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ABSTRACT Class imbalance exists in many data domains, posing numerous challenges to the data research
community. Medical datasets, in most cases, are predominantly imbalanced in nature. Through tackling
multi-class issues, most researchers preferred the conventional method of decomposing it into binary
classes for a more convenient solution. This method is not applicable for solving sensitive and crucial
domains, such as medical data. Classifying medical datasets require all the classes to retain their form and
maintain clinical validity. In this article, we develop a rebalancing framework for the multi-classification of
imbalanced medical data using SCUT (SMOTE and Cluster-based Undersampling Technique) to rebalance
the imbalanced class distribution, a feature selection method using a combination of SHapley Additive
exPlanations (SHAP) and Recursive Feature Elimination (RFE), and DES-MI (Dynamic Ensemble Selection
for multi-class) for improved multi classification performance. Two novelties contribute to the performance
of our framework: improvised SCUT by implementing two clustering algorithms, and our proposed pool
classifier selection for DES-MI. The performance of the proposed framework was compared with other state-
of-the-art imbalanced frameworks using eight imbalanced datasets, each with varying degrees of imbalance.
The experimental results indicate that our proposed framework performed better with average performance
of 81.77%, 73.57%, and 75.87% in terms ofMacro Average accuracy, extended G-mean, andMacro Average
AUC, respectively. Our framework drastically increases the overall performance, owing to its ability to
significantly handles the multi-class imbalance problem.

INDEX TERMS Imbalanced data, medical data, rebalancing framework, multi-class, classification
prediction.

I. INTRODUCTION
Class imbalance emerges as one of the concerns that chal-
lenge many researchers in all data domains regardless of its
application. The imbalance of classes can be defined as when
one class (majority) outnumbers the instances of another class
(minority) [1]. Exists in both binary and multi-class prob-
lems. Learning datasets that harbours this issue may hinder
a model’s predictive performance, resulting in a more biased
model that favours the majority class and thus increases the
misclassification rate.

Many researchers have engrossed their attention to over-
coming this challenge, thus several rebalancing frameworks
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have been proposed in recent years [2], [3], [4], [5], [6], [7],
[8], [9], [10]. Implementing various data and algorithm-level
methods in a unified framework for learning medical imbal-
anced data, as such, their works yielded significant results.
However, these works focus on the conventional decompo-
sition method to solve multi-class problems. The decom-
position method requires the transformation of multi-class
into subproblems of binary class [11]. Binary classes are
easier to solve since it only involves two classes (positive and
negative). However, multi-classes are more complex because
it includes subclasses of positive and negative classes [12].
Thus, most researchers favoured this decomposition method
for its convenience [13], [14], [15], [16], [17]. However,
this method is not applicable for solving sensitive and cru-
cial domains, especially medical data. In fact, the cost of
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mispredictingminority classes is larger than that of themajor-
ity class; this is especially true in medical datasets where high
risk patients are the minority class [18]. When compare to
other domains, medical dataset is mostly imbalanced [19].
Other common issues in medical data also includes
high dimensional data, and it has lower misclassification
tolerance [18], [20].

The skewed distribution of multi-class in medical datasets
is naturally compounded with many features making them
naturally imbalanced [19]. Ideally, classifying medical
datasets requires all the classes to retain their form, trans-
forming its initial structure may compromise the validity
of diagnosis [21], [22], [23]. The target class of a given
medical dataset indicates the severity of the disease for each
patient (diagnosis severity class 1,2,3). Medical experts have
predetermined the important features to predict the target
feature. Decomposing these target classes into a binary class
will affect the feature importance during the feature selection
process, which leads to bias in the overall predictions [23],
[24], [25], [26], [27], [28], [29]. Consequently, it may risk
the lives of a patient [19], [21], [23], [28]. Therefore, it is
important to retain the classes in their initial form to retain
their clinical validity.

There is a need to explore the imbalanced multi-class
problem in medical data without decomposition. Studies on
this case lack in the body of research [11], [23], [24], [28],
[29], [30]. Our previous research [31] reveals that this issue
has the most intention in the medical domain. Thus, this
current research attempts to address this imbalanced issue.
Hence, towards a novel approach, exploring these imbalanced
medical data in a rebalancing framework while retaining the
multi-class without alteration was thus a major driving force
behind this research study.

To the best of our knowledge, few rebalancing frameworks
explore this case for medical data. Therefore, we present
a new multi-class rebalancing framework using SCUT
(SMOTE and Cluster-based Undersampling), RFE (Recur-
sive Feature Elimination), and SHapley Additive exPlana-
tions (SHAP) for feature selection and introduce DES-MI
(Dynamic Ensemble Selection for multi-class) for improved
multi-classification. The focus of our study is towards
rebalancing highly imbalanced datasets. Datasets from the
University of California Irvine (UCI), Kaggle, and Knowl-
edge Extraction based on Evolutionary Learning (KEEL)
repository were used to validate the proposed rebalanc-
ing framework. Furthermore, we also compared the perfor-
mance of our proposed rebalancing framework with other
state-of-the-art imbalanced frameworks and compared the
result.

In summary, the key contribution of this article are as
follows:

1) In this paper, we introduce a new rebalancing frame-
work for multi-class imbalanced data. A detailed
comprehensive analysis of the proposed framework
with other state-of-the-art imbalanced frameworks is
presented.

2) As a novel approach, we highlight two novelties that
contributes to the performance of our framework.
Firstly, we improvised SCUT as an improvement by
implementing two clustering algorithms, K-means and
hierarchical. Secondly, we proposed a pool classi-
fier selection based on extended G-mean(ExGmean)
to improve the selection of the candidate pool
for DES-MI.

3) Eight imbalanced benchmark datasets are used to val-
idate the framework, with an average of 81.77%,
73.57%, and 75.87% in terms of Macro average
accuracy (MAvA), extended G-mean (ExGmean), and
Macro Average AUC (MAUC), was attained, respec-
tively. This assures that our proposed framework may
also be used on various medical datasets.

