrent atten-
tion mechanisms [40] that iteratively generate more accurate
saliency results.

Furthermore, hybrid attention mechanisms have been pro-
posed to combine different types of attention. For instance,
Woo et al. [41] introduced BAM and CBAM attention
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mechanisms, which integrate spatial and channel attention
mechanisms in series or parallel to achieve superior results.

Building upon these insights, this paper presents a novel
attention mechanism model that combines channel attention
mechanisms, spatial attention mechanisms, and NAM [42]
units in series. By utilizing parameter-free calculations
offered by the NAM unit, the proposed attention mechanism
model strikes a balance between model parameters and com-
putational efficiency.

III. METHOD
In this section, we first elaborate on the overall structure of
the proposed method in Section III-A. Then, we provide a
detailed description of our designed hybrid attention mech-
anism module in Section III-B. Finally, we introduce the
forward feedback mechanism in Section III-C.

A. OVERALL FRAMEWORK OF MAFF-NET
Figure 2 illustrates the overall structure of the proposed
method, which consists of three main parts: the encoder,
decoder, and feature fusion module. Firstly, the RGB image
and depth map are input into twin encoders to obtain
multi-level feature representations. At each stage of feature
encoding, a hybrid attention mechanism module is added to
refine and rectify the corresponding stage features. Secondly,
the refined and rectified features are fused and computed
by the feature integration module [57]. We introduce a for-
ward feedback mechanism module to the feature integration
module, effectively fusing the current-stage features with the
next-stage features to obtain semantically rich feature repre-
sentations. Finally, the feature representations obtained by the
encoder are passed to the decoder for inference calculations,
resulting in the final prediction outputs. The RGB images
and depth maps input to the model are uniformly scaled
to 352∗352∗3 and 352∗352∗1, respectively. Next, we will
provide a detailed introduction to the hybrid attention mech-
anism module and the forward feedback mechanism module.

To ensure computational efficiency, we employ the
relatively shallow ResNet34 network as the backbone net-
work, which has been pre-trained on the ImageNet dataset.
We retain only the convolutional layers of the ResNet34
network, removing the last max pooling layer and fully con-
nected layer. Firstly, the RGB image and depth map are input
into the ResNet34 backbone network for feature extraction,
yielding five stages of RGB features denoted as RGB_F i and
depth features denoted as DEPTH_F i, where i is the index
of the feature level ranging from 1 to 5. Considering the
information redundancy of different stage RGB features and
depth features, along with potential errors in depth features,
we incorporate a hybrid attention mechanism module after
each stage to rectify and refine the feature, ensuring its effec-
tiveness and correctness. Different scales of features capture
different information, with low-level encoded features con-
taining color, texture, and detail information, and high-level
encoded features containing semantic and category informa-
tion. Therefore, we design a forward feedback unit module

after cross-modal feature fusion to combine the current-scale
feature with the next-scale feature, resulting in fused features
that contain richer information.

The decoder structure of our proposed model corresponds
one-to-one with the encoder structure and consists of five
stages. The first two decoding blocks of the decoder comprise
two convolutional layers and one transposed convolution,
while the last three decoding blocks consist of three convo-
lutional layers and one transposed convolution. During the
decoding stage, the fused features obtained in the encoding
stage are passed to the corresponding decoding block for
feature concatenation. This allows the decoder to restore
features and perform progressive inference, leading to more
accurate predictionmaps. Additionally, the outputs of the five
decoding stages of the proposedmodel are S1, S2, S3, S4, and
S5. Finally, we consider the output of the first decoding block
as our final prediction map.

B. HYBRID ATTENTION MECHANISM MODULE
Convolutional neural networks (CNN) are widely used in
various computer vision tasks as a powerful tool for feature
extraction, but they have inherent weaknesses. For example,
the features extracted by CNN may not fully describe the
content of an image, which can lead to classification errors
or detection false alarms. Additionally, CNN may be sen-
sitive to distortions, lighting, and scale changes, resulting
in insufficient feature representation. These shortcomings
can negatively impact the performance of the entire network
model.

