IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 7 August 2023, accepted 19 August 2023, date of publication 28 August 2023, date of current version 1 September 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3308600

== RESEARCH ARTICLE

Evaluation of Human Pose Recognition and
Object Detection Technologies and Architecture
for Situation-Aware Robotics Applications in
Edge Computing Environment

PEKKA PAAKKONEN" AND DANIEL PAKKALA

VTT Technical Research Centre of Finland, 90571 Oulu, Finland
Corresponding author: Pekka Péddkkonen (pekka.paakkonen @ vtt.fi)

This work was partially funded by Business Finland as part of the Next Generation Mining (NGMining) Co-Innovation Project.

ABSTRACT Realization of situation-awareness for autonomous robotics applications in edge computing
environment is challenging. First, computing capabilities of edge devices are limited, which must be
considered in the execution of machine learning (ML)-based solutions. Second, many technologies are
available for realizing situation-aware capabilities, but comparison and integration of solutions creates
additional challenges. Third, existing ML-based models are often not directly applicable for realizing custom
applications, and model(s) may need to be re-trained with new data. The contribution of this paper is
efficiency and feasibility evaluation of human pose recognition and object detection technologies in edge
computing environment. Several lessons learnt covering constraints are presented regarding feasibility of
the experimented technologies and data sets. The efficiency evaluation results indicated that simultaneous
human pose recognition (Google’s Movenet) and object detection (Yolov5) on Jetson AGX Xavier achieved
~13-16 FPS, while GPU and CPU utilization remained at a medium level, and most of the memory remained
unused (< 44 %). Object concept and human pose concept activation algorithms may be considered as
an additional contribution. Realized architecture design of the prototyped system in multiple computing
environments can be considered as a partial evaluation of a ML-based big data reference architecture.

INDEX TERMS Movenet, Yolov5, Jetson AGX Xavier, inference, reference architecture, big data.

I. INTRODUCTION

For effective cooperation of people and machines in future
physical work, remotely operated autonomous robotic sys-
tems (e.g., automated guided vehicles (AGV)) should be able
to safely operate in the same physical space with human
employees without safety zones separating the two (e.g.,
collaborative robotics [1]). To achieve this, the robotic sys-
tems should have capabilities to perceive and comprehend
their surrounding operational context and take it into account
in the automated decision making as part of the missions

The associate editor coordinating the review of this manuscript and

approving it for publication was Sotirios Goudos

VOLUME 11, 2023

or tasks execution. In other words, the future autonomic
robotic systems need to become situation-aware just like
humans, capable to perceive critical factors from their envi-
ronment, understand what those mean in relation to current
goals [2]. Accordingly, simple object detection is not suf-
ficient, but perception of concepts from the environment
is required to enable cognitive robotic systems [3]. For
example, let us consider a use case of underground mining,
where an autonomous mining vehicle is remotely given a
mission to move between places A and B within the mine
and perform fully automated ore hauling. To avoid physical
injuries and collisions with obstacles, the vehicle control
system and mission should automatically adapt if people or

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 92735

https://orcid.org/0009-0009-2383-4263
https://orcid.org/0000-0002-0513-3473
https://orcid.org/0000-0001-5981-5683

IEEE Access

P. Paakkonen, D. Pakkala: Evaluation of Human Pose Recognition and Object Detection Technologies

obstacles are detected on route. In this article, we evaluate
the potential technological enablers for such situation-aware
applications within edge computing environments. Next Gen-
eration Mining (NGMining)-project [4] aims at facilitating
safe and efficient underground mining with autonomous
connected and moving mining machinery. Our goal in the
NGMining-project was to design and develop an autonomous
cognitive robot platform for demonstration purposes. Partic-
ularly, the aim was to design and realize scenarios, where
an autonomous moving robot detects objects and recognizes
human poses, which may be utilized for in situ intelligent
decision making and operation of the robot. The challenge
was to realize the functionality by using edge computing
devices with limited computing power.
Especially, the research was motivated by:

o The lack of suitable models or training data sets for
detection of application-specific concepts (i.e., objects
and human poses) for the underground mining environ-
ment.

o The difficulty of decision making on technology selec-
tion for realizing object detection ([5], [6], [7], [8], [9],
and [10]) and human pose recognition ([11], [12], [13],
and [14]) on edge computing devices with heteroge-
neous resource-constraints (e.g., different device vari-
ants of NVIDIA’s Jetson devices).

o Lack of open source-based solution and architecture
simultaneously realizing object detection and human
pose detection functionalities.

The research question was: How feasible and efficient are
object detection and human pose recognition technologies
for enabling situation-awareness of robotics applications
in edge computing environment? The research was con-
ducted by applying the design science research methodology
(DSRM) [15]. The objective was to develop ML-based solu-
tion and architecture for facilitating robot operation in edge
computing environment with object detection and human
pose recognition service.
The contributions of our research are:

o Feasibility and efficiency evaluation of object detec-
tion and human pose recognition technologies for
edge computing environment. Especially, integration of
Yolov5-based object detection [6] and Movenet-based
human pose recognition [13] with object concept and
human pose concept activation algorithms (executed
with Jetson AGX Xavier) may be considered as a novel
contribution.

« Additionally, architecture design of the realized solu-
tions in multiple computing environments is presented,
which can be considered as a partial evaluation of the
ML-based big data reference architecture (RA) [16].

The document is structured as follows: In Section II a lit-
erature review is presented covering object detection and
human pose recognition technologies, and ML-based big data
reference architectures. Research method and process are

92736

presented in Section III. Design science-based research iter-
ations on ML for human pose recognition, object detection,
and their integration are described in Sections IV-VII. Par-
ticularly, the experimented architecture design is presented,
evaluated, and compared to related work. Finally, the results
are discussed (Section VIII) and concluded (Section IX). The
Appendix contains initial experimentation results on object
detection and human pose recognition (Iteration 1). Addition-
ally, application programming interface (API) description of
object and human pose concepts for the end user is presented.
Finally, edge computing devices’ SW configurations have
been included, which were essential for execution of the
experiments.

II. LITERATURE REVIEW

The literature of vision-based scene understanding in human-
robot collaboration [17] can be broadly categorized into
object perception, human recognition, environment parsing,
and visual reasoning. Specifically, we focused on object
detection and localization (as part of object perception [17]
research area), and human body pose recognition (part of
human recognition [17] research area).

Several Yolo-based approaches [5], [6], [7], [8], and [18]
have been developed for object detection purposes.
Yolov6 [7] improves on earlier approaches with a new neural
network design, and training techniques (self-distillation,
improved quantization). Yolov7 [8] applied new training
techniques (e.g., new model re-parameterization and dynamic
label assignment method) for improving accuracy with-
out affecting inference latency. However, Yolov6 achieved
higher processing performance in comparison to Yolov7 [7].
A selective frame-down sampling method has been developed
for improving Yolo-based object detection (people counting
application) performance with Jetson Nano-devices [10]. Par-
ticularly, Yolov5 models optimized with TensorRT achieved
~63-108 ms inference latency. Yolov4 performance with
optimized models (TF-Lite, TensorRT) has been experi-
mented with Jetson Xavier-platform [9]. The models opti-
mized with TensorRT achieved ~18-62 ms inference latency
with COCO and VOC data sets [9].

