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ABSTRACT In times of increasing human-machine interaction, the implementation of emotional intelli-
gence in machines should not only recognize and track emotions during human interaction, but also respond
with appropriate emotional content. Machines should be able to react and respond to human emotions. Music
generation with a specific emotion is part of this task. This article presents the process of building a system
generating polyphonic music content of a specified emotion using a conditional variational autoencoder and
convolutional layers. The process of preparing a database of training examples with compositions by Johann
Sebastian Bach, selecting and conducting transformations of musical examples was described. Annotation
with emotion labels was done by music experts with a university music education. The four emotion labels -
happy, angry, sad, relaxed - corresponding to the four quadrants of Russell’s model were used. The process
of coding symbolic music examples into a time-pitch matrix representation, but also the structure of the
built variational autoencoder, was described. Experiments on the implementation of different convolutional
layers intended for visual analysis of the representation of music examples were presented. The generated
emotional music files were evaluated using metrics and expert opinions.

INDEX TERMS Music emotion, polyphonic music generation, symbolic music, variational autoencoder.

I. INTRODUCTION
Machines have been accompanying us in everyday life for
a long time. Sometimes we were aware of it, more often
not. The human-machine interaction intensifies more and
more every year, raising the demands placed on machines.
From smart bands to smart homes, man expects a more and
more appropriate response, despite the fact that ‘‘it’s just a
machine.’’ Even though a simple reaction is formally easily
achievable with clear orders or queries by the circling artifi-
cial intelligence, man still has the right to long for what in the
human world we call emotional intelligence. In this, it is not
enough to simply recognize the current human emotion, even
if a multimodal approach is used. For proper, comprehensive
communication, an empathetic response is also necessary [1].
Such a non-verbal response can be, depending on the mood
or situation, generated music.
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Generating music using machine learning models is a new
phenomenon entering the realm of creative human creativity.
New systems have been created that imitate human creativity
and learn from musical examples created by the greatest
composers in the history of music [2], [3]. Music is one of
the most abstract arts; it expresses human ideas in the form
of sounds organized in time. When analyzing the pitches of a
polyphonic piece of music, they can be visualized in the form
of two-dimensional graphic images [4], where the horizontal
axis is time and the vertical axis is the pitch of the played
sounds at a given time. Due to the similarity of images and
music represented by two-dimensional graphics, the issues
of image generation and music generation may have similar
technological solutions based on convolutional layers.

One of the main reasons why we listen to music is
the perception of emotions [5]. Depending on the melody,
dynamics, and harmony changing over time, we can per-
ceive different emotions. Adding the element of emotion to
music-generating systems gives us additional control over
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the created content. Similar systems can be used in machine-
human communication, where not only emotion recognition
is expected but also response generation with the appropriate
emotional tone.

The aim of this paper was to present the process of building
a model that generates polyphonic music sequences with a
specified emotion using a variational autoencoder (VAE). The
designed model should learn the musical elements from the
training set that affect emotion and apply them when gener-
ating new examples. The main contributions of our study are
as follows:

• a MIDI music dataset with emotion labels annotated by
music experts with a university music education was
created;

• a model generating polyphonic music sequences with
emotion using variational autoencoder and convolu-
tional layers was proposed, which - to our knowledge
- has not been done in other works for generating emo-
tional music;

• a special construction of the convolutional layers for
learning the visual representation of symbolic music was
proposed.

The rest of this paper is organized as follows. In Section II,
we discuss the existing work on music generation, music
emotion recognition, the generation of emotional music,
and using a variational autoencoder as a generative model.
Section III describes the music dataset and the process of
transformation and annotation with emotion of the MIDI
files. Section IV presents the piano-roll representation of
symbolic music and Section V shows the idea of the vari-
ational autoencoder and its implementations. Section VI
presents the evaluation using metrics and expert opinions.
Finally, Section VII summarizes the main findings.

II. RELATED WORK
A survey of various tasks related to symbolic music gener-
ation using deep learning was presented by Ji et al. in [6].
The work also presents the music representations used, eval-
uation methods, popular datasets as well as highlights current
challenges. The authors noticed that music generation with a
specific emotion is one of the future directions of research
development. A functional taxonomy for the key concepts
that form the functional goals of music generation systems
was presented in the work by Herremans et al. [7]. Zhao et
al. in [8] conducted a comprehensive overview and analysis of
recent intelligent music generation techniques. Issues raised
in the paper concerned music encoding, datasets, comparing
generation algorithms, and the existing methods for evalua-
tion.