Inspired by attention mechanism theory, we propose a
new attention mechanism architecture called the hybrid atten-
tion mechanism module to address these issues. The hybrid
attention mechanism module consists of three parts: channel
attention mechanism, spatial attention mechanism, and the
Normalization-based Attention Module. We combine them
organically using a concatenation approach, compare six dif-
ferent concatenation methods in our ablation experiments,
with the most prominent being the combination of channel
attention mechanism [37], spatial attention mechanism [38],
and NAM [42].

The computational process of the hybrid attention mech-
anism module is shown in Figure 3. Specifically, the input
data is first processed by the channel attention mechanism to
obtain feature weights, which are then point-multiplied with
the input data. Next, the feature weights from the channel
attention mechanism are passed into the spatial attention
mechanism, where feature weights are calculated again and
point-multiplied with the previous result. Finally, the output
of the spatial attention mechanism is passed into the NAM
module for calculation of feature weights, which are then
again point-multiplied with the previous result to obtain the
final feature information. This entire computation process can
be expressed using the following formula: We first compute
the channel attention mechanism for the input features. The
model can adaptively learn the importance of each channel,
selectively weighting and merging features from different
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FIGURE 2. The overall architecture of the proposed HAFF-Net. The overall network structure is mainly composed of three
stages: feature encoding, feature fusion, and feature decoding. The HAM module mainly extracts and preserves the
features obtained by the backbone network to ensure their effectiveness, while the FFU mainly performs multi-scale
feature fusion on the basis of modal feature fusion. Finally, after the features are fused, they are passed to the decoding
module for decoding processing.

FIGURE 3. The detail of the HAM.

channels. Next, we incorporate the spatial attention mecha-
nism on top of the previous computation. This mechanism
calculates weights to determine the contribution of each posi-
tion or region to the task and focuses more on areas with
higher weights. Finally, we utilize the Normalization-based
Attention Module (NAM) to compute attention on the
features. NAM applies normalization techniques to better
handle the distribution of input data during attention com-
putation. As a result, the Mixed Attention Mechanism mod-
ule enhances the model’s emphasis on important features,
thereby improving performance and robustness.

f i,crd = CA
(
f ird

)
⊗ f ird + f ird (1)

f i,csrd = SA
(
f i,crd

)
⊗ f i,crd + f i,crd (2)

f i,cssrd = NAM
(
f i,csrd

)
⊗ f i,csrd + f i,csrd (3)

In the equations above, f ird the result of merging depth and
RGB features in each encoding stage, the symbol ⊗ denotes
matrix multiplication, while CA and SA represent the chan-
nel attention mechanism and spatial attention mechanism
respectively, and NAM represents the Normalization-based
Attention Module.

C. FORWARD FEEDBACK UNIT MODULE
RGB-D salient object detection utilizes a convolutional neu-
ral network with an Encoder-Decoder structure for process-
ing. The Encoder incorporates a sequence of convolution
operations, pooling operations, and activation calculations,
primarily employed to extract features from the input data.
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However, the deep structure of the network may lead to the
neglect or loss of crucial feature information during these
convolutions, pooling, and activation computations. This
becomes especially pronounced when considering the input
for salient object detection, which comprises RGB and depth
information. Notably, the quality of the depth map can vary
depending on the dataset, and in the case of inadequate depth
maps, it may contain insufficient effective feature information
and even unwanted interference. Consequently, this can cause
the model to potentially forfeit essential feature information
throughout the feature extraction process.

To solve this problem, we propose a newmodule called the
Forward Feedback Unit module. The Forward Feedback Unit
module mainly consists of convolution operations, up sam-
pling operations, and pooling operations. Specifically, it has
two inputs, and the shapes of these two input tensors are
different. The Forward Feedback Unit module performs a
series of convolution operations, up sampling operations, and
pooling operations on these two input tensors to effectively
fuse and enhance them. The shape of the fused tensor is
the same as one of the input tensors. Finally, we describe in
detail the calculation process of the Forward Feedback Unit
module, here we take F1 and F2 as examples. The Forward
Feedback Unit module consists of two branches. For the
first branch: firstly, F1 is input into the Forward Feedback
Unit for convolution calculation, secondly, the result of the
calculation is point-multiplied with f i−1

result , and finally, the
result of the multiplication is added to F1 by point addition.
For the second branch: firstly, F2 is input into the Forward
Feedback Unit for global average pooling and convolution
calculation. Assuming that the result obtained is f i−1

result , it is
then subjected to upsampling calculation, and assuming that
the result obtained is f i−1

up . Finally, we point-add the results
of the two branches to obtain the final result. The entire
computation process of the Forward Feedback Unit module
can be expressed using the following formula.