Partitioning of Yolov2-model between cloud (virtual
machine with Tesla P4 GPU) and edge computing resources
(Raspberry Piv3) has been studied for improving process-
ing performance [19]. The results indicated that a parti-
tioned model achieved lower performance when compared to
edge/cloud-only execution. Additionally, general approaches
for deep neural network (DNN) partitioning into a small
head-part (executed in edge-devices) and a large tail-part
(executed in cloud domain) are available ([20] and [21]).
BottleFit [21] achieved 55-89 % lower latency in split CNN
computing vs. cloud/edge-only execution approaches with
Jetson Nano and Raspberry Piv4 devices. By using a similar
approach, DNNs were split between edge (Jetson TX2 and
NVIDIA Drive PX2 devices) and cloud domains [22]. Finally,
memory efficient patch-based inference for microcontrollers

VOLUME 11, 2023

P. Paakkonen, D. Pakkala: Evaluation of Human Pose Recognition and Object Detection Technologies

IEEE Access

(with only hundreds KBs of RAM) has been proposed [23],
which reduces peak memory consumption of existing models
by 4-8x.

Google has published several convolutional neural net-
works (CNNs) in Tensorflow Hub for human joint keypoint
identification [13]. Models supporting single and multiple
human keypoint identification (up to six humans) are avail-
able. The identified locations of human keypoints can be
further used for training human pose recognition models [24].
Accuracy of Movenet was compared to other models (Open-
Pose, PoseNet, MediaPipe Pose) [11]. Movenet had the best
performance in terms of percentage of detected joints in
figures and videos [11].

Many additional approaches have been studied for real-
izing human pose recognition. LitePose [25] is an efficient
single-branch solution, which has achieved low prediction
latency (22-97 ms) with Jetson Nano. A lightweight model
based on shrinking deconvolution via Darkpose, and dis-
tillation training achieved ~16 ms inference latency with
COCO image dataset on Jetson Xavier [26]. OpenPose-based
human body joint prediction integrated with CNN-based
human posture (e.g., fall) recognition achieved 2.5 frames per
second (FPS) on Jetson Nano [14]. Yolo has been enhanced
for multi-person human pose recognition using object key-
point similarity loss [27]. PoseTed [12] utilized Yolov4 for
human recognition, and spatial transformer network (STN)
as a cropping filter for images and bounding boxes. Then,
a feed-forward network predicted human keypoints based on
features provided by a transformer encoder/decoder network.
PoseNet-based human pose recognition has been integrated
as part of a collision-free human-robot collaboration sys-
tem [28]. Finally, datasets have been published for train-
ing human pose classification models. Hierarchical data set
(Yoga82) [29] has been used for classification of yoga poses.
MPII Human Pose dataset [30] includes 410 human activities
in 25 K images covering over 40 K persons.

In addition to technology development, many architectures
of big data systems have been realized and published, which
increasingly focus on the utilization of ML in edge com-
puting systems [16]. Reference architectures ([31] and [16])
have been developed for facilitating the design of concrete
architectures, and communication between important stake-
holders. Reduced development and maintenance costs of
systems, and reduced risks [32] are additional benefits of
RAs. The learning curve associated with RA adoption [32] is
a drawback of RAs. Despite the development of RAs, only a
few of the RA proposals have been evaluated [16], [31], [33],
and [34] (at least partly) based on real-world implementations
of big data systems.

The review indicates that many Yolo-based [5], [6], [7],
and [8] object detection approaches have been devel-
oped. When targeting model execution on edge computing
devices with limited resources, the models may be opti-
mized/compressed (TF-Lite, TensorRT) [9] and [10] or par-
titioned [19], [20], [21], and [22] between edge and cloud

VOLUME 11, 2023

environments. Many solutions [12], [27], and [28] have been
developed for human pose recognition, also targeting exe-
cution on mobile devices [13] and [14]. Human pose data
sets [29] and [30] are available, which may be utilized for
ML-based model development. Thus, technologies and data
sets are available for designing and realizing an architecture,
which may facilitate object detection and human pose recog-
nition in edge computing environment.

Ill. RESEARCH METHOD AND PROCESS
The research was conducted by applying the DSRM [15]
(Fig. 1). Initially, there was a need for building a robot-
platform/architecture, which has an ability to detect objects
and recognize human poses in the context of underground
mining. Our objective was to develop a ML-based solution
and architecture, which provides a service for facilitating
object detection and human pose recognition in edge com-
puting environment. Five research iterations were realized
where ML-based solution and architecture was designed
and implemented, demonstrated, and evaluated. Especially,
the enabling ML-based solutions (technologies) were eval-
uated in terms of feasibility and efficiency. Additionally,
the realized architecture design has been mapped into the
architectural elements of the RA [16], which is important for
ensuring empirical validity of the RA (step 6 in empirical
RA evaluation [35]). Finally, a big data architecture (designed
based on the RA) is presented enabling object detection and
human pose recognition in edge computing environment.
Videos and images of human poses were used in the
research. Informed consent of the involved human (the cor-
responding author) was obtained for the research.

IV. DESIGN, DEVELOPMENT, AND EVALUATION: HUMAN
POSE RECOGNITION (ITERATION 2)

A ML-based architecture was designed and implemented for
human pose recognition. Movenet-based [24] human pose
recognition technology was chosen as the core ML-based
method for further development after initial experimentation
(see iteration 1 in the Appendix).

A. ARCHITECTURE
The architecture has been designed based on a Reference
Architecture for Big Data systems [16]. We utilized the
deployment environment view of the RA for architecture
design. Notation of the view is comprised of functionali-
ties (described with rectangles), data stores (ellipsis), and
data flows (arrows). The X-axis represents execution of
architectural elements in different deployment environments
(in-device computing, private cloud, public cloud etc.). The
Y-axis divides the elements into functional areas comprising
a big data pipeline, where data typically flows from data
sources towards the applications (upwards).

Fig. 2 illustrates the ML-based architecture for human pose
recognition. Initially, the MPII Human Pose Dataset [30]
was used as a data source for training a ML-based human

92737

IEEE Access

P. Paakkonen, D. Pakkala: Evaluation of Human Pose Recognition and Object Detection Technologies

Identify Define
problem and objectives of
motivate a solution

ML-based solution
and architecture

Need for solution and
architecture enabling

A///_S’@rations

human pose Inference| ¢, ilitating robot Theory | Designand | . = = [Demonstration | perics, | Evaluation Disciplinary Communication
recognition and operation from edge development knowledge analytics, knowledge

object detection for computing ML-based Demonstrate |knowledge| Evaluation of This
facilitating robot environment with solution and human pose ML-based publication
operation in object detection and architecture recognition and solutions Big data
underground mining human pose enabling human object detection (feasibility, architecture

recognition service pose recognition
T and object
detection in
edge computing
environment

Objective
centered

efficiency) and

with offiine/ architecture

online video in
edge computing
environment

enabling human

pose recognition
and object
detection in

edge computing

solution

Research entry point

FIGURE 1. Our research was conducted by applying the DSRM [15].