The article is organized as follows. Section II reviews the
existing related works of literature, and Section III describes
the design of the proposed rebalancing framework and more
details on the dataset used. Section IV describes the experi-
mental setup, and Section V shows the results of the exper-
iments and discussion. Finally, Section VI concludes the
article and discusses the future direction.

II. RELATED WORK
The skewed distribution of classes in medical datasets is
naturally compounded with many features. Thus, required an
effective rebalancing method that combines feature selection
strategies to cater to high dimensionality while maintaining
an adequate classification performance.

To accommodate this issue, several endeavours are in the
works, particularly a recent work by Krishnan and Sangar [3]
that aims to cure the imbalanced nature of medical appoint-
ments data in a binary class problem by using different
rebalancing techniques unified into one rebalancing frame-
work. Experimental results reveal significant performance.
Song et al. [6] proposed a skin cancer melanoma diagnosis
that includes a loss function based on focal loss and Jaccard
distance to solve the imbalance issue and increase segmenta-
tion performances simultaneously. Tested on an imbalanced
medical no-show dataset and showed a significant increase in
performances. Zhu et al. [32] proposed a hybrid framework
that implements an ensemble-based classifier using majority
voting with random undersampling. It showed an increase in
segmentation performance for binary classification of tumor
cancer.

Bi and Ma [7] proposed a similar framework to solve
imbalanced cancer datasets for traditional Chinese medicine
diagnosis. The framework consists of a three-level structure:
data pre-processing, data dimensionality, and rebalancing.
In contrast, the first level includes standard data cleaning,
while the second level involves the implementation of Long
and Short-term Memory Network (LSTM) to reduce the
overall dimensionality of the data, and finally, rebalanced
using SMOTE. The framework performs significantly well
in predicting colorectal cancer. Tang et al. [9] proposed a
hybrid framework with a combination of feature selection
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and ensemble-based learning called the Three-stage Fea-
ture selection and Twice-competitional Ensemble learning
Method (TSFS-RCEM). This comprises of three-stage; the
first stage is to perform information gain (IG) towards the
imbalanced data, the second stage involves reducing its high
dimensionality, and the final stage, includes feature selection
to select the most relevant features.

Sandhan and Choi [8] proposed a framework with an
improvised SMOTE that simultaneously rebalances using
oversampling and undersampling to prevent the minority
class from being neglected during rebalancing. An ensemble-
based classifier was used to enhance the classification
and proved to significantly increase the overall perfor-
mance. Likewise, a similar hybrid approach was also studied
by Rahim et al. [10] benchmarked on three heart disease
datasets. The framework cured the imbalanced issue while
performing exceptionally well on cardiovascular disease pre-
diction. Zhao et al. [4] develop a similar rebalancing frame-
work to cater to these imbalanced issues in medical data
by using three rebalancing strategies: SMOTE, cost-sensitive
learning, over-sampling, and under-sampling technique. The
result showed that the rebalancing strategies achieved signif-
icant results in imbalanced learning.

While these previous works share a common approach
of unifying various rebalancing methods to handle class
imbalances, they mostly focus on binary classification
problem and uses the decomposition method for such con-
venience. A direct exploration of the multi-classification
problem has not been explored extensively, especially in
medical data. Developing a rebalancing framework that caters
to multi-class without the need for binary decomposition
remains an open challenge. There is also a lack of an adaptive
framework that can fulfill both binary andmulti-classification
issues. Therefore, the goal of this research is to propose a new
adaptive framework to overcome this gap.

III. THE PROPOSED MULTI-CLASS REBALANCING
FRAMEWORK
In this section, we highlight the overview of the new proposed
rebalancing framework and explain each phase. We exhibit
which components we adapted and highlight which new com-
ponents we added to the framework.

A. FRAMEWORK OVERVIEW
Medical dataset has numerous features, and incorporating
these attributes is difficult for classification task since it
leads to high time complexity and misclassification cost,
especially for multi-class. The trade-off between computa-
tional cost and the necessity for appropriate class imbalance
handling must be carefully considered especially in appli-
cations with limited computing capabilities. Therefore, it is
essential to choose the appropriate rebalancing strategies
that are cost-efficient without compromising computational
resources. In this study, we proposed a new rebalancing
framework for the multi-classification of imbalanced medical
data using multiple combined methods.

The overview of our rebalancing framework is laid out and
presented in Figure 1, divided into three phases: phase 1, fea-
ture selection and rebalancing; phase 2, training; and phase 3,
evaluation and validation. Similar to the basic machine learn-
ing lifecycle [33], our framework follows the same workflow.
(1) In phase 1, RFE is applied on the imbalance training data
and cross reference with SHAP to form the optimal features,
then SCUT is used to rebalance the training dataset with
the said optimal features, (2) DES-MI is used to train the
balanced dataset in phase 2, and (3) finally phase 3, model
evaluation using stratified 5-fold cross-validation.

Our proposed framework is entirely new and is an exten-
sion to explore the imbalanced issue inmedical data formulti-
class problems. In actuality, this study is in-line andmotivated
by similar endeavour work [4]. Therefore, to address the
multi-class problem, we highlight the important components
that we tune and contributed the most to the performance
of our framework: (1) Our novel pool selector by ExGmean
for DES-MI. (2) balancing using SCUT with an extension of
Kmeans and Hierarchical clustering method. We will explain
each component of our framework comprehensively, in the
next subsection.

B. PHASE 1: FEATURE SELECTION AND REBALANCING
Medical data is often multi-dimensional, which makes the
data mining task much more difficult. Feature selection pro-
cess is often carried out to mitigate this issue. In our frame-
work, we use a well-known feature selection method, RFE.
We then perform a manual cross-reference of the optimal fea-
ture with SHAP to further explore the importance and impact
of input features. Finally, we perform SCUT to rebalance the
dataset. This phase is performed sequentially and the detailed
methods are explained below.