f i−1
result = conv1×1

(
GAP

(
f i−1

))
(4)

f i−1
up = up

(
f i−1

)
(5)

ffinal = conv3×3

(
f i

)
⊗ f i−1

result + f i + f i−1
up (6)

Here, in the first branch of the Forward Feedback Unit
Module, a 3∗3 convolution is applied to f i−1, the purpose
of this convolution is mainly to resize f i−1, resulting in
conv3×3

(
f i

)
. Next, we fuse conv3×3

(
f i

)
and f i−1 by per-

forming matrix multiplication, which merges their features.
Finally, we enhance the features by adding the preliminary
fused result with conv3×3

(
f i

)
, yielding the output of the

first branch. Moving on to the second branch of the module,
we start by applying global average pooling GAP to the fea-
tures. Then, we use a 1∗1 convolution to calculate the weights
for f i−1 based on the pooled result. Subsequently, we perform
matrix multiplication to fuse f i with the resulting weighted
feature map, denoted as f i−1

result . To match the dimensions,
we up sample f i−1 using linear interpolation. The upsampled

result serves as the output of the second branch. Finally,
we combine the outputs of the two branches through matrix
addition to achieve feature fusion at different scales. In the
formulas, f i−1 and f i represent features from two distinct
encoding stages. GAP represents global average pooling, up
denotes up sampling, the symbol ⊗ denotes matrix multi-
plication, conv1×1 and conv3×3 refer to 1∗1 convolution and
3∗3 convolution operations, respectively.

IV. EXPERIMENT
We first introduce six commonly used RGB-D salient object
detection datasets and four commonly used evaluation met-
rics. Then we describe in detail our experimental settings
and the experimental environment. Afterwards, we compare
our proposed method with the 21 latest methods, and finally,
we conduct a series of ablation experiments to demonstrate
the effectiveness of our proposed modules and methods.

A. DATASETS
We evaluated the performance of our model on six commonly
used RGB-D datasets and compared it with 21 other state-
of-the-art methods. These datasets include STERE, LFSD,
NLPR, RGBD135, NJUD, and SSD. STERE

Reference [43] comprises 1000 pairs of stereo images
obtained from the Internet. Depth maps corresponding to
these stereo images were estimated, encompassing various
outdoor scenes and objects. LFSD [44] is a light field SOD
dataset consisting of 100 indoor and outdoor images with
accompanying depth maps, predominantly featuring simple
foreground objects. The RGBD135 [45] dataset contains
135 images mostly involving relatively uncomplicated fore-
ground objects and visual scenes, with good quality depth
maps. NJUD [43] is a collection of 1985 stereo images, 3D
movies, and photos sourced from the Internet and stereo-
scopic films. It showcases different objects and complex
scenes, with depth maps estimated from stereo images.
SSD [46] is a smaller-scale dataset comprising 80 stereo
movie frames, including various movie scenes with peo-
ple, animals, buildings, etc., serving as foreground objects.
SIP [22] is a recently released dataset containing 929 images
and high-quality depth maps, each with a resolution of
744 × 992 pixels.

B. EVALUTION METRICS
To quantitatively evaluate the performance of our pro-
posed method, we use four metrics: S-measure, F-measure,
precision-recall curves, and Mean Absolute Error to assess
the final performance of the model.

Precision-Recall curves: P-R curve is a performance eval-
uation curve plotted with Precision (P) as the horizontal axis
and Recall (R) as the vertical axis. Generally, the following
formulas are used to calculate Precision (P) and Recall (R).