Recognize Compress TF Lite
human poses; model; Tensorflow
Movenet (Model
(Inference) compression) Model
development
ovene [Train human pose and inference
classication recognition model
model ;Movenet
(Models) (Deep analytics)
uman pose
image data set
(Preparation
Extract images; Data
VLC player processing
Preprocess
Manual images;
filtering —» Movenet
(Cleaning) (Information Video files
~ extraction) (Raw data)
Extract Video
images; recording Data
dbcollection (Stream extraction
(Extraction) extraction)
i
MPII human Video Data
pose datase! camera
@Laptop sources
Private cloud In-device
computing computing

FIGURE 2. ML-based architecture for human pose recognition.
Parentheses in architectural elements contain corresponding abstract
element in the RA.

pose recognition model. The dataset was downloaded into
a private cloud domain for model development purposes.
A new SW-component was developed for the extraction of
images related to specific categories and activities in the MPII
dataset (dbcollection-library [36] was used). Subsequently,
the extracted images were reviewed manually, and suitable
images were chosen for model training purposes.

However, the MPII Dataset did not include suitable data
for modeling all human poses of interest. Therefore, an addi-
tional dataset of human poses was created by manually
recording video with a camera (i.e., with a laptop). Human

92738

environment

TABLE 1. Collected dataset for human pose recognition.

Human pose Image count
circle 385

cross 505
handsup 411

left hand 446
right_hand 406
tform 428
general total 1021
general running 77 (MPII)
general walking 62 (MPII)
general_standing 61 (MPI])

general right handup | 399
general_handup 421

pose images were extracted from the video files with VLC
video player [37].

The human pose images extracted from the MPII dataset,
and the manually collected images were pre-processed by
the Movenet-prediction model [13]. The location of human
keypoints in images were extracted and stored into comma
separated value (CSV)-format. A model was trained based
on the CSV-file for human pose classification. Finally, the
trained model was compressed into Tensorflow Lite format,
which was utilized for inference.

B. EVALUATION

1) EFFICIENCY EVALUATION

Table 1 presents the collected data set, which was utilized
for training a model for human pose recognition. The size
of the data set was 3807 images. The images were divided
into seven human pose classes. The general class contained
human poses, which were difficult to be distinguished from
each other (in italics in Table 1).

The data set was divided into training, validation and
testing data with 80 %/10 %/10 % split. A simple neural
network architecture was trained, which accepted seventeen
human keypoints as input, and predicted seven human poses
(see [24] for the detailed implementation). Each human

VOLUME 11, 2023

P. Paakkonen, D. Pakkala: Evaluation of Human Pose Recognition and Object Detection Technologies

IEEE Access

keypoint included X and Y coordinates, and a confidence
score [13]. Thus, the size of input data was 51(17*3).

The accuracy of the trained model was 92.7 %. The trained
Tensorflow-model (252 KB model file size) achieved 380 ms
inference latency with Jetson Nano (4 GB RAM), which
was insufficient for our purposes. The Tensorflow-model was
compressed into Tensorflow Lite format (27 KB model file
size), which achieved 89 % accuracy, and ~2-3 ms inference
latency. Despite the slight accuracy decrease, the compressed
model is more suitable for inference purposes in edge com-
puting devices.

2) FEASIBILITY EVALUATION
The following lessons were learned during the development:

o Extraction of images from the MPII dataset was not
straightforward. dbcollection-library [36] had to be used
for extracting images per category from the data set.

o The quality of images in the MPII data set varied, and
some of the images had to be manually filtered out.

« Initial model training experiences indicated that similar
poses (e.g., walking, running, standing) were difficult to
be recognized from each other. Thus, such poses were
included under the general class.

« The trained Tensorflow Lite model was tested and evalu-
ated by using video files (including human poses), which
were not used for training of the model. Visual analysis
of the predicted human poses indicated that most human
poses were identified correctly. However, there was con-
fusion between some of the human pose classes. For
example, handsup-human pose was sometimes confused
with the general-class (which also includes handup-
human pose as a sub-category).

3) COMPARISON TO RELATED WORK

We utilized the Movenet-model [13] for recognizing human
keypoints, and adapted the implementation [24] for train-
ing a human pose classifier. We used some data from the
MPII Human Pose dataset [30] for training of the classifier
(Table 1). Additionally, we collected new images for identify-
ing custom human poses (Table 1). The combined latency of
the compressed (TF-Lite) human pose classification model,
and the Movenet-model was much lower (Table 8), when
compared to an alternative solution [38] on Jetson Nano-
device. Accuracy of the trained and compressed human pose
classification model against offline testing data was 89 %
(un-compressed model accuracy was 92.7 %). In comparison,
PoseNet was trained for recognition of four human poses
(right handling, holding, stop, and left handling) and it was
integrated with a human-robot collaboration system [28].
We trained a classification model for recognition of 7 human
poses, which may explain differences in recognition accu-
racy (our un-compressed model accuracy was 92.7 % vs.
~100 % [28]). Our work focused on experimentation with
edge computing devices, whereas the PoseNet-experiments
were performed in desktop PC environment [28].

VOLUME 11, 2023

Detect
objects;
Yolovs

(Inference) Model
bl

development
and inference

AatowN 7ain model; |

(’ model; Yolov5

\ (Models) / (Deep |
N2 “analytics) || ™\

g TS
_Object image \
(data set

" g A 3,
/" Processed / \\ (Pfedvalrallon /
(images+ A / ~_data)
‘\ annotations / / SO
\(Preparation data)/ Extract images; Data
S ~ | GOM-player processing
A | (Information
V4 ¥ | extraction)
Annotate Preprocess —F
images; images. P
Roboflow Roboflow (\y/;zldeo(;"‘es
(Combining) | [{Prccessmgr)r \\(\aw aaz/
/
[Video |
recording | Data

(Stream extraction

extraction)

T
Video
camera
Data
@p':g:ge sources

In-device
computing

Public cloud
computing

Private cloud
computing

FIGURE 3. ML-based architecture for object detection. Parentheses in
architectural elements contain corresponding abstract element in the
RA [16].

V. DESIGN, DEVELOPMENT, AND EVALUATION: OBJECT
DETECTION (ITERATION 3)

A ML-based architecture was designed and implemented for
object detection. Yolov5 was used as the core technology for
further development based on initial experimentation (see the
Appendix).