Most neural network models for music generation
use recurrent neural networks, but there are exceptions.
Yang et al. [9] used convolutional neural networks and gen-
erative adversarial network (GAN) for generating a symbolic
melody. They proposed a conditional mechanism to exploit
the available prior knowledge so that the model can generate

melodies from scratch by following a chord sequence, or by
conditioning on previous bars.

Huang et al. [10] used CocoNet, a deep convolutional
model with blocked-Gibbs sampling algorithm, for com-
pleting partial scores in corrupted symbolic Bach chorale.
In the conducted experiments, a random subset of notes were
removed from Bach chorale, and the model was asked to
infer their values. New note values were sampled from the
probability distribution put out by the model. Agostinelli
et al. [11] presented MusicLM, a model for generating
high-quality music at 24 kHz from text descriptions. The
proposed system can be conditioned on a text and a melody,
and it can transform input humming or whistling melodies
according to the style given in the text. The system used three
models (SoundStream, w2v-BERT, MuLan) for extracting
audio representations that will serve for conditional music
generation. Also a hierarchical sequence-to-sequence mod-
eling task, where each stage is modeled autoregressively by a
separate decoder-only Transformer, was proposed.

A. MUSIC EMOTION RECOGNITION
This paper is devoted to the generation of emotion-controlled
music, but the opposite task to ours could be the recognition
of emotions in music, which is part of the research field in
music information retrieval. Both tasks have common areas,
such as the emotion model, audio features connected with
music emotions, as well as problems with different percep-
tions of emotions.

In papers devoted to music emotion recognition division
into categorical and dimensional with regard to the emotion
model approach can also be found [12]. In the categorical
approach, a number of emotional adjectives are used for
labeling music excerpts [13], [14], [15]. In the dimensional
approach, emotion is described using dimensional space, like
the 2Dmodel proposed byRussell [16], where the dimensions
are represented by arousal and valence [17], [18], [19].

In [20] content-based music emotion recognition was pre-
sented as a classification and regression problem, which was
closely connected with the selected emotion model - cate-
gorical and dimensional, respectively. The author focused on
examining audio as well as MIDI files and for each presented
the relevant feature sets that describe them. Due to the fact
that emotion in music can change over time, and can be con-
stant only in short excerpts, emotionmaps created frommusic
that visualize emotion distribution over time were proposed.
Panda et al. in [21] presented relations between eight musi-
cal dimensions (melody, harmony, rhythm, dynamics, tone
color, expressivity, texture, and form) and specific emotions.
Authors also reviewed the emotionally-relevant computa-
tional audio features from four common audio frameworks
(Marsyas, MIR Toolbox, PsySound, and Essentia) used in
music emotion recognition. In [22] the authors investigated
to which extent state of the art machine learning meth-
ods are effective in classifying emotions in the context of
individual musical instruments, and how their performances
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compare with musically trained and untrained listeners. In the
experiments, four emotions (aggressiveness, relaxation, hap-
piness, and sadness) with three emotion intensity levels (low,
medium, high) were used and the dataset contained clas-
sical and acoustic guitar excerpts. The results showed that
emotions were better recognized by musicians rather than
listeners with no musical background with respect to the
original intention of the composer. By classifying emotions,
the machine perception of emotions matched or exceeded
human performance for three out of four emotions, except
for the emotion relaxation.

B. EMOTION-BASED MUSIC GENERATION
The generation of emotion-controlled music is still in its early
stages of development and the collection of works devoted
to this topic is not yet very rich [23]. Papers concerning
emotion-based music generation present the use of different
deep learning models, different training data, as well as dif-
ferent emotion models.