Precision =

∣∣H ⋂
G

∣∣
|M |

(7)

VOLUME 11, 2023 96073



H. Li et al.: Hybrid Attention Mechanism and Forward Feedback Unit

Recall =

∣∣H ⋂
G

∣∣
|G|

(8)

F-measure: Sometimes the results evaluated by the P-R curve
may be unreliable. Therefore, F-measure is a widely used
comprehensive evaluation index, which mainly calculates the
final result by calculating the precision and recall scores.
We can use the following formula to calculate the F-measure.

Fβ =

(
1 + β2

)
Precision× Recall

β2Precision+ Recall
(9)

The precision and recall in the formula represent the precision
score and recall score, and β2 is set to 0.3 to emphasize
precision.

Mean Absolute Error (MAE): MAE calculates the average
pixel absolute error between the predicted image and the
corresponding ground truth. The formula is as follows.

MAE =
1

H ×W

H∑
i=1

W∑
j=1

|P (i, j) − G(i, j)| (10)

In the formula, H and W represent the height and width of
an image respectively. P (i, j) represents the predicted image
and G(i, j) represents the ground truth.
S-measure: The emphasis of S-measure is to measure the

structural similarity between the predicted image and the
ground truth while considering both region-aware and object-
aware structural similarities. The specific calculation process
is shown in the following formula.

S = αSo + (1 − α) Sk (11)

The parameter α in the formula is set to 0.5 to balance the
region-aware similarity Sk and object-aware similarity So.

C. EXPERIMENTAL SETTINGS
The MAFF-Net model proposed in this study is designed for
salient object detection, a crucial task in computer vision. The
training of the model was conducted on a synthetic dataset
consisting of 2050 samples, including 1400 samples from the
NJUD dataset and 650 samples from the NLPR dataset. Dur-
ing the training process, the input image size was uniformly
scaled to 352 × 352, and various data augmentation tech-
niques were utilized such as flipping, cropping, and rotation
to prevent overfitting. The model architecture was imple-
mented in Pytorch and trained on a Tesla V100-PCIE-16GB
GPU. To reduce computational cost and improve efficiency,
ResNet34was selected as the backbone network, and the final
pooling layer and fully connected layer were removed. Pre-
trained weights from the ImageNet dataset were applied to
improve the initialization of the network. For optimizing the
performance of the designed model, the stochastic gradient
descent (SGD) algorithm was used with a batch size of 4,
learning rate of 1e-4, weight decay of 0.1, and a total of
60 epochs. Additionally, to avoid overfitting during long-term
training, the model was saved every 5 epochs. After training,
the model achieved an average FPS of 21.

D. COMPARISON WITH STATE-OF-ART METHODS
We compare our method with 21 other state-of-the-art meth-
ods on six widely used benchmarks, including PCF [47],
AFNet [48], CPFP [31],DMRA [40], MMCI [49], TANet
[50], D3Net [22], JLDCF [51], S2MA [29], PGAR [52],
ICNet [19], DASNet [53], UCNet [54],DCF [55], DSA2F
[56], CCAFNet [61], HAINet [57], LIANet [58], CDINet
[30], CIRNet [59], RD3DNet [60]. Some of the above
methods are trained with subsets of NJU2K and NLPR,
while others are trained with subsets of NJU2K, NLPR and
DUTLF-depth.

1) VISUAL COMPARISON
Figure 5 presents a visual comparison of the inference results
between our proposed model and seven other state-of-the-art
models. Upon observing Figure 5, it is evident that our model
achieves the best saliency detection performance compared
to the other seven models. The saliency maps generated by
our model exhibit clearer contours and internal consistency in
most scenes. Specifically, in the fourth and sixth rows where
the visual scenes feature complex backgrounds, our model
produces saliency maps with sharper boundaries compared
to the other models, thereby demonstrating its effectiveness
in challenging scenarios.