A. ARCHITECTURE
Fig. 3 presents the ML-based architecture for object detec-
tion, which was designed based on the deployment envi-
ronment view of the RA [16] (see Section IV-A.1 for a
summary of the notation). Three computing environments
were identified. Data collection was conducted with a mobile
phone (in-device computing [16]), and the collected data set
was annotated within the public cloud domain. The object
prediction model was trained within the private cloud domain.
Two objects were of interest for our purposes: a robot, and
a simulated rock (cardboard box). New data was collected
for training an object detection model (based on YolovS5),
because the existing models did not contain our custom
classes (robot, simulated rock) of interest. Video camera of
a mobile phone (Samsung Galaxy A53) was utilized for
capturing video files (720p, 30 FPS) of the objects from
low/medium/elevated position in relation to the object of
interest. GOM-player [39] was used for extraction of JPG-
images from the video files. The data set was annotated manu-
ally with the Roboflow public cloud service [40]. Particularly,
Roboflow used auto-orientation, and resized the images to
640 x 640 format. Subsequently, objects in the images were
manually annotated by utilizing the Roboflow user interface
(web browser) with a laptop (HP Elitebook 840 G7). Finally,

92739

IEEE Access

P. Paakkonen, D. Pakkala: Evaluation of Human Pose Recognition and Object Detection Technologies

TABLE 2. Collected dataset for object detection.

Training | Validation Testing | Total
data data data
Robot | 616 171 101 888
Rock 290 81 45 416
Total 906 252 146 1304

a ZIP-file was downloaded into the private cloud domain. The
ZIP-file contained the processed images and annotations in
Yolo-format. Within the private cloud the images and object
annotations were used for training of the object detection
model, which was used for inference.

B. EVALUATION

1) FEASIBILITY EVALUATION

The following lessons were learnt during implementation of
the architecture:

o The Roboflow service became unresponsive at times
during annotation. Therefore, the web browser had to
be restarted to improve responsiveness. Additionally, the
images were annotated in several batches.

o The Yolov5-model was trained with a GPU (Tesla P100
[41]) with 3584 CUDA-cores and 16 GB of memory.
Thus, the GPU was more powerful, when compared to
the resources of edge computing devices. Model training
took ~22 minutes. Batch size=64 was used in training,
because the model with a larger batch size (128) did not
fit into the memory of the GPU.

e Quality of the trained model was evaluated visually
by using Yolov5 for inferring objects from previously
unseen video files (not used in training). Both objects
were successfully detected from the video files, although
the probability of prediction was at times lower for the
simulated rock.

2) EFFICIENCY EVALUATION
The data set used for training of the object detection model
has been described in Table 2. The data set was split between
training, validation, and testing with a 70 %/20 %/10 %-ratio.
The model was trained for one hundred epochs with a batch
size of sixty-four. The small Yolov5 weights (yolov5s.pt)
were used as a starting point for training (transfer learning).
Fig. 4 illustrates the training statistics, which were produced
by Yolov5. Our medium average precision (mAP_0.5:0.95)
and loss metrics seem to improve until one hundred epochs,
when the training was stopped. mAP-metrics measure how
well the predicted bounding boxes overlap with the ground
truth (Intersection over Union (IoU) [42]: 50-95 %). Our
mAP statistics of the trained model were: mAP_0.5: 0.99497;
mAP_0.5:0.95: 0.88954 (see [42] for a description of the

92740

statistical metrics). Thus, the metrics indicate that our trained
model can be used for accurate prediction of objects.

V1. DESIGN, DEVELOPMENT, AND EVALUATION:
INTEGRATION OF HUMAN POSE RECOGNITION AND
OBJECT DETECTION (ITERATION 4)

A ML-based architecture was designed and implemented for
executing both object detection and human pose recognition
in the same edge computing device.

A. ARCHITECTURE

1) ML-BASED BIG DATA ARCHITECTURE

Initially, the Yolov5-model and the Movenet-model, which
were trained earlier (Fig. 2 and 3) in the private cloud envi-
ronment, were transferred, and loaded into memory of Yolov5
and Movenet-implementations (Fig. 5).

Video was streamed from a camera (Intel RealSense
D415) [43], which was connected via a USB-cable to Jetson
AGX Xavier-edge computing device (16 GB RAM) [44].
Yolov5 was utilized for video stream extraction (enabled
with OpenCV-library [45]). The video stream was transferred
internally from Yolov5 to the Movenet-implementation with
Python’s multiprocessing library [46]. Thus, the same live
video stream was processed at both components. Finally,
detected objects and recognized human poses were communi-
cated via a Message Queuing Telemetry Transport (MQTT)-
broker (Mosquitto [47]) for interested subscribers.

2) INTEGRATION OF OBJECT DETECTION AND HUMAN
POSE RECOGNITION

The functionality is illustrated in detail with the unified mod-
eling language (UML) sequence diagram (Fig. 6). The steps
are as follows:

o Steps 1-4: Human pose recognition initializes the
Movenet detector (human keypoint detection) and clas-
sifier (human pose recognition), and the pre-trained
models are read into memory.

« Steps 5-6: An internal gesture_processor-class is initial-
ized, which connects to the MQTT-broker.

« Steps 7-8: Yolov5 initializes an internal object_detector-
class, which connects to the MQTT-broker.

o Step 9: Yolov5 connects to the Movenet-implementation.

« Step 10: Yolov5 model is loaded into memory.

o Steps 11-13: Video frames are read from the camera.
The frames are processed internally and transferred to
the Movenet-implementation.

o Step 14: Objects are detected/inferred from the received
video frames.

o Steps 15-16: The detected objects and associated
probabilities are processed internally (see Fig. 7 for
details). When an object is detected, the event is indi-
cated/published to the MQTT-broker.

o Steps 17-18: At the Movenet-implementation, the video
frame is provided as a tensor to the Movenet-model.

VOLUME 11, 2023

P. Paakkonen, D. Pakkala: Evaluation of Human Pose Recognition and Object Detection Technologies

IEEE Access

train/box_loss trainfobj_loss

0.10 0.025 SO feduts 0.025
0.08 0.020 0.020
0.06 0.015 0.015
0.04 0.010 0.010

train/cls_loss

metrics/precision metrics/recall

1.0 1.0
0.8 0.9
0.6 0.8
0.4 0.7

0.005 0.2 0.6
0.02 0.005
0.000 0.0 0.5

0 50 100 0 50 100 0 50 100 0 50 100 0 50 100
val/box_loss val/obj_loss val/cls_loss metrics/mAP_0.5 metrics/mAP_0.5:0.95

0.014 o

. 0.8
0.020

i 0.012 08
" 0.6

0.06 0.010 0.015 0.6
0:008 0.010 0.4 0.4

0.04 0.006

0.005 0.2 0.2
.004 i
0.02 0.00
0.002 0.000 0.0 0.0

0 50 100 0 50 100 0

50 100

(=]
w
(=]

100 0 50 100

FIGURE 4. Yolov5-model training statistics. The reader is referred to [42] for a detailed description of the statistical metrics.

Event service; Data
Mosquitto transformation
(Serving) and serving

~

Movenet
classification

Model

Recognize Detect development
human objects; and inference
poses; Yolovb

Movenet (Inference)
(Inference)
i
Extract video
frames;Yolovb
/OpenCV Data
(Stream extraction
extraction)
I
Video
camera@ Data
Jetson Xavier sources

Edge Private cloud
computing computing

FIGURE 5. ML-based architecture for execution of object detection and
human pose recognition in the same edge computing device.