The first overview of systems for algorithmic composition
with the intention of targeting specific emotional responses
was created by Williams et al. [24]. The idea of polyphonic
music generation with a specified positive or negative emo-
tion was presented by Ferreira and Whitehead [25]. They
used a single-layer multiplicative long short-term memory
(mLSTM) network, which developed the method used for
generating textual product reviews with a sentiment. The
model was controlled by optimizing the weights of the found
neurons responsible for the sentiment signal. The training
dataset was collected from video game soundtracks in MIDI
format. Madhok et al. [26] presented a framework that gen-
erates relevant music based on the emotion detected from
a person’s facial expressions. The music generation model
was constructed with LSTM architecture and the emotion
model used seven categories - angry, disgust, fear, happy,
sad, surprised, and neutral. Zhao et al. in [27] used Bi-axial
LSTM networks to generate polyphonic music. The pro-
posed solution generated polyphonic examples with one of
the four emotions - happy, tensional, sad, peaceful. The
authors trained the model with a global condition of emo-
tional vectors and design tunable parameters for generat-
ing music of a corresponding emotion. Hung et al. in [28]
presented the Transformer and LSTM models for emotion
conditioned symbolic music generation using a multi-modal
(audio and MIDI) database, which consisted of pop piano
music labeled with four classes of perceived emotions. The
emotion labels correspond to four quadrants of Russell’s
model. An approach for the generation of multi-instrument
symbolic music driven by musical emotion was presented by
Sulun et al. in [29]. The solution used different conditioning
from the Transformer and used a symbolic music dataset
annotated by continuous arousal and valence values. The
use of a Transformer to generate music with a controlled
emotion was proposed by Pangestu et al. in [30]. Emotions
were described using three categories—negative, neutral, and

positive. Neves et al. in [31] proposed a generative model of
symbolic music conditioned by emotion. The trained model
consisted of Transformer-GAN and emotion labels were in
the form of continuous values of valence and arousal.

C. VAE AND MUSIC GENERATION
Use of a generative model with the architecture of a varia-
tional autoencoder (VAE) has advantages in music generation
because of the ability to control the generation process with
a latent variable. In the survey [32], Zhang analyzed repre-
sentation learning methods for controlled music generation.
He explained how a musical fragment can be abstracted and
reduced to one or several representations, such as rhythm,
chords, or emotion. By controlling the representation of
music, humans can control the process of generating music.
Several models based on VAE and on disentanglement learn-
ing and hierarchical structure learning were presented.

Roberts et al. in [33] used a recurrent VAE that utilizes
a hierarchical decoder for improved modeling of sequences
with a long-term structure. The constructed model was tested
on symbolic MIDI data in the form of monophonic melodies,
drum patterns, and trio sequences consisting of separate
streams of a melodic line, a bass line, and a drum pattern.
Wang et al. in [34] proposed a VAE framework, with latent
vectors representing chords and style of polyphonic symbolic
music. The trained network was used in tasks such as com-
positional style transfer, style variation, and accompaniment
arrangement. In [35], Guo et al. used a generative VAEmodel
to control tonal tension in the generated music. For identi-
fying latent tension variables, the labeled musical fragment
positions in the latent space were calculated. The generated
music is similar to the original music by keeping the rhythm
and manipulating the pitches to match the tonal tension.

What distinguishes this work from others is that it uses
a conditional VAE with the emotion parameter influencing
the generated polyphonic music examples. We investigated
the structure for the convolutional layers in VAE encoder and
decoder for encoding and decoding visual representations of
music examples.

III. TRAINING DATA
A. SYMBOLIC MUSIC DATASET
In this work, the music21 library [36] containing composi-
tions by Johann Sebastian Bach was used. In this library,
the content of the compositions is saved in a symbolic form,
which means that we have access to sound parameters such as
pitch, length, volume, etc., andwe do not have to decode them
from the audio files. The collection includes mostly chorales
(382) as well as other compositions, for a total of 410 pieces.
The list of all compositions is available in [37] in MusicXML
format.

To use music21’s collection of compositions to train the
model for generating polyphonic sequences, several transfor-
mations were undertaken (Fig. 1). The first transformation
was to equalize the note duration. The note duration in a

VOLUME 11, 2023 93021



J. Grekow: Generating Polyphonic Symbolic Emotional Music in the Style of Bach

composition is affected by beats per minute (BPM), tempo,
and note type. Due to the fact that the compositions in the
database were saved at different tempos, the tempos of all
songs were standardized to 120 BPM, or 120 quarter notes
per minute. The note values of songs with a tempo other
than 120BPMwere corrected. Thus, a dataset was obtained in
which only the note types - sixteenth note, eighth note, quarter
note, half note, whole note - affected the length of the notes.

The second dataset transformation consisted of limiting
the length of the musical example to four bars and selecting
only compositions with the time signature 4/4, which are
the majority in music21. This resulted in a slight reduction
in the number of examples in the database. This way, the
rhythmic structure of the exampleswas unified and eventually
contained four bars with a 4/4 time signature. As a result,
eight seconds of music examples were obtained, each with
a tempo of 120 BPM.