1) RECURSIVE FEATURE ELIMINATION
RFE originated from the gene selection research by
Guyon et al. [34], since then, it has been efficiently applied in
many domains for selecting crucial features [35]. Fundamen-
tally, RFE removes the least important features on the target
feature until the optimal features are reached. RFE performs
this by the following steps: (1) Computes feature impor-
tance using weights to obtain the subset of ranked features.
(2) Train the classifier with the subset of features (ranked).
(3) Find the feature with the least importance, remove, and
update the subset (highest ranking features are eliminated
last). (4) Each step is repeated and re-ranks until an opti-
mal ranked list of features (Foptimal) with better results is
obtained. These procedures are performed iteratively while
removing one feature at a time. RFE uses weights (w) to
determine the feature importance value. The formula used by
RFE to calculate w, for linear problem in Equation (1), where
α is the Lagrange coefficients, k is the Kronecker symbol, x
is training data, and y is the class label,

w =
∑
k

αkykxk (1)
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FIGURE 1. Rebalancing framework for multi-class imbalanced medical data. Foptimal means Optimal features, which are the best-selected features from
RFE and SHAP.

and DJ(i) for the non-linear problem in Equation (2),
where i is the feature.

DJ (i) = (1/2)(wi)2 (2)

By default, RFE is performed with Support Vector
Machine (SVM) classifier [34], however since we exper-
imented on imbalanced data which is mostly non-linear,
choosing the appropriate classifier is necessary. Therefore,
we decided to experiment on non-linear classifiers (DT, RF,
and GB) and obtained better-selected features. The rationale
is to choose which classifier provides the highest accuracy
based on its selected subset of features (Foptimal).
RFE may find important features, that perform best cumu-

latively in a set. In some sense, these features are optimal
when paired together [34], [35]. Since medical datasets are
naturally compounded with many features, RFE can be ben-
eficial to find correlated features that might be overlooked
in related studies. Additionally, RFE has been proven to be
cost-effective [34]. We apply RFE before the rebalancing
strategy to retain the feature importance obtained from the
initial imbalanced data [36].

2) SHAPLEY ADDITIVE EXPLANATIONS
SHAP is an explainable algorithm popularized by ML
researchers to interpret models by demonstrating the impact
of each feature on the target class. It is a theoretical approach
used to find dominant features by their importance [37].
It has gained popularity for its attribution of interpretable
features and has shown to be a reliable alternative feature
selection approach [38]. To further dissect the reliability of
each feature obtained from the RFE Foptimal, we perform a
manual cross-reference with SHAP. In detail, SHAP lists out
important features ranked by their SHAP value. The higher
the value, the higher the priority and its impact on the target
class.

The rationale is to cross reference each feature obtained
from SHAP and update the Foptimal features. For instance,
check each feature from both methods and manually remove
the feature with the lowest SHAP value, hence update the
Foptimal features. However, if the list of features from both
RFE and SHAP are similar and does not require any changes,
no further update is required for Foptimal. Subsequently, the
imbalance dataset with Foptimal features will proceed with
the next rebalancing phase.

3) IMPROVED SCUT WITH KMEANS AND HIERARCHICAL
CLUSTERING
To cater with the imbalanced medical data issue, we imple-
mented SCUT. A hybridization approach consisting of
an oversampling and undersampling method derived from
Agrawal et al. [23] specifically to address multi-class imbal-
ance datasets and also applicable for binary class. It oversam-
ples the minority class using SMOTE and then undersamples
the majority class using Expectation Maximization (EM)
cluster algorithm. EM clustering provides both soft and hard
clusters which are already predetermined; thus, it is not nec-
essary to determine the number of clusters in advance.

However, during the experiment, we found out that using
EM degrades the overall performance for certain datasets.
Apparently, the predetermined clusters do not guarantee an
increase in global performance and EM performs slower for
larger datasets [39]. To mitigate this limitation, we experi-
mented and compare the results with two well-known clus-
tering algorithms (k-means and hierarchical). We discovered
that these two algorithms produced an overall increase in
performance and precedes EM in terms of computational
cost. Based on this remarkable discovery, we added these
algorithms (k-means and hierarchical) as part of SCUT into
our proposed framework. We will show the experimental
results in a later section.
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In Algorithm 1, the SCUT with our extension of Kmeans
and Hierarchical clustering method is described. SCUT is
performed by first splitting the dataset into n parts (target
feature), which is Di . . ., Dn, where n is the number of
classes and Di represents each class. It then calculates the
mean (m) of the number of records of all the classes. The
algorithm then proceeds with the following conditions: (1) if
the number of records (applies in each Di) is less than mean
m, oversampling using SMOTE is performed. The sampling
percentage is computed so that the number of instances after
oversampling is equal to m. (2) if the number of records
(applies in each Di) is more than the mean m, undersampling
is used to generate an equal number of records to the meanm.
Our framework improved two clustering algorithms: k-means
and hierarchical clustering. The rationale is to choose which
algorithm (EM, k-means, or hierarchical) provides optimal
results based on the number of clusters it obtains. (3) Else,
if the number of records is equal (balance distribution of
classes) to the mean m, then SCUT is not performed. Finally,
the algorithm proceeds to merge all the classes with an equal
number of records to the mean m to produce D′, where D′ is
the balanced dataset.

Additionally, SMOTE performs exceptionally well in
reducing class imbalance problems. However, it is inefficient
in high-dimensional data, especially in multi-class settings
where it is exacerbated the most. Overall, SCUT is far supe-
rior to SMOTE for the following two reasons: (1) random
sampling weakness, excessive use of both sampling methods
may lead to over and underfitting issues. SCUT addresses
this issue by finding the correct balance of data while still
retaining instances with important information. (2) Accurate
for medical data, Agrawal et al. [23] claims that SCUT is
appropriate to use for domains that involve multi-class imbal-
ance data and discourage the decomposition method. SCUT
tackles this problem by finding the correct balance between
class and within-class imbalance by still retaining the multi-
class structure.