Keypoints of detected humans are provided as output (as
a coordinate list).

o Steps 19-20: For each human, the coordinate list is
provided as input to the human pose classifier. The

VOLUME 11, 2023

classified human pose and probability are received as
output.

o Steps 21-22: The human pose and the associated prob-
ability are processed internally (see Fig. 8 for details).
When a human pose is recognized, the event is indi-
cated/published to the MQTT-broker.

3) HUMAN POSE CONCEPT ACTIVATION ALGORITHM
Human poses are inferred in each video frame with a different
probability. Such real time information may be difficult to be
utilized directly for control and decision making of robotics
applications. Thus, activation of a higher-level human pose
concept was needed. The functionality has been illustrated
below with pre-defined constants, and a UML state diagram
(Fig. 7). Fig. 7 illustrates how human pose concepts are
activated based on the inferred ML-based human poses in
video frames. Each ML-based inference (per video frame) is
comprised of the detected human pose and associated proba-
bility. If probability of the human pose is higher than a pre-
defined threshold (trigger_threshold_pose_probability), the
pose will be considered for further processing. Additionally,
only after enough consecutive occurrences of human poses
have been detected (trigger_threshold_consecutive_poses),
a human pose concept is activated (POSE_OBSERVED),
and the detected pose is stored (current_pose in Fig. 7) The
described functionality has been implemented into human
gesture_processor-class (Fig. 6).

Pre-defined constants (comments after hashtags):

Probability threshold of recognized poses.

trigger_threshold_pose_probability = 0.9

92741

IEEE Access

P. Paakkonen, D. Pakkala: Evaluation of Human Pose Recognition and Object Detection Technologies

Object_detection (Yolov5) MQTT broker(Mosquitto)

object_processor

Human_pose_recognition

(Movenet)

movenet detector‘ |image classiﬁer‘
]

7. init()

|
1. init() J : gesture_processor
! 2. load(movenet_model) |
3. init() i !
. 4. load(tf_classifier)
5. init()

i
|
|
6. connect(IP-address, port)

T
I
I
I
I
I
I
I
I
I
I
I
1
I
I
I
I
|

e ————————

8. connect(lFLaddress,poft)
)
y 1

Video camera i 9. connect("localhosi“,hon)

! :_:> 10. Ioadfmodel(yc‘)lovsfmodel)
]

|
11. video_frame !

; — 12. process_frame()
1
]

13. transfer(frame)

|

1

I 14. inference(video_frame)
1

|

15. process(object, probahilfiy)

| “ !

! 16. publish("ML/object_detection”,"object_1")
| r

I

17. detect(tensor)

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
N
|
|

8. coordinate_list/person
|

19. classify(coordinate_list)
|
|

20. human_posé, probability

|
21. prccess(human_pose,probabillity)
1 1

e e g e e B e e

i ——————

22, publish("ML/human_pose_recoghifion”,human_pose) |
|

I
)
1
|
1
]
|
|
|
|
|
|
|
1
I
I
I
I
I
I
I
I
I
I
I
I
|
|
|
|
|
|
|
|
|
|
|
1
I
I
I
I
I
I
I
I
I
I
I
|
|
]
1
1
I |
|
|

FIGURE 6. A sequence diagram illustrating the execution of object detection and human pose recognition on the same edge computing device.

[consecutive_pose_count >= trigger_threshold_consecutive_poses and (current_pose!=pose or current_pose=="")] / POSE_OBSERVED,current_pose=pose

[probability >= trigger_threshold}ose_probab%

[previous_pose==pose] / consecutive_pose_countf=

LISTEN_POSES
[probability < trigger_threshold_pose_probability]

[previous_pose==None] / previous_pose=pose

/ previous_pose=pose,concurrent_pose_count=0

|

FIGURE 7. UML state diagram of human pose concept activation algorithm.

Threshold of poses in consecutive video frames needed
for human pose concept activation.
trigger_threshold_consecutive_poses = 4

4) OBJECT CONCEPT ACTIVATION ALGORITHM

Additionally, an object concept activation algorithm has been
designed and implemented (see Fig. 8 for a simplified view of
the implementation). Yolov5 provides either object detections
(and associated probabilities) or indications, that no objects
were detected in a video frame. If an object has been detected
with a probability, which exceeds a pre-defined level of
confidence (trigger_threshold_object_probability), a times-
tamp will be associated with the object (to be used even-
tually for expiration). Subsequently, if the object has been

92742

detected earlier (object_exists==True), an object counter
is increased. When enough consecutive object detections
have been observed (trigger_threshold_consecutive_objects),
an object concept is activated (OBJECT_DETECTED).

If no objects have been detected for a pre-defined thresh-
old (trigger_threshold_no_detections) of frames, all inter-
nally saved/activated object concepts will be deleted/cleared
(clear_obj_detections()).

Additionally, if an object is detected with a prob-
ability, which is lower than a pre-defined threshold
(trigger_threshold_object_drop_probability), and enough
consecutive object detections with a low confidence
have been observed (trigger_threshold_consecutive_drop_
objects), the internally saved/activated object concepts will be

VOLUME 11, 2023

P. Paakkonen, D. Pakkala: Evaluation of Human Pose Recognition and Object Detection Technologies

IEEE Access

[consecutive_no_detections >= trigger_threshold_no_detections] / clear_obj_detections(), CLEARED ALL

(LISTEN_NO_DETECTIONS

[NO_DETECTIONS] / consecutive_no_detections+=1

[object_exists==True] / consecutive_obj_detections[object]+=1
= (]

[probability>=trigger_threshold_object_probability] / update_obj_detection_timestamp(object)

[consecutive_obj_detections[object]==trigger_threshold_consecutive_objects] / OBJECT_DETECTED

(LI STEN_OBJ_DETECTIONs

[consecutive_obj_trop_detections[object]+1 >= trigger_threshold_consecutive_drop_objects] / clear_obj_detection(object), CLEARED_OBJECT

[probability < trigger_threshold_object_probability]

/ consecutive_obj_drop_detections[object]+=1

[probability < trigger_threshold_object_drop_probability and obj_exi

FIGURE 8. Simplified UML state diagram of object concept activation algorithm.

deleted/cleared (clear_object_detection(object)). The event is
also indicated to end users (CLEARED_OBIJECT).

The functionality described in Fig. 8 has been implemented
to the object_processor-class in Fig. 6.

Pre-defined constants (comments after hashtags):

Threshold for consecutive ‘“no detection’-events in
video

frames to trigger expiration of all detected objects.

trigger_threshold_no_detections = 8

Probability threshold to trigger object concept activation.

trigger_threshold_object_probability = 0.6

Threshold for consecutive object detections in video

frames (with probability >

trigger_threshold_object_probability) to trigger

object concept activation.

trigger_threshold_consecutive_objects = 10

Probability threshold to trigger deactivation of

object concept.

trigger_threshold_object_drop_probability = 0.3

Threshold for consecutive object detections in video

frames (with probability <

trigger_threshold_object_drop_probability) to trigger

deactivation of object concept.

trigger_threshold_consecutive_drop_objects = 4

5) INTEGRATED ML-BASED BIG DATA ARCHITECTURE FOR
OBJECT DETECTION AND HUMAN POSE RECOGNITION

Fig. 9 illustrates the big data architecture, which enables
ML-based object detection and human pose recognition

VOLUME 11, 2023

as a service for end-user applications. The view has
been created by synthesizing earlier architectural views
(Figs. 2-3 and 5), which were realized as parts of the
integrated system.