The third transformation concerned the compositions’
keys, which are different in the examples from the music21
database. The same melody in different keys sounds similar,
and a training set in different keys would make the task of
training even more difficult. To facilitate the training, all
the compositions were transposed to C major or C minor.
Thus, we assumed that our model would generate polyphonic
sequences in C major and C minor scales. After the per-
formed transformations, a unified dataset was obtained, with
338 polyphonic sequences of uniform 8 s. length. All the
transformed examples were stored in MIDI format.

The preprocessing methods used in this work were used in
other papers on symbolic music generation. Discretization of
music data with sixteenth notes simplifies note value coding
and were used in [10], [27], and [38]. Also limiting the length
of the musical examples in the training dataset was used
in [39]. A data usage limitation that only uses music with
a 4/4 time signature was used in [27], [30], and [39]. The
transposition of all examples into a single common key as
preprocessing is not used often. This solution was used in
a polyphonic music generation system in [40]. Due to the
model of emotions with negative and positive emotions, our
solution proposes a transposition into two keys - major and
minor - which was used intentionally to simplify the training
of the model.

B. EXAMPLE ANNOTATION WITH EMOTION LABELS
To train the machine learning model to generate musical
sequences with a specific emotion, it was necessary to label
the music examples with emotion labels. During the anno-
tation, four emotion labels were used - happy, angry, sad,
relaxed - corresponding to the four quadrants of Russell’s
model [16] Q1-Q4. In Russell’s model (Fig. 2), emotions are
distributed on a plane divided by two parallel axes - arousal
and valence. Arousal can be high or low and valence positive
or negative. The labels used indicate a group of emotions in
a given quadrant, e.g. the label happiness refers to a group of
different emotions in quadrant Q1, where arousal is high and
valence is positive. A similar division of emotions into four

FIGURE 1. Transformations of music dataset.

FIGURE 2. Russell’s circumplex model [16].

basic categories was used, among others, in [27], [28], and
[41].

The music files were played at one timbre (MIDI instru-
ment: Grand Piano) and one volume, so the timbre and
volume did not affect the emotions. What did affect the emo-
tions in the musical fragment was the pitch, length, rhythmic
arrangement of sounds, the harmonic relationships between
them, and the major/minor scale.

When annotating the music examples, one can refer to the
felt or perceived emotions [42]. The felt emotion is the one
that the listener feels at a given moment - e.g. if he listens
to something very sad, he communicates that the emotion is
sad and at the same time, for example, he wants to cry. The
perceived emotion is the one that the listener notices in the
song but does not physically succumb to it - e.g. he listens to
something sad, communicates that the emotion is sad, but he
does not want to cry. In our experiment, the music experts
were tasked with labeling MIDI songs with the perceived
emotions.
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TABLE 1. MIDI files annotated with four emotions.

FIGURE 3. Fragment of sheet music of Chorale BWV 96 by J.S.Bach.

The labeling was done by five experts with a university
music education. The opinions of music experts - people who
play in bands, compose and interpret music on a daily basis
- are more reliable than people who only work with music
occasionally. Each of the music experts labeled all 338 MIDI
files, which gave them an overview of the entire music
collection and the shades of emotions within, which is not
always maintained when labeling music databases. Labeling
the entire set by each expert has a positive effect on the quality
of the annotations, which was emphasized in [43].
The data collected from the five experts were averaged.

Investigating the internal consistency of the collected data,
Cronbachs α obtained a value of 0.88, which confirmed good
annotation consistency. The number of files labeled with the
four emotions is shown in Table 1. We can see that almost all
examples with positive emotions - e1 and e4 (high valence) -
are in the major scale and examples with negative emotions -
e2 and e3 (low valence) - in the minor scale. The entire set of
MIDI files labeled with the emotions along with the proposed
system code and generated music examples can be found at
the following link.1

IV. CODING MUSIC EXAMPLES
Due to the fact that the music generating system would
learn from polyphonic pieces, it was decided to encode all
MIDI files from the database using piano-roll representation.
In piano-roll representation, the horizontal axis describes the
time steps of the duration of the music example, and the verti-
cal axis indicates the pitches of the notes that are switched on
and off. Fig. 3 presents the notation of a fragment of Chorale
BWV 96 by J.S. Bach from our database of examples and the
corresponding piano-roll representation is shown in Fig. 4.
The MusPy Toolkit [44] was used to read the MIDI files and
convert them to piano-roll representation.