Additionally, one of the major advantages of SCUT is
its capability to handle different types of class imbalance,
namely, the between-class and within-class imbalance [23].
The between-class imbalance refers to an imbalance in the
distribution of instances across classes and prominently exists
in imbalance learning, while the within-class refers to the
imbalance that exists within particular target classes which
contains variations of underrepresented groups or instances.
The rebalancing strategies embedded in SCUT addresses both
of these imbalance types, by which SMOTE aids to reduce the
between-class issue while the cluster-based undersampling
handles the within-class issue.

C. PHASE 2: TRAINING
An obvious distinction between multi-class and its binary
counterpart is the decision boundary. Therefore, it is impor-
tant to find an appropriate classifier that can capture the
decision boundary between themajority andminority classes.

Algorithm 1 Improved SCUT
1: Inputs: Dataset D with n classes
2: Initialize: Divide D into D1, D2, D3, . . . , Dn, where Di

is a single class, then compute m.
3: if Dn > m
4: [Perform Undersampling]
5: for each D, i = 1 to n do
6: Cluster Di using EM or Kmeans or Hierarchical
7: for each cluster C i, i = 1,2, . . . ,k do
8: Randomly select instances from C i
9: Add selected instances to Ci

′

10: end for
11: C=Ø
12: for i=1,2, . . . ,k do
13: C = C ∪ Ci

′

14: end for
15: Di

′
= C

16: end for
17: if Dn < m
18: [Perform SMOTE]
19: for each D,i=1 to n do
20: Apply SMOTE on Di to get Di

′

21: end for
22: if Dn = m then
23: Di = Di

′

24: end if
25: D′=Ø
26: for i = 1 to n do
27: D′ = D′ ∪ Di

′

28: end for
29: return D’
30: Outputs: Dataset D′ has m instances for all classes,

where m is the mean instances for all classes.

To solve this issue, we incorporate DES-MI. We also explain
our proposed pool classifier selector.

1) DYNAMIC ENSEMBLE SELECTION FOR MULTI-CLASS
DES-MI is a multi-class variant extended from its initial
predecessor, the Dynamic Classifier Selection (DCS) and
Dynamic Ensemble Selection (DES). On one hand, the DCS
method involves selecting a single best classifier for each
test sample, on the other, DES involves selecting an opti-
mal classifier ensemble for each test sample. Similar to
the former, except its predictions are produced using votes
from many classifier models. However, their limitation is
only towards binary classification problems. To cater to this
restraint, DES-MI was proposed for the multi-class imbal-
ance problem [40]. DES-MI has its perks in solving common
multi-class imbalance problem which includes small dis-
junctions, noise instances, and multi-class overlapping [40].
It solves this by embedding a unique weighting strategy to
outperform the competency of a candidate classifier with
more strength in identifying the minority classes.
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There are two major features of DES-MI summarized as
follows: (1) Generation of candidate classifiers. To generate
the pool classifier, DES-MI suggests using a homogeneous
ensemble (set of classifiers with the same type). In a similar
direction to generate the candidate classifiers, we proposed
a novel pool classifier selector based on ExGmean, which
is shown in Algorithm 2. The motivation of the proposed
selector is to build an appropriate combination of classi-
fiers in the pool rather than the manual selection which
is time-consuming. In this way, an adequate diversity of
top-performed classifiers by ExGmean can be formed. The
experiment of our proposed pool selector will be shown in
the later section. (2) Dynamic selection of the most appro-
priate ensemble. Introduces the novel weighting strategy to
outperform the competency of a candidate classifier (in pool
classifier) with more strength in identifying minority classes.
In other words, higher weights were given when measuring
the competency level of a classifier in the candidate classifier
pool.

In Algorithm 3, the detailed DES-MI algorithm is
described. The algorithm proceeds as follows: (1) evaluate
the performance of potential classifiers in their region of
competence for each query sample that is required to be
classified, denote as X t, and X i evaluates the impact of the
class. The region of competence is defined by the k nearest
neighbors around the query example. (2) The algorithm’s
main purpose is to pick classifiers that are stronger when
categorizing cases that are underrepresented in the region of
competence. Each classifier’s competence (in the classifier
pool) is determined, and the adaptive weight adjustment pro-
cess is applied. Classifiers with more strength in categorizing
complicated instances from all classes are associated with
better competency. (3) The selected classifiers are combined
decisively using a majority vote.

2) PROPOSED POOL CLASSIFIER SELECTION BASED ON
EXTENDED G-MEAN
While still maintaining the diversity, our approach of select-
ing the classifiers for the pool focuses on classifiers that
provide the best ExGmean score. The most dependable met-
ric that reflects the overall model performance across all
classes is the g-mean. Therefore, it is only reasonable to
include classifiers that provide the best g-mean into the pool.
However, the conventional g-mean metric is built for binary
classification, to extend it for multi-class, we decided to use
the extended G-mean instead [29]. ExGmean is calculated by
Equation (3).

ExGmean = (
k∑
i=1

Ri)1/k (3)

where R is the recall and k is the class.
The candidate base classifiers that we use for the pool

are c4.5 Decision Tree (DT), Random Forest (RF), Extreme
Gradient Boosting (XGB), Support Vector Machine (SVM),
Radial kernel Support Vector Machine (R.SVM), Naive

Bayes (NB), K-Nearest Neighbors (KNN), and Multilayer
Perceptron (MLP). DT algorithm is a popular approach for
classification and is extensively used to solve medical diag-
noses [30]. Meanwhile, RF can avoid complexity issues due
to its immunity towards overfitting and the curse of dimen-
sionality [41]. XGB is an extended version of a gradient
boosting approach that produces a robust boosted tree model
with good accuracy and is well-known for its resistance to
imbalanced data [42]. Both SVM and R.SVM have reputable
classification performance in the medical area for disease
prediction [43]. NB and MLB are well-known for imbal-
anced learning [44], [45]. While KNN has been used by
many for its reliability in disease prediction [46]. Since this
study includes imbalanced medical data, it is reasonable to
include these classifiers as the base candidate for our pool
classifier.