B. EVALUATION

1) FEASIBILITY EVALUATION

The following lessons were learnt, when implementing the
architecture:

o The video stream had to be re-transferred from Yolov5 to
the Movenet-implementation, because OpenCV API did
not allow two processes to read from the video camera
at the same time.

o When 720p video was streamed, Yolov5 scaled the video
automatically to 736 x 1280 due to the Yolov5-model
backbone stride size (32). Thus, the size of the video
frame had to be a multiple of 32.

o As the video stream was transferred synchronously
between the processes, the slower process became a bot-
tleneck (Movenet) in terms of processing performance.
It would also be possible to transfer a video stream
asynchronously. In this case the slower process would
lag (this approach was also experimented).

o It was discovered that Movenet-based human pose
recognition executed with CPUs had similar perfor-
mance (in terms of FPS), when compared to execu-
tion with a GPU. To save GPU-memory, human pose

92743

lEEEACCGSS P. P&ékkonen, D. Pakkala: Evaluation of Human Pose Recognition and Object Detection Technologies

R"b;?‘ Interfacing and
operation . v
(End-user visualisation
application)
= Data
se"::g; transformation
Mosquitto and serving
(Serving)
A
Iteration 2
Compress TF
Lite model;
Tensorflow
(Model
compression)
Recognize Movenet Train human pose Model
human poses; || |classication | | recognition model development
Movenet model ;Movenet and inference
(Inference) (Models) (Deep analytics)
® £
E;?teg_ Train
onjects: 14l model;Yolovs
Yolovs (Deep analy‘tics)“
(Inference)
teration 3
—
lovenet Preprocess Processed i Human pose
annotations; images; images+annotations image data set
csv Movenet (Preparation data (Preparation (Preparation
(Preparation (Information data)
data) extraction)
Annotate Preprocess . Extract images; Data
images; images; images; VLC player .
Roboflow Roboflow GOM-player (Information processing
(Combining) | | (Processing) (Information extraction)
extraction)
Manual
Iteration 4 Iteration 2 filtering Iteration 3 Video files Video files ' |teration 2
(cleaning) (Raw data) (Raw data)
A
Extract video Extract Video Video
frames; Yolovs/ images; recording recording Data
OpenCV (Stream dhoo\lecliion (Stream (Stream extraction
extraction) (extraction) extraction) extraction)
? F T FYy
. Video ;
Video MPII human Video
camera@ pose d:taset Cm?ari?é@ camera@ Data
Lapto
Jetson Xavier phone ptop sources
Edge Private cloud Public cloud In-device
computing computing computing computing

FIGURE 9. Big data architecture illustrating ML-based object detection and human pose recognition. Architecture design of different DSR-research

iterations has been separated with thick lines.

recognition was forced to be executed only by utilizing
CPUs of the device.

« It was apparent, that an abstract human pose recogni-
tion and object detection concept (Figs. 7-8) had to be
implemented to increase usability of the provided API
(see the Appendix). The functionality enables expiration
and filtering of detections/recognitions associated with
impermanence or low confidence.

92744

2) EFFICIENCY EVALUATION
First, efficiency of human pose recognition was experimented
by streaming video from a file and from the camera. The
following parameters were utilized in the experiments:
e Video files: 3-minute video files: no humans (white
wall); one human with human poses
« Video resolution: High resolution (720 x 1280); low
resolution (480 x 640)

VOLUME 11, 2023

P. Paakkonen, D. Pakkala: Evaluation of Human Pose Recognition and Object Detection Technologies

IEEE Access

TABLE 3. Efficiency evaluation results of human pose recognition
experiments with Jetson AGX Xavier.

TABLE 4. Efficiency evaluation results of object detection experiments
with Jetson AGX Xavier.

e Video stream from a camera: no humans (white wall);

one human with human poses; 30 FPS
The following measurements were performed:

« FPS was measured as an average across all the processed
video frames.

« GPU/CPU memory consumption and CPU/GPU utiliza-
tion was measured with jetson_stats-library [48]. The
measurement tool recorded measurements every 0.5 s
during the experiment. Additionally, CPU-utilization
was calculated as an average across all CPUs (8).

a: HUMAN POSE RECOGNITION EXPERIMENTS

Efficiency evaluation results of human pose recognition
experiments are presented in Table 3. Both CPU memory
consumption (2.2 GB/16 GB) and CPU-utilization (35-41 %)
remained at a low level. When human poses are recognized,
performance decreases a few FPS to ~15-17 FPS. There is
only a slight difference (~0.5-1.5 FPS) in the processing
performance when different video resolutions are utilized in
human pose recognition.

b: OBJECT DETECTION EXPERIMENTS
Efficiency of object detection was experimented by streaming
video from a file and from the camera. The following param-
eters were utilized in the experiments:
« Video file: 3-minute video files: no objects (white wall);
two objects
« Video resolution: High resolution (720 x 1280); low
resolution (480 x 640)
¢ Video stream from a camera: no objects (white wall);
two objects; 30 FPS
Measurements were performed similarly as the human pose
recognition experiments. Efficiency evaluation results of
object detection experiments are presented in Table 4.
GPU-utilization was quite high (~62-78 %). However,
CPU utilization stayed at a low level (~15-17 %). Total
RAM (5-7 GB/16 GB) and GPU memory consumption
(1.1-2.5 GB/8 GB) was low. There was a slight drop in

VOLUME 11, 2023

File FPS File CPU- FPS
CPU- GPU- RAM GPU util. GPU-util. | RAM (GB) | GPU
util.(%) | util.(%) | (GB) (GB) (%) | (%) (GB)

Low resolution; Low resolution;

no humans 40.9 0.0 2.1 0.3 18.6 no objects 17.3 70.6 5.1 1.1 448

Low resolution; Low resolution;

human poses 37.0 0.0 2.1 0.3 15.3 objects 17.2 61.8 5.1 1.1] 383

High resolution; High resolution;

no humans 414 0.0 22 0.3 20.1 no objects 15.0 77.9 5.3 1.1 | 19.8

High resolution; High resolution;

human poses 353 0.1 2.2 0.3 14.8 objects 14.8 72.9 5.2 1.1 183

Camera Camera

Low resolution; Low resolution;

human poses 359 0.0 2.2 0.3 15.4 objects 17.1 63.3 6.2 2.1 382

High resolution; High resolution;

human poses 36.7 0.0 22 0.3 16.9 objects 13.8 733 6.7 25| 175

processing efficiency (~1.5-5.5 FPS) when objects were
inferred. When video is streamed from a video camera,
more GPU-memory is utilized (1-1.4 GB), when compared
to streaming from a file. There is a significant difference in
processing performance (~20-25 FPS) when high resolution
video is processed.