1https://github.com/grekowj/musgenvaecnn_4v

FIGURE 4. Piano-roll representation of a sheet music fragment of Chorale
BWV 96 by J.S. Bach.

Piano-roll representation encodes music in a time-pitch
matrix, where the columns are time steps and the rows are
pitches. The values in the matrix indicate the presence of
sounds at different time steps. The shape of the standard
matrix is T × 128, where T is the time step number. In the
MIDI format, the possible pitches are 0-127, hence the num-
ber of rows in the matrix is 128.

The length of each example in the database corresponds to
four bars in a 4/4 time signature, which is equal to four quarter
notes per bar, for a total of 16 quarter notes. The shortest
note in the database is a sixteenth note, and thus the music
examples were encoded (discretized) with a time step corre-
sponding to a sixteenth note. There are four sixteenth notes
for each quarter note, so dividing the entire music example
by the shortest note (the sixteenth note) we get T = 64 time
steps, 4 (bars) × 4 (quarter notes) × 4 (sixteenth notes).

After analyzing all the examples from the MIDI files,
it appeared that very high and very low sounds were not used,
which allowed to reduce the window of possible pitches to
60 sounds. As a result, we obtained the shape of the output
tensor representing the music example 64 × 60 (time step ×

pitch). An example visualization of the time-pitch matrix is
presented in Fig. 4. The obtained matrices can be interpreted
as visual representations of music examples - i.e. images - and
use neural networks to process the images.

V. SYSTEM CONSTRUCTION
A. MODEL
A conditional variational autoencoder (CVAE) was used as a
generative model [45]. It encodes the input data (music rep-
resentation) into latent space with Gaussian distribution and
then decodes samples from the latent space into a form similar
to the input data (Fig. 5). A property of the trained VAE is
that the latent space is continuous and can be navigated by
generating new data. In CVAE, on top of the input of the
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FIGURE 5. Training of the CVAE model.

encoder and decoder, we have an additional condition - the
emotion label - which allows to control the emotion of the
generated music examples. Only the module of the decoder
is used to generate new examples (Fig. 6). The input is given
an emotion label and a random sample with the size of the
latent space.

The CVAE network consists of the encoder and the decoder
joined together. The encoder takes input x, and estimates the
mean µ, and the standard deviation σ of the multivariate
Gaussian distribution of latent vector z. The decoder takes the
samples from latent vector z to reconstruct the input on the
output as x̃. The loss function is the sum of both the Recon-
struction loss (LR) and Latent loss (LL). Reconstruction loss
calculates the difference between input x and output x̃ using
cross entropy. Latent loss is calculated using the Kullback-
Leibler divergence, which calculates the distance between the
the Gaussian distribution and the actual distribution in latent
vector z:

LL = −
1
2

K∑
i=1

(1 + log σ 2
i − σ 2

i − µ2
i ) (1)

FIGURE 6. Generating new music examples using a trained decoder.

where K is the dimensionality of latent vector z, µi and σi
are mean and standard deviation of i dimension of latent
vector z.

B. IMPLEMENTATION
A special construction of the convolutional layers was pro-
posed to analyze the piano-roll representation images. The
Keras [46] and Tensorflow2 deep learning libraries were used
to implement the generative models in Python.

Due to the fact that the proposed CVAE is dedicated to
the analysis of music representations and consists of two
parallel convolutional branches, it was called CVAE-Mus2.
The construction of the convolutional parts of the encoder
is presented in Fig. 7. It consists of two parallel branches of
analysis, which at the end are connected with the Concatenate
layer. Each branch contains two sequential convolutional lay-
ers (Conv2D) with an increasing number of filters (64, 128)
and with special kernel size (1, 12) for analyzing 12 octave
semitones, and kernel size (4, 1) for analyzing the next time
steps.

Fig. 8 presents CNN layers of the decoder, which, similarly
to the encoder, also consists of two parallel branches, sequen-
tially transposed convolution layers (Conv2DTranspose); the
number of convolutional filters decreases (64, 128) and the
kernel sizes are analogous to those in the encoder (1, 12) and
(4, 1). In standard convolutional layers, kernels in the form
of a square are most often used, e.g. (3, 3) or (5, 5). Due to
the fact that the dimensions of the analyzed images have a
certain meaning (pitch, time step), it was decided to modify
the kernel size. Kernel (1, 12) analyzed the whole octave (12
semitones) and kernel (4, 1) analyzed four time steps equal
to one quarter note. The ReLU function in the decoder and
the LeakyReLU function in the encoder were used as the

2https://www.tensorflow.org
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FIGURE 7. Encoder CNN layers of CVAE-Mus2.