The procedure of our proposed pool classifier selection
based on the ExGmean method is described in the pseu-
docode in Algorithm 2. Given a dataset, D, split into the
training set, Dtr, and testing set Dte, with candidate classifier
pool, denote as CP. For each loop, train and predict each
classifier CPi using the ExGmean algorithm (Equation (3))
and store it in a newfinalized classifier pool,CPgmean. To gen-
erate the top N performed classifier, simply update the ntop.
By default, we set the ntop equal to CPn. The rationale for
choosing the best ntop classifier from CPgmean is to check
which classifiers in the pool work best with each other as
pairs or individuals. It is not always a good idea to use every
possible classifier in the CPgmean, as certain datasets may
work best and others may degrade. It is best to preserve a
wide range of candidate classifiers while limiting the ones
with low g-mean. Therefore, any ntop variants of the CPgmean
can be produced for experimentation. For instance, variant 1,
CPgmean (ntop=6) with six highest g-mean classifiers from
the pool; variant 3, CPgmean(ntop=3) with only the top three
highest g-mean classifiers.

Algorithm 2 Pseudocode for Proposed Pool Classifier
Selector by ExGmean
1: Inputs: Training set Dtr, testing set Dte, candidate clas-

sifiers pool CP, ntop best-performed classifiers by gmean
value

2: D′← Ø
3: for each CP, i = 1 to CPn do
4: Train CPi on Dtr
5: scores← store CPi gmean score
6: predict CPi on Dte using ExGmean algorithm
7: CPgmean = (CPi, scores)
8: end for
9: Sort CPgmean by ascending value

10: CPgmean = CPgmean (ntop)
11: Outputs: CPgmean, proposed classifier pool with best

gmean
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Algorithm 3 DES-MI
1: Inputs: Training set Dtr, validation set Dvalid, testing set
Dte, nearest neighbors k, percentage of classifiers to be
selected P%, the scaling coefficient α, and our proposed
classifier pool CPgmean

2: for each X t in Dte do
3: EoC*t’← Ø
4: find 9 as the k nearest neighbours of the instances X t

in Dvalid
5: for each X i in 9 do
6: num← count number of instances with the same

class as X i
7: W i ← 1/1+exp(α×num) //calculate the voting

weights for each X i in 9

8: end for
9: NormalizeW i according to Ŵ i←

W i∑k
i=1W i

10: for each classifier CPj in CPgmean do
11: C(CPj|X t)←

∑k
i=1I (CPj(X t) = yt)Ŵ i

12: end for
13: select P% most competent classifiers in CPj to create

the ensemble EoC*t for instances X t
14: H (Xt)← argmaxy∈�

∑N
i=1I (hi(X t) = y)

15: end for
16: Outputs: CPgmean, proposed classifier pool with best

gmean

D. PHASE 3: EVALUATION AND VALIDATION
It is imperative to choose appropriate evaluation metrics
to measure the multi-class. Accuracy is not a valid met-
ric in imbalanced data with multi-class settings. Therefore,
instead of using the standard metrics (recall, accuracy, preci-
sion, f-score), we will use Macro average accuracy (MAvA),
ExGmean, and Macro Average AUC (MAUC), to properly
evaluate the overall performances across all the classes. These
alternative measures are most suited to measure each class’s
performance in a multi-class problem [11], [47].

Due to the class instances in some of the datasets (eColi,
Yeast, Lymphography) being relatively small. We use a strat-
ified 5-fold cross-validation to validate the model and ensure
each minority class has at least one example in each fold and
is appropriate for imbalance learning [28], [48]. Additionally,
previous related works [3], [9], [10] have shown that using
a 5-fold cv approach provides significant results. Further-
more, we used the default parameter and manually performed
the cross-validation without the ‘‘pipeline’’ python library.
This is by means to make the framework computationally
cost-efficient.

IV. EXPERIMENTAL VERIFICATION AND SETUP
To verify the performance of our proposed rebalancing
framework we compare it in two aspects; (1) with no frame-
work applied, we depict this as, Standard approach, and
(2) with other state-of-the-art imbalanced learning frame-
works. Table 1 describes the details of the different

TABLE 1. Details of the different state-of-the-art imbalance frameworks
for comparison.

state-of-the-art imbalance frameworks for comparison.
While these frameworks share distinct approaches in solv-
ing class imbalances, they are limited to only binary
class.

The overall experimental workflow is shown in Figure 2.
The experimental results were obtained using stratified 5-fold
cross-validation with 3 iterations. Each dataset was divided
into five folds, with each fold holding 20% of the dataset’s
instances as the test set and the remaining 80% as the training
set.

A. DATASETS
Table 2 shows the eight imbalanced medical datasets used
for the experiment. The UCI datasets are eColi and Yeast.
Cirrhosis, HepatitisC, Framingham, Stroke, and MIMIC-III
were obtained from Kaggle and Lymphography are obtained
fromKEEL. For this study, all the datasets have varying levels
of imbalance and multiple classes. To make our framework
more generalizable for binary class problem we include a
dataset that has binary class hence, Framingham, Stroke, and
MIMIC-III was included.

Imbalance Ratio (IR) represents the level of imbalance
on each dataset. The smaller the IR, the more balanced the
dataset; hence, the distribution will be less skewed. However,
the larger the IR, the larger the imbalanced extent of the
dataset [5]. A mild IR is between 1.9 and 9, while highly
IR is more than 9 [51]. In this case, there are five highly
imbalanced dataset with IR more than 9. Yeast dataset has
the highest level of imbalance with IR=92.6 followed by
eColi, Lymphography, HepatitisC, and Stroke datasets with
IR=71.92, 40.5, 25.71, and 19.52, respectively. The IR is
calculated by dividing the highest-class ratio, rmax by the
lowest-valued class ratio, rmin. Measuring the IR helps us
identify the imbalance level on each dataset we used. The IR
is calculated by Equation (4).