Furthermore, we showcase visual comparisons of feature
activation on the LFSD and STERE datasets. The LFSD
dataset consists of 100 images, most of which contain
prominently distinguishable target regions. By employing
the mixed attention mechanism for feature activation, the
pixel-level feature representation and regional target percep-
tion are enhanced, as exemplified in the left three images of
the fourth row in Figure 6. As for the STERE dataset, which
is the first stereo image SOD dataset comprising 1000 pairs of
stereo images collected from the Internet, the image quality
varies, and some visual scenes have distracting elements in
the target region. Nevertheless, by utilizing the proposed
mixed attention mechanism for feature activation, the percep-
tion of the target region is also enhanced, as shown in the right
three images of the fourth row in Figure 6.

In summary, through comparisons with seven other state-
of-the-art SOD models and visual comparisons of feature
activations on multiple datasets, the HAFF-Net model pro-
posed in this study achieves better salient object detection
performance in different scenarios, demonstrating its poten-
tial for practical applications and broad prospects.

2) COMPARISON WITH ADVANCED METHODS
Table 1 presents the quantitative comparison results between
the proposed model and 21 other models. Figure 7 depicts
the P-R curves of the proposed model and six other models:
CDINET, HAINET, SPNET, LIANET, CCAFNET, and CIR-
NET. Overall, our proposed model outperforms these models
on six public datasets, especially in terms of the MAEmetric,
which shows a significant decrease across all six datasets.
Our model demonstrates a significant improvement in all
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FIGURE 4. The detail of the FFUM network.

FIGURE 5. Visual comparison with other 9 advanced methods.

evaluation metrics on the NJUD and SSD datasets, par-
ticularly achieving an approximately 5% increase in the
F-measure metric. On the SIP, RGBD135, and STERE
datasets, our model performs similarly to the best-performing
models. There is only a slight difference in the F-measure
metric for the SIP and STERE datasets, while the RGBD135
dataset shows a slightly higher difference in the E-measure
metric. On the LFSD dataset, our model maintains con-
sistency with the best model in terms of the MAE metric
but shows a slight difference in the other three metrics.

Additionally, we compared the FPS values of each model in
Table 1, indicating that our proposed model achieves the best
balance between performance and FPS.

E. ABLATION STUDIES
In this section, we conducted a series of ablation experi-
ments to evaluate the effectiveness and importance of the
proposed modules in our paper. The ablation experiments
were performed with a batch size of 4, a learning rate
of 1e-4, weight decay of 0.1, and a total of 60 epochs.
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FIGURE 6. Visualization of feature activations.

FIGURE 7. Quantitative comparisons with 7 state-of-the-art methods over 4 datasets.

We saved the trained model at intervals of 5 epochs. The
proposed modules that we introduced in our paper include the
Hybrid AttentionMechanismModule, the Forward Feedback
Unit Module, and the replacement of the baseline backbone
network with ResNet34. These modules were designed to
enhance the performance of object detection. To assess the
impact of these modules, we compared the results of the
ablation experiments. The specific outcomes highlighted
the effectiveness of the proposed modules and the improve-
ments achieved. Table 2 provides a detailed overview of the

effectiveness of these modules and the corresponding
enhancements observed.

1) COMPONENT VALIDITY
By examining Table 2, where B represents the baseline,
we utilized VGG16 as the backbone network and performed
fusion operations on the original RGB and depth maps for
decoding, following the approach described in HAINet [57].
Rows 2, 3, and 4 of the table highlight different combina-
tions of components. Analyzing the second row of Table 2,
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TABLE 1. Quantitative comparisons on six widely used datasets. We select four commonly used evaluation indicators for the evaluation of the model,
including F-measure (FM, the bigger, the better), S-measure (SM, the bigger, the better), MAE (the smaller, the better), and E-measure (EM, the bigger, the
better). The best results are marked in red font.

it becomes evident that incorporating each module into the
baseline leads to a corresponding improvement in perfor-
mance. Particularly noteworthy is the fourth row of the table,
where we integrated all modules and enhancements into the
baseline, resulting in significant performance improvements
across the three datasets. Specifically, compared to the base-
line, the F-measure metric increased by approximately 5%
on the NJUD and SSD datasets, while the MAE metric
decreased by around 20%.Overall, our proposedmodules and
improvements presented in this paper offer substantial
enhancements for the performance of the model.