FIGURE 8. Decoder CNN layers of CVAE-Mus2.

activation functions in the layers. The strides of the Conv2D
and Conv2DTranspose layers were the same as kernel size.

The detailed construction of the encoder is presented in
Fig. 9. We note that the input tensor representing the music
example with the shape (None, 64, 60, 1) is concatenated with
the condition, which in our case is the emotion label. Next,
we see two parallel CNN branches with outputs (None, 16, 5,
128) that are concatenated. Next we have a layer that flattens
the tensor to one dimension and two dense layers that reduce
dimensionality and generate the mean and log variance. The
last output layer of the encoder is a sampling of latent vector
z with a shape (None, 32). Similarly, a decoder that takes
the samples from latent vector z to reconstruct the piano-roll
representation with a shape (None, 64, 60, 1) is created.

During the experiments, the proposed model (CVAE-
Mus2) was compared with the baseline model (CVAE-Base),
which instead of two parallel CNN branches contained two
sequentially connected convolutional layers with a number of
filters - 256 and 128, respectively - and kernel size (3, 3) in the
encoder (Fig. 10a) and similarly two transposed convolution

TABLE 2. Losses and number of trainable params of the tested models.

layers (Conv2DTranspose) in the decoder. Experiments were
also conducted on an intermediate model (CVAE-Mus1),
which consisted of two sequentially connected convolutional
Conv2D layers with 256 and 128 filters, respectively, with
modified kernel sizes (1, 12) and (4, 1) (Fig. 10b) and two
analogous transposed convolution layers in the decoder. This
model differed from the proposed model in that it had only
one branch of piano-roll representation analysis.

In total, the experiments were done on three models -
the base CVAE-Base, the intermediate CVAE-Mus1 and the
proposed CVAE-Mus2. The prepared models were trained
with the Adam optimizer [47], 1e–3 learning rate, batch size
equal to 4 and 70 epochs. The hidden layer size was 32.

Table 2 presents the final training losses and number of
trainable params of the tested models. The number of train-
able params of the tested models is at a similar level. We note
that the CVAE-Mus2 model performed better compared with
the baseline model (CVAE-Base) and the intermediate model
(CVAE-Mus1). It had a lower reconstruction loss (126.15),
and the hidden layer distribution is more similar to the Gaus-
sian distribution than the other models (less hidden layer
loss). We can also see a clear loss reduction for the CVAE-
Mus1 and CVAE-Mus2 models compared with the CVAE-
Base model.

VI. EVALUATION OF THE GENERATED EXAMPLES
A. EVALUATION USING METRICS
To evaluate the generated files with a specific emotion, met-
rics [44] that analyze the musical sequence in terms of pitch,
their number, use of sounds from a given scale, etc. were used.
The following metrics were calculated:

• pitch range - defined as the difference between the high-
est and the lowest pitch;

• pitch in scale C major rate - defined as the ratio of the
number of notes in the C major scale to the total number
of notes;

• pitch in scale C minor rate - defined as the ratio of the
number of notes in the C minor scale to the total number
of notes;

• polyphony rate - defined as the ratio of the number of
time steps with multiple pitches to the total number of
time steps.

To evaluate the generated music examples, training data
was selected as a reference point and the generated examples
were compared with this training data. Using the decoder
from the training model, 20 music examples were generated
for each of the four emotions, i.e. 80 examples for each of the
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FIGURE 9. Encoder of CVAE-Mus2.
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FIGURE 10. Encoder CNN layers of CVAE-Base (a) and CVAE-Mus1
model (b).

tested models. Selected examples of the generated music files
can be found and played at the following link.3

Four metrics were calculated for each generated poly-
phonic sequence as well as for each file from the training
set. Table 3 presents the calculated means (µ) and standard
deviations (σ ) of the metrics obtained for the music with
four emotions (e1, e2, e3, e4) generated using CVAE-Mus2,
CVAE-Mus1 and CVAE-Base models, as well as the music
used for the training models. The results from the generated
examples that are closer to the results from the training set
are marked in bold.