IR =
rmaj

rmin
(4)

VOLUME 11, 2023 92863



J. Edward et al.: New Multi-Class Rebalancing Framework for Imbalance Medical Data

FIGURE 2. Experimental workflow.

B. PERFORMANCE EVALUATION METRICS FOR
MULTI-CLASS CLASSIFICATION
In a binary class setting, the standard metric commonly used
to measure the performance of a model are accuracy, preci-
sion, recall, and f-score. By definition, accuracy represents
an overall predictive capability of a model [47], [52]. Each
class has the same weight which contributes equally to the
overall accuracy. Precision denotes the proportion of values
that a model predicts will be positive (TP, true positive).
It indicates how much we can rely on the model when the
predictive value is positive [47]. Recall, assesses the model’s
prediction accuracy for the positive class. Which is calculated
by dividing the proportion of TP values by the total number
of positive values [47], [52]. The f-score evaluates a classi-
fication model performance by averaging both precision and
recall measurements using the harmonic mean approach [47].
The higher the f1-score the better the predictive capabilities
of each class. However, we evaluate the performance of our
model using three main evaluation metrics for multi-class;
these metrics are MAvA, ExGmean, and MAUC.

ExGmean is used to measure the mean recall of all the
classes due to its sensitivity towards the minority class [29]
and efficiency to identify the minority class. This metric is
defined in Equation (3).
MAvA is a more effective metric that measures the

average accuracy across all classes in a multi-class set-
ting. Defined as the arithmetic mean of each class’s par-
tial accuracies [53].The formula for MAvA is calculated
in Equation (5).

MAvA =

∑J
i=1 ACC i

J
(5)

where J is a class.

The Receiver Operating Characteristic curve (ROC) is
one of the most extensively used tools for evaluating binary
classifiers for imbalanced learning. It describes the trade-off
between the true positive rate (TPR) and the false positive
rate (FPR) for a predictive model with varying probability
thresholds. The area under the ROC is called AUC. To adapt
the AUC for multi-class problems, we will use the MAUC.
It computes and averages the AUC of each class vs the rest
(one vs. rest) [54]. The MAUC is calculated in Equation (6).

MAUC =
1
J

∑
j∈J

AUCR(j, rest j) (6)

C. STATISTICAL TEST
Statistical techniques must be used to analyze the results to
determine whether there are significant differences between
the proposed framework and the other state-of-the-art frame-
work. Therefore, theWilcoxon signed-rank test [55] was used
in this case for the pairwise comparison as a non-parametric
hypothesis test. In details, rankings ‘‘1’’ and ‘‘0’’ are given
for the outcomes of the two methods with the lowest and
highest absolute disparities. To calculate R+ and R-, the ranks
of positive and negative differences are added. Whereas, the
p-value inWilcoxon signed-rank test [55] shows a significant
difference between the two methods if it is less than the
significance level of 0.05.

V. EXPERIMENT RESULTS AND DISCUSSION
A. FEATURE SELECTION WITH RFE AND SHAP
The RFE was performed with stratified 5-fold cross-
validation on each fold and was averaged to determine the
Foptimal features by accuracy. The following parameter was
used for the cross-validation: n_split = 5, shuffle = True,
random_state= 42, and scoring=’accuracy’. Figure 3 shows
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FIGURE 3. Selected Foptimal features using RFE on each dataset.

the selected Foptimal by the number of features using RFE on
each dataset. Next, we perform a SHAP analysis to compute
the SHAP value of each feature towards the target class.
A higher SHAP value indicates the impact of the feature on
themodel’s output.We then perform amanual cross reference
on the RFE Foptimal with SHAP to analyze features with
the lowest impact and remove them. For instance, in the
Lymphography dataset, feature bl_of _lymph_s has the lowest
rank onRFE, and the lowest SHAP value, since it is the lowest
feature on both sides, we remove the feature and update the
Foptimal list. Note that we only remove the lowest features
that are correspondence on both RFE and SHAP (highlighted
in bold). Table 3 shows the summary of RFE and SHAP
feature selection.

B. SCUT AND OPTIMAL CLUSTERING METHOD
We performed a stratified 5-fold cross-validation, 80% of the
training data was rebalanced with SCUT of each clustering
method. Trained and tested on the remaining 20% set. The
following parameter was used for the cross-validation: n_split
= 5, shuffle = True, and random_state = 7. We compare

the results to determine which method produces the best
ExGmean. Table 4 shows the performance of three clus-
tering types for optimal clustering method on each dataset
by ExGmean. Note that, we only choose the highest ExG-
mean (highlighted in bold) as the optimal clustering for each
dataset.

According to Table 4, the hierarchical method provides
a higher ExGmean for most of the dataset with HepatitisC,
Lymphography, Framingham, Stroke, and MIMIC-III. While
eColi and Yeast performed well with EM, K-means algorithm
only perform best for Cirrhosis. The results also showed
that the execution time(s) for EM was 245.87s, slower than
that of K-means with 228.35s, and Hierarchical being the
fastest with 213.28s. This approves the limitations of EM [39]
being computationally expensive for larger datasets (Stroke,
MIMIC, Framingham) and degradation of results.

C. DES-MI WITH BEST ExGmean POOL CLASSIFIER
DES-MI requires a pool of classifiers to work properly with
any number of candidate classifiers. In our study, there are
eight base candidate classifiers in the pool, CP. To highlight
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TABLE 2. Summary of imbalanced medical datasets.

TABLE 3. Summary of feature selection using RFE and SHAP.

the strength of our proposed selector we compared it with
the standard pool with no selector. We implement our pool
classifier selector by ExGmean in Algorithm 2 to get the
CPgmean. To find the best ntop we created two different pools
and compared them with the standard pool. The details of the
pools are as follows:

TABLE 4. ExGmean performance of three clustering types for optimal
clustering method on each dataset.

TABLE 5. Selected CPgmean and ntop for each dataset by ExGmean.

• Pool 1: Standard, a pool with all the candidate classifier
and no selector.

• Pool 2:CPgmean(ntop=6), a pool with the top 6 candidate
classifier.