2) DIFFERENT HYBRID ATTENTION
To further investigate the performance of the Hybrid Atten-
tion Mechanism (HAM) module, we conducted an ablation
experiment analysis on different combinations of the HAM
module. The HAM module comprises the spatial atten-
tion mechanism, channel attention mechanism, and NAM.
We explored six combinations by concatenating these com-
ponents in different orders. Our experiments were performed
on the LFSD, NJUD, and SSD datasets, and each combina-
tion represented a set of experiments. After analyzing the

results, we found that the first combination of the HAM
module achieved the best performance on the NJUD and SSD
datasets. Compared to the baseline, it showed approximately
a 2% improvement in F-measure, S-measure, and E-measure.
Additionally, the MAE metric decreased by 22%. However,
the third combination only performed well on the LFSD
dataset. It exhibited a decrease in F-measure, S-measure, and
E-measure by 2% on the NJUD and SSD datasets, along with
a 20% increase in MAE.

The second, fourth, fifth, and sixth combinations did
not yield satisfactory results on all three datasets. When
compared to the best combination (first row), these groups
exhibited a decline in F-measure, S-measure, and E-measure,
while the MAE metric increased. Therefore, overall, the
first combination of the HAM module demonstrated the best
performance.

3) THE IMPACT OF DIFFERENT BACKBONE ABOUT THE
MODEL
We conducted experiments to examine the influence of
different backbone networks on the performance of our
object detection model. We replaced the original backbone
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TABLE 2. Ablation experiments of different components on NJUD, RGBD135 and SSD datasets. B is the baseline. HAMM and FFUM are hybrid attention
mechanism module and forward feedback unit module respectively. CResNet34 represents that we replaced the baseline backbone network with a
ResNet34 model. The best results are marked in bold font.

TABLE 3. Show that the hybrid attention mechanism module consists of three parts in series, namely, spatial attention mechanism, channel attention
mechanism respectively. Here, we discuss six different combinations of the hybrid attention mechanism, with the best results highlighted in bold.

TABLE 4. Ablation experiments of different components on NJUD, RGBD135 and SSD datasets. B is the baseline. HAMM and FFUM are mixed attention
mechanism, forward feedback unit respectively. ResNet34 and ResNet50 stand for the different backbone of the baseline. The best results are marked in
bold font.

network with ResNet34 and ResNet50. In the first row
of the table, we presented the results achieved by adding
the HAM and FFU modules on top of the baseline model
across three datasets. The second row details the outcomes
obtained when utilizing ResNet34 as the new backbone
network.

Our findings indicate a significant enhancement in per-
formance on all three datasets after adopting ResNet34 as
the backbone network. Notably, the SSD dataset exhibited

an approximate 3% increase in F-measure, S-measure, and
E-measure, accompanied by a 14% decrease in MAE com-
pared to the values from the first row.

On the other hand, using ResNet50 as the backbone net-
work resulted in improved performance solely on the NJUD
dataset. However, evaluation metrics on the RGBD135 and
SSD datasets experienced varying degrees of decline com-
pared to the first row. Additionally, the parameter count of
the model increased approximately threefold. Consequently,
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considering all factors, the utilization of ResNet34 as
the backbone network proved to deliver the best overall
performance.

V. CONCLUSION
In this paper, we propose a new RGB-D salient object detec-
tion model, called HAFF-Net. The network is based on
an encoder-decoder structure, unlike most existing RGB-D
SOD methods, we first introduce a Forward Feedback Unit
(FFU) module after the fusion of RGB and depth features to
fuse feature information from different stages and enhance
semantic expression of the fused features. The fused feature
representation is then passed to the decoder for decoding and
prediction. We also introduce Hybrid Attention Mechanism
(HAM) modules at each decoding stage to refine the decoded
features by filtering out interfering factors and enhancing
the discriminability of features. Comprehensive experiments
and ablation studies demonstrate that our proposed model is
highly competitive with other state-of-the-art RGB-D SOD
methods and achieves a good balance between accuracy and
speed.
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