We noted that the mean values (µ) of the metrics obtained
for models CVAE-Mus2 and CVAE-Mus1 were closer to the
metrics from the training set than the metrics for the baseline
model. CVAE-Mus2 won in most cases (11/16) and CVAE-
Mus1 was better only in five out of 16 cases. This confirmed
the use of a special kernel size for piano-roll representation
analysis. Based on the collected statistics, it can be concluded
that the proposed model better recognized patterns in files
labeled with emotions than the baseline and intermediate
models, which generated files with characteristics more sim-
ilar to the training data.

It appears that the differences between the mean metric
values for individual emotions were smaller for the metrics
pitch in C major scale rate and pitch in C minor scale rate
than for pitch range or polyphony rate. It can be concluded
that the proposed model better learned to use the sounds of
two opposing major and minor scales to apply them when
generating music sequences.

Fig. 11 presents the distributions of the pitch range in
the form of a box plot for the generated and the training
sets labeled with emotions e1-e4. We note higher values for
the generated sets then for the training sets, which shows
that the task of generating files with the correct pitch range
was difficult. Among the tested models, values for CVAE-
Mus2 better reflect the characteristics of the training set -
slightly higher median values for emotions with high arousal

3https://grekowj.github.io/research/musgenvaecnn_4v/

(e1, e2) and slightly lower median values for emotions with
low arousal (e3, e4). It can be seen that the problem of
generating files especially for low arousal emotions (e3, e4),
where the music is calmer and the pitch range values should
be smaller. Analyzing the distributions for the CVAE-Base,
CVAE-Mus1, and CVAE-Mus2models, we notice a tendency
to approach the training set; the median values of the pitch
range for all emotions gradually decreased formodels CVAE-
Mus1 and CVAEMus2, approaching the values of the training
set.

The distributions of the pitch in C major scale rate are
shown in Fig. 12. Generally, themajor scale is associated with
positive emotions (e1, e4 - positive valence) and the minor
scale with negative ones (e2, e3 - negative valence). This can
be seen in the higher values of the pitch in C major scale
rate for emotions e1 and e4 and lower values for e2 and e3.
We can see how these metrics for CVAE-Mus2 and CVAE-
Mus1 come close to the metrics calculated for the training
data. The furthest are the metrics for the generated set with
the CVAE-Base model.

Fig. 13 presents the distributions of the pitch in scale C
minor rate. We see the rule of using the notes of the C minor
scale in the generated and the training sets: lower values for
emotions e1 and e4 (positive valence) and higher values for
e2, e3 (negative valence). Analyzing the distributions of the
pitch in scale C minor rate and pitch in scale C major rate
(Fig. 12), it can be stated that all the tested models learned
how to generate files with emotions with a similar distribution
as the training files. CVAE-Mus2 and CVAE-Mus1 were
the better models, while the CVAE-Base model was only
slightlyworse. The reason that all threemodels achieved good
results is probably that all the polyphonic sequences in the
training set were in C major and C minor scales, which are
associated with positive and negative valence, respectively.
The transformation of all music files into two scales resulted
in an apt simplification of the task of generating music with
positive and negative emotions.

The distributions of the polyphony rate are shown in
Fig. 14. Analyzing the distribution for the CVAE-Base,
CVAE-Mus1, and CVAE-Mus2 models, we note the ten-
dency to approach the training set; the median values of the
polyphony rate for all emotions gradually increased towards
the values of training sets. We also note lower median values
for emotions with high arousal (e1, e2) than for emotions with
low arousal (e3, e4). It can be said that for the tested models it
is easier to generate files with a greater polyphony for calmer
emotions. The characteristics of the files generated by CVAE-
Mus2 compared with CAVE-Base and CVAE-Mus1 are the
closest to the training set.

B. EVALUATION USING EXPERT OPINIONS
As a second method of evaluating the generated music we
asked five music experts with a university music educa-
tion to annotate the emotions of the generated music files.
Assessment of the generated examples pertained three mod-
els - the baseline (CVAE-Base), intermediate (CVAE-Mus1),
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TABLE 3. Metrics obtained from the generated and training sets labeled with four emotions.

FIGURE 11. Pitch range for the generated and training sets labeled with emotions.