c: SIMULTANEOUS HUMAN POSE RECOGNITION AND
OBJECT DETECTION EXPERIMENTS
Efficiency of simultaneous object detection and human pose
recognition was experimented by streaming video from
the camera. The following parameters were utilized in the
experiments:
¢ Video resolution: High resolution (720 x 1280); low
resolution (480 x 640)
e Video stream from a camera: 3 minutes video stream
with two objects and one human with poses; 30 FPS

The experiments were performed five times. Measurements
were performed similarly as the human pose recognition
experiments. Efficiency evaluation results of simultaneous
object detection and human pose recognition experiments
are presented in Table 5. CPU-utilization (~40-44 %) is
only slightly higher, when compared to human pose recog-
nition results (Table 3). However, GPU-utilization is lower
(~27-59 %), when compared to the object detection results
(Table 4). This can be explained by the lower processing
performance of human pose recognition, which is a bottle-
neck in the architecture. Thus, Yolov5 processes video at a
suboptimal rate (see Table 4), and GPU utilization is also
lower. There is a slight increase (~0.4-0.5 GB) in RAM-
usage, when compared to object detection (Table 4). In over-
all, ~13-16 FPS can be processed while keeping CPU/GPU
resource consumption at a low/moderate level.

d: COMPARISON TO RELATED WORK

The integrated ML-based architecture was designed and
realized for object detection (YolovS) and human pose
recognition (Movenet). A similar approach has not been

92745

IEEE Access

P. Paakkonen, D. Pakkala: Evaluation of Human Pose Recognition and Object Detection Technologies

TABLE 5. Efficency evaluation results of simultaneous object detection
and human pose recognition experiments with Jetson AGX Xavier.

RAM | GPU | YolovS: | Movenet:
File CPU-util. | GPU- | (GB) |(GB) |FPS FPS
(%) util.
(%)
Low
resolution
43.5| 269 5.6 1.1 15.5 15.5
High
resolution
42.6| 585 5.7 1.1 13.9 13.8
Camera
Low
resolution
423 27.2 6.6 2.1 14.9 15.1
High
resolution
399 583 7.1 2.5 134 13.7

published earlier according to the authors’ best knowledge,
where processing performance (FPS) and HW resource con-
sumption (Table 5) has been evaluated on Jetson AGX
Xavier-platform. Particularly, new functionality was imple-
mented for integrating Yolov5 and Movenet with the MQTT
broker (Fig. 6), for realizing transfer of video camera
frames with inter-process communication (Fig. 6), and for
abstracting object and human pose concepts (Figs. 7 and 8)
to the end user (see the Appendix). Gomes [10] also
utilized Python’s multiprocessing-library for inter-process
communication between YolovS-related components. How-
ever, we used Connection-class for communication between
Yolov5 and Movenet-implementations instead of using the
Queue-class [10]. Object detection (based on R-CNN) and
human pose recognition (based on CNN) were integrated for
facilitating skill transfer in manufacturing systems [49]. How-
ever, the performance of the models was not experimented
simultaneously with edge computing devices in real time,
which was part of our contribution.

During the development of the integrated ML-based archi-
tecture, we learned that inference latency of the Movenet-
model could not be improved with execution on a GPU (vs.
execution on CPUs). The Movenet-model [13] was originally
developed for consumer-devices (i.e., laptops, cell phones
without a powerful GPU), which may explain similar process-
ing performance on CPU/GPU-devices.

In terms of processing efficiency, the time required
to detect a new or a changed concept (object/human
pose) can also be estimated. In our implementation,
concept detection time is dependent on the configura-
tion of constants (trigger_threshold_consecutive_poses, trig-
ger_threshold_consecutive_objects), which are used for
determining how often an object/human pose must appear
in consecutive video frames (see Fig. 7 and 8). Thus, con-
cept detection time can be calculated based on the afore-
mentioned constant divided by FPS.

The realized ML-based architecture (Fig. 9) may be con-
sidered as an evaluation of the deployment environment view

92746

of the RA for big data systems [16]. Especially, the real-
ized architectural elements/components were mapped to the
abstract elements defined in the RA [16], which is important
for ensuring empirical validity of the RA [35]. Also, the
architectural elements were placed into different deployment
environments and functional areas of a big data pipeline [16].
The deployment environment view of the RA was suitable for
designing the implementation architecture, as all the existing
elements could be mapped to the RA. The presented archi-
tecture (Fig. 9) can be considered as an additional partial
evaluation (see other evaluations: [33], [50]) of the deploy-
ment environment view of the RA.

VII. DESIGN, DEVELOPMENT, AND EVALUATION: FINAL
OBJECT DETECTION EXPERIMENTS (ITERATION 5)

After the initial object detection experiments with Yolov5
(Iteration 1 in the Appendix), a more extensive evaluation was
conducted with the most recent technologies. The purpose
of the experiments was also to evaluate, if object detection
without human pose recognition could be realized with a
more resource-constrained edge computing device (Jetson
Nano [51], 4 GB RAM). Also, the goal was to find out the
most promising technologies from processing performance
point of view.

A. EFFICIENCY EVALUATION

Object detection performance with Jetson Nano was experi-
mented as follows:

« A HD video file (720p; length: 1 min 03 s) was used for
object detection.

o The inferred video frames were not visualized nor saved
into a file.

« Each experiment was executed five times.

o Processing performance was measured (FPS). All
implementations (except Yolov4) were instrumented for
FPS measurement with timestamps.

Yolov4 was not instrumented for measurements (C-based
implementation). Instead, FPS measurements (for each video
frame) reported by Yolov4 was provided as an average. For
mcunet [23], the original code (eval_det.py) was modified
for enabling video streaming from a file (the original only
enabled inference of an image). Additionally, image and
bounding box scaling/rescaling was performed between 720p
video file (1280 x 720), and video frame size (160 x 128),
which was used for inference.

The results of the experiments are presented in Fig. 10.
Yolov4 [5] achieved the highest processing performance.
TensorRT optimized Yolov5-models enabled ~28-42 %
higher processing performance, when compared to un-
optimized models. TinyML approach of mcunet [23] was
the third fastest. Lower precision/reduced model versions
(e.g., Yolov5n and Yolo6bn) enabled higher performance as
expected. The results indicated that object detection may be
realized without human pose recognition also with a less
powerful edge computing device (Jetson Nano).

VOLUME 11, 2023

P. Paakkonen, D. Pakkala: Evaluation of Human Pose Recognition and Object Detection Technologies

IEEE Access

Object detection performance Volovd &
) - ;
P (Jetson Nano) Olovd: tny
20 Yolov5s
16,56 ® Yolov5s/TensorRT
® Yolov5n

® YolovSn/TensorRT

10 H Yolov6s
® Yolov6n

5 ® Yolov7_tiny
= Yolov8n

0 mcunet

FIGURE 10. Object detection performance results with Jetson Nano.

TABLE 6. Accuracy (AP) and computational complexity(flops) of object
detection models (as reported in the literature [7], [8], [52], [53], and [56]).