• Pool 3:CPgmean(ntop=4), a pool with the top 4 candidate
classifier.

We train and test each dataset and choose the ones that
provide the best results. Table 5 shows the best pool for each
dataset (highlighted in bold). Based on the results, most of
the datasets performed well with Pool 3 and only two datasets
(eColi and Stroke) performed best with Pool 1. In most cases,
the dataset provided better results with the top 4 classifiers.

D. PERFORMANCE COMPARISON VERSUS STANDARD
APPROACH AND OTHER STATE-OF-THE-ART IMBALANCED
FRAMEWORK
To compare the effectiveness of our proposed framework
we compare it with Standard and other state-of-the-art
imbalanced frameworks. We performed stratified 5-fold
cross-validation with three iterations under the following
parameter: n-split=5 and shuffle=True. The random_state
(seed) for each iteration are 7, 24, and 42 to make the exper-
iment study more reproducible for interested readers. The
hyperparameter was set to default for all models.We obtained
the results and recorded them as average validation perfor-
mance across 5 folds. Table 6 shows the average 5-fold of
each dataset for Standard and other state-of-the-art imbal-
anced frameworks. The mean summary of ExGmean and
MAUC are reported in Figures 4 and 5. The ExGmean and
MAUC performance of our proposed framework by each iter-
ation is depicted in Figure 6. Additionally, we have performed
the required Wilcoxon signed-ranked test for the pairwise
comparison between the proposed framework with Standard
and other state-of-the-art frameworks. The statistical results
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in terms of ExGmean andMAUC are shown in Table 7, where
the ranks for the proposed framework and the compared
frameworks are added up to form R+ and R-, respectively.
The analysis based on the experimental results is as

follows:

1) According to Table 6, the results highlighted in bold
demonstrated the best overall performance on each
dataset, in terms of MAvA, ExGmean, and MAUC.
The Standard approach achieves higher MAvA but
has relatively low ExGmean and MAUC across all
the datasets. The imbalanced data distribution adds to
this degradation. In a sense that it will cause many
misclassifications of predictive outcomes, hence, the
lower ExGmean and MAUC. Meanwhile, all the other
state-of-the-art imbalanced frameworks performed bet-
ter than the Standard approach with adequate ExG-
mean and MAUC. Evidently, our proposed framework
obtained significant MAvA, ExGmean, and MAUC
across all datasets. Except for Stroke and MIMIC with
the Standard approach has the highest MAvA with a
trade-off of lower ExGmean and MAUC.

2) As presented in Figures 4 and 5, our proposed frame-
work achieves the best robustness by mean ExGmean
of 5.87 and MAUC of 6.07 compared to the other
state-of-the-art frameworks, across all the datasets. The
Standard approach with no rebalancing achieved the
lowest ExGmean while DT+CNN achieved the lowest
MAUC. Evidently, the model′s performances across
all the dataset remained fairly consistent across each
iteration, indicating no signs of overfitting.

3) According to Figure 6, the results shows that our frame-
work achieved a consistent ExGmean(a) andMAUC(b)
across all the dataset especially eColi with above
0.90 ExGmean and MAUC. Most of the dataset has
consistent results by iterations.

4) Referring to Table 6, our proposed framework per-
forms significantly better than most of the frame-
works due to the corresponding p-values being less
than the significant value of 0.05. Although there
are no significant differences(p-values>0.05) found
between proposed vs. KNORAE+ROS and proposed
vs. KNORAE+SMOTE in terms of ExGmean and
MAUC, we can, however, emphasize the strong per-
formance of the proposed framework since in both
instances, the values of R+ are significantly higher
than those of R-. Also, for ExGmean and MAUC, our
proposed framework achieved the most wins with 8 out
of 8 datasets by the majority of the pairwise frame-
work comparisons. However, our proposed framework
wins 4 out of 8, and 5 out of 8 datasets when com-
pared to KNORAE+ROS and KNORAE+SMOTE in
terms of ExGmean. Whereas, in terms of MAUC,
our proposed framework wins by 5 out of 8 datasets
for both KNORAE+ROS and KNORAE+SMOTE,
respectively.

Table 8 presents the overall average results of our proposed
framework with Standard and State-of-the-art Imbalanced
Framework. The best result is highlighted in bold. According
to Table 8, our proposed framework achieved the highest
ExGmean and MAUC overall by 0.7357 and 0.7587, respec-
tively. Apparently, the Standard approach has the highest
MAvA with 0.8517 among the others. However, it suffers
from lower ExGmean and MAUC. Signifying that model
with no framework produced lower predictive performance
on the minority class. Evidently, the results of our proposed
framework outperform the other State-of-the-art Imbalanced
Frameworks and Standard approaches with a significant
increase in overall metrics especially for ExGmean and
MAUC. Although each state-of-the-art framework performs
with equivalent results, it does make a clear distinction when
comparing the results with our proposed framework.

E. DISCUSSION
It can be observed from the results that our proposed frame-
work outperforms the Standard approach and other state-
of-the-art imbalanced frameworks with significant overall
performance across all the imbalanced datasets. Specifically
in terms of the multi-class metrics, MAvA, ExGmean, and
MAUC. Results from these experiments conclude that our
proposed framework significantly solves the imbalance data
issue and improves the overall performances while retain-
ing the multi-class setting in medical data and without the
decomposition method. It clarifies the limitations of the other
state-of-the-art imbalance framework which is limited to only
binary class, our framework was able to solve both binary and
multi-class settings.

These results are consistent with previous related works
using a rebalancing framework to solve the imbalance dis-
tribution of classes [3], [6], [10] in medical datasets and
notably prior similar works that incorporate various rebal-
ancing strategies and feature selection unified into one
framework [7], [9]. Previous findings that implement an
ensemble-based classifier [8], [32] as part of their rebalanc-
ing framework also show similar results in solving these
imbalanced datasets. The significance and contributions of
this study are summarised below based on the results of the
experiment:

1) Handling imbalanced issues inmedical data: This study
proposed a rebalancing framework to solve the class
imbalanced issue that resides in medical data. Thus,
based on the results, the improved SCUT can handle the
imbalanced class issue with the best MAvA, ExGmean,
and MAUC. Additionally, the feature selection method
using RFE and SHAP can reduce data dimensionality
and increase sensitivity, hence the increase in ExG-
mean. The applied DES-MI can reduce classification
error and improve classification performance by giving
weights to each class.