FIGURE 12. Pitch in scale C major rate for the generated and training sets labeled with emotions.

and the proposed model (CVAE-Mus2). The task of each
music expert was to listen and determine the emotions for

all the examples generated by a given model, i.e. making
80 annotations for the evaluated model. The annotated exam-
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FIGURE 13. Pitch in scale C minor rate for the generated and training sets labeled with emotions.

FIGURE 14. Polyphony rate for the generated and training sets labeled with emotions.

ples were mixed up so that their order was not grouped by
emotion or model. The task for any music expert was quite
tedious as it involved evaluating 240 files of 8 s. each.

Additionally, each music experts was asked to rate on a
five-point Likert scale such parameters as:

• humanness - whether it sounds like music made by
humans;

• richness - whether the musical content is interesting.

The obtained annotations from the music experts were
averaged.

Expert emotion annotations of the generated set by the
baseline model (CVAE-Base), intermediate model (CVAE-
Mus1), and by the proposed model (CVAE-Mus2) are pre-
sented in Table 4. The values in the rows refer to the generated
files with a given emotion, and the values in the columns to
files with a specific emotion determined by experts.

Comparing the accuracy of the three tested models, the
CVAE-Mus2 model achieved the highest accuracy 68%,
compared to the other two: CVAE-Mus1 - 51%; and CVAE-

Base - 48% (Table 4). Models CVAE-Mus1 and CVAE-Base
have difficulty generating files with emotions e3 and e4.
It can be concluded that the weaker models have a problem
with generating files with low arousal. The proposed model
CVAE-Mus2 in most cases generates a file with the correct
emotion, and possible mistakes occur on the arousal axis, i.e.
between emotions e1 and e4, and between e2 and e3.

The evaluation using emotions annotated by music experts
is consistent with the obtained metrics (Section VI-A), where
the tested models were dealt with using the notes of the C
major and C minor scales to generate positive and negative
emotions (on the valence axis). It can be concluded that
limiting the training data to two scales, major and minor,
positively influenced the generation of files on the valence
axis. Usually, generative models have trouble generating files
that differ in valence [27], [28], but in our case through special
data preparation (transposition to C major or C minor) this
problem was reduced.

Expert annotations of the generated sets evaluated by
humanness and richness are presented in Table 5. A higher
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TABLE 4. Expert emotion annotations of the generated set by CVAE-Base, CVAE-Mus1 and CVAE-Mus2 model.

TABLE 5. Humanness and richness of the generated sets.

value for CVAE-Mus2 confirms that the proposed model
generates much more interesting baseline files than the inter-
mediate model. It is also interesting that the richness values
exceed humanness, which proves that despite the generated
music, it does not always resemble the music created by
humans, but it is intriguing for the listener.

It can be concluded that when training convolutional net-
works to teach musical representation, it is worth using
special shapes for the convolutional layers that improve the
analysis of the visual representation of music. The model
obtained in this way (CVAE-Mus2) is better suited for gen-
erating music with a specific emotion, which was shown by
comparing the metrics of the generated and training sets,
as well as expert opinions on the generated examples regard-
ing the perceived emotions, humanness, and richness.

VII. CONCLUSION
This article presents the process of building a model gener-
ating polyphonic music sequences with a selected emotion.
A database of training examples labeled with emotions by
music experts was created and models based on conditional
variational autoencoder were built. A special structure for
the convolutional layers in CVAE encoder and decoder was
proposed for encoding and decoding visual representations
of music examples. The presented two parallel convolutional
branches for analyzing polyphonic music examples showed
an advantage over the sequential structure of standard convo-
lutional layers.

Evaluation of the generated music examples showed that
the sequences obtained using the proposed model are closer
to the training set examples than the sequences generated
using the baseline and the intermediate models. The evalu-
ation using expert opinions showed a higher accuracy of the
proposed model in relation to the others regarding the content
of a specific perceived emotion in the generated examples.
The proposed model turned out to be the winner also when
evaluating the created sequences in terms of musical quality.

The limitations of the presented solution are certainly the
short length of the generated sequences. Also, more training

examples associated with the costly annotation process could
improve the obtained results.

In the future, other variants of the connection structure of
the convolutional layers could be explored to study encoded
representations of polyphonic music. Also, the implemen-
tation of mechanisms for generating longer polyphonic
sequences, would increase the practical application of the
system. The use of a fuzzy emotionmodel or emotion descrip-
tions using continuous values would be a continuation of this
work. The presented approach does not completely solve the
problem, in fact, it indicates directions for further research
on generating emotional polyphonic music using generative
models.
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