2) Highly imbalanced ratio: Our proposed rebalanc-
ing framework can solve highly imbalanced medical
datasets notably datasets with IR of more than 9.
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TABLE 6. Comparison of our proposed framework with standard and state-of-the-art imbalanced framework for each imbalanced datasets.
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TABLE 6. (Continued.) Comparison of our proposed framework with standard and state-of-the-art imbalanced framework for each imbalanced datasets.

We experimented on eight imbalanced datasets, each
with varying levels of IR, five of which are highly

imbalanced (Yeast, eColi, Lymphography, HepatitisC,
and Stroke). We include three binary-class datasets to
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FIGURE 4. Summary mean performance of each framework in terms of ExGmean.

FIGURE 5. Summary mean performance of each framework in terms of MAUC.

increase the generality of our framework not limited to
only multi-class problems. Unfortunately, we could not
acquire more medical dataset that is highly imbalanced
in nature. Despite this limitation, our framework was
able to solve three highly imbalanced dataset, thus, pro-
vide ample sufficiency of our framework’s capability
that contribute towards its robustness in solving highly
imbalanced dataset.

3) Novelties that contribute to the performance of our
framework: (1) We implement SCUT as part of the
rebalancing strategy in our proposed framework, it uses

EM as its standard clustering algorithm. However, our
experiment (using SCUTwith EM) showed degrades in
overall performance for certain datasets and an increase
in time complexity. We experimented and compared
the results with k-means and hierarchical. The results
show an overall increase in performance and thus,
precedes the limitations of EM. Thus, this provision
indicates an improvement in SCUT. (2) We introduced
our pool classifier selector by ExGmean, as an appro-
priate selector of candidate classifier for DES-MI. Our
approach effortlessly finds the suitable pool classifier
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FIGURE 6. ExGmean performance of proposed framework by iterations.

TABLE 7. Wilcoxon’s test for pairwise comparison between our proposed framework and state-of-the-art framework by ExGmean and MAUC.

for DES-MI rather than choosing the classifier manu-
ally. We hope that this novel method may assist inter-
ested researchers in imbalanced learning when using
DES methods. In fact, our novel pool selector can also
be implemented with other DES variants not limited to
DES-MI, as long as that particular variant supports the
pool classifier parameter.

Notably, increasing the generalizability of the framework
in handling both classification tasks (binary and multi-class)
comeswith a trade-off of limiting its practicality, especially in
real-world applications where efficiency and responsiveness
are critical. For that reason, hyperparameter tuning and grid

search are not included in this framework, particularly in
SCUT and DES-MI methods. As clarity, the purpose of the
enhanced SCUT with two additional clustering algorithms is
by means to address the time consumption issue in EM with
improved results. While the rest of the SCUT was performed
in the default parameter setting with no further optimization
tuning. The same can also be said for the proposed pool
classifier for DES-MI, where its purpose is only to obtain
the suitable candidate classifiers ranked by ExGmean. While
proceeding with the rest of the algorithm remains unhinged.

However, it is essential to evaluate the proposed frame-
work on more new data to ensure their performance remains
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TABLE 8. Overall average results of our proposed framework with standard and state-of-the-art imbalanced framework.

consistent over time, given that data distribution changes con-
stantly. Unfortunately, acquiring more imbalanced medical
data has become challenging due to its scarcity and data-
sharing restrictions. Regardless, in future works, we intended
to validate and refine the framework based on more new
real-world data to ensure its practicality and generalizability
in a dynamic and evolving environment.

Overall, this study highlights the capability of our frame-
work in solving multi-class imbalanced medical data, leading
to effective rebalancing and an increase in overall perfor-
mance. Furthermore, the statistical analysis using Wilcoxon
signed-rank test for pairwise comparison shows that our pro-
posed framework significantly outperforms the Standard and
the other state-of-the-art frameworks. However, it is worth
noting that our framework is not limited to medical data;
but is also, applicable to rebalance datasets that have similar
unbalanced distribution in different data domains as well.

VI. CONCLUSION AND FUTURE DIRECTION
Class imbalance exists in many data domains, especially for
medical datasets, which are inevitably imbalanced in nature.
For a more convenient solution, most researchers preferred
the standard method of decomposing multi-classes into sub-
problems of binary classes. This approach, however, is not
applicable for the sensitive and critical domain, likewise,
medical data. The fact that clinical validity requires, all
classes to preserve their shape to avoid the diagnosis from
being compromised.

In this work presented, we present a new multi-class rebal-
ancing framework using SCUT, RFE, and SHAP for feature
selection, and introduce DES-MI with our novel pool selector
by ExGmean, for improved multi-classification. This rebal-
ancing framework was experimented with using eight imbal-
anced medical datasets UCI, Kaggle, and KEEL repositories.
Experiments were carried out, and results showed that our
proposed rebalancing framework demonstrates a significant
overall performance that outperforms the Standard approach

and other state-of-the-art imbalanced frameworks. In terms
of multi-class performance metrics MAvA, ExGmean,
and MAUC.

In the hope of validating and further improving our rebal-
ancing framework, it is of our research interest to experiment
with more highly imbalanced datasets and explore other com-
mon medical data issues such as high dimensionality and
misclassification tolerance. As a future intention, we plan to
not only explore real-world imbalanced datasets from diverse
domains beyond medical but also to delve into the impact
of hyperparameters within our proposed framework. This
exploration aims to uncover the sensitivity of the introduced
techniques to hyperparameter variations, ultimately guiding
the selection of optimal parameters for improved results.
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