Model AP (COCO 2017, FLOPS (B)
validation data) %

Yolov4 tiny 21.7 6.9
YolovS5s 37.4 16.5
Yolov5n 28 4.5
Yolov6s 43.5-44.3 44.2-453
Yolovén 35.9-37 11.1-11.4
Yolov7_tiny 37.4-38.7 13.7-13.8
Yolov8n 37.3 8.7
mcunet NA 0.168

Accuracy and computational complexity of the experi-
mented models (except mcunet [23]) was evaluated based
on the literature (Table 6). The fastest models (Yolov4._tiny,
Yolov6n) seem to be associated also with a lower accuracy.
Likewise, the most accurate models (Yolov6s, yolov7_tiny)
achieved slowest processing performance in our experi-
ments (Fig. 10). Computational complexity has been eval-
uated based on the number of floating-point operations
required per second (as billion FLOPS). The most accurate
model (Yolov6s) is associated with the highest computa-
tional requirements. Respectively, the least accurate models
(Yolov4_tiny, Yolo5n) are associated with lower computa-
tional requirements. mcunet has the lowest computational
requirements, but accuracy with COCO 2017-dataset has not
been reported (to the authors’ best knowledge).

B. COMPARISON TO RELATED WORK

The results indicated that Yolov4 was faster than Yolov5
(Fig. 10). We achieved a similar result with Yolov4_tiny
executed on Jetson Nano (16.6 FPS), which has been reported
in an earlier study (16 FPS) [52]. Thus, Yolov4 could also
have been selected for realizing object detection from effi-
ciency point of view. However, Yolov5 has been implemented
with Python and Yolov4 has been implemented mostly with
C/C++. The modifications needed for integrating Yolov5

VOLUME 11, 2023

with Movenet and MQTT, and for realizing new function-
ality (Figs. 5 and 6) was easier to the main author with
Yolov5/Python. mcunet (TinyML) [23] may alternatively be
used for realizing object detection (third fastest processing
performance). Finally, TensorRT may be used for improving
Yolo performance [9], [10]. We were able to improve pro-
cessing performance by ~28-42 % by compressing Yolov5-
models with TensorRT. Our results are at a similar range,
when compared to an earlier study [10], where TensorRT-
optimization of Yolov5 was experimented with Jetson Nano
(50 % improvement in latency). However, we needed to
export TensorRT-models with half-precision (FP16) due to
memory constraints of Jetson Nano.

When we compared accuracy of the experimented object
detection models (based on the results reported in the lit-
erature) to the processing performance, we noticed that the
fastest models are typically associated with a lower accu-
racy and computational requirements (as expected). How-
ever, accuracy of the mcunet-model has not been compared
to Yolo-based models in related work (with COCO-data
set) according to the authors’ best knowledge. The tradeoff
between processing speed and accuracy should be consid-
ered, when making a technology choice for object detection.
Mean average precision of our Yolov5-model was close to
99.5 % (mAP_0,5: 0.99497) against offline testing data. The
high accuracy may be explained by having only two objects
(simulated rock and robot) of interest for modeling purposes.

When models are compressed (e.g., with TensorRT), accu-
racy may be affected. In earlier experiments, TensorRT-
optimized Yolo-based models in edge-devices (Jetson AGX
Xavier, Jetson Nano) have led to a small decrease in accu-
racy [10] or to improved accuracy [9]. As an additional test,
we optimized our trained Yolov5-model with TensorRT, and
tested accuracy with validation data of our image data set
on Jetson Nano. However, there was no difference in accu-
racy (mAP_0,5:0.995), when compared to the uncompressed
Yolov5-model.

VIIl. DISCUSSION
Even though the architecture was originally designed for
the underground mining context, it may also be applied in
other edge computing contexts, where object detection and
human pose recognition functionalities need to be realized.
Especially, the object concept and human pose concept algo-
rithms can be adapted by configuration of the constants (see
Sections VI-A.3-A.4) based on the situation. Additionally,
different strategies may be specified (e.g., lowly/highly sen-
sitive configuration of a set of constants) to the algorithms.
We evaluated the computational complexity of object
detection models (in Table 6) based on published results.
Computational complexity of Movenet-based human pose
recognition is mostly dependent on the performance of multi-
ple human keypoint detection (see Table 8 in the Appendix).
Multiple human keypoint detection uses MobileNetV2 image
feature extractor with Feature Pyramid decoder followed by
CenterNet prediction heads [13]. The reported complexity

92747

IEEE Access

P. Paakkonen, D. Pakkala: Evaluation of Human Pose Recognition and Object Detection Technologies

of MobileNetV2 is 300-585 million multiply-add opera-
tions/second (depending on version of MobileNetV2) [58].

Applicability of the architecture may be limited by inabil-
ity to generate a custom data set of objects and human poses
for model training purposes. Also, GPU-equipped devices
must be available for training of models (Tesla P100 was
used), and realizing inference-related (Jetson AGX Xavier
was used) functionality. Feasibility evaluation of human pose
recognition (Section IV-B2) indicated the limitation in clas-
sification of human poses. Especially, the modeled human
poses should differ significantly from each other to achieve
better accuracy. Finally, sensor-based measurements (e.g.,
distance sensors) may also be needed for supporting safe
and reliable decision-making in autonomous robotics appli-
cations due to inaccuracy of ML-based predictions.

Future work may include partitioning of models between
edge/cloud deployment environments, which may improve
processing performance. Only few of the model partitioning
approaches [19], [20], [21], and [22] have been published as
open-source solutions [54]. Additionally, local models may
be trained by collaborating nodes using a dedicated dataset.
In this approach, the local models are used for aggregating
a global model. Such federated learning has privacy bene-
fits [55]. Processing performance of human pose recognition
may be improved with an alternative modeling approach (e.g.,
Yolo-based [27] and [12] or LitePose [25]). Additionally,
hand gestures may be recognized [57], which can be con-
sidered as complementary/replacement to the recognition of
human body poses. Another item for future work is further
research related to the service API (see API description in
the Appendix), which is provided for facilitating decision
making of robotics applications. We experimented with a live
video camera by visually viewing activated human pose and
object concepts provided by the API. However, new research
is needed for integrating our study with a robotics applica-
tion with reliability requirements, which may also increase
technology readiness level (TRL) of our solution (current
TRL level=4/5). A related future challenge is accuracy of the
prediction models in a real underground mining environment.

IX. CONCLUSION

The research question focused on evaluating feasibility and
efficiency of object detection and human pose recognition
technologies for enabling situation awareness of robotics
applications in edge computing environment. Feasibility and
efficiency evaluation of Yolov5-based object detection and
Movenet-based human pose recognition on Jetson AGX
Xavier-platform may be considered as an answer to the
research question, and as a new contribution. Object con-
cept and human pose concept activation algorithms may be
considered as an additional contribution. Several feasibility
related challenges regarding the experimented technologies,
datasets, and services had to be solved, which were presented
as lessons learnt in the evaluation. In terms of efficiency,
Yolov5 and Google’s Movenet models enabled simultaneous
human pose recognition and object detection on Jetson AGX

92748

Xavier edge computing platform with acceptable processing
performance (~13-16 FPS). Additionally, GPU-utilization
(~27-59 %) and CPU-utilization (~40-44 %) remained
at a medium level, and most of the memory remained
unused (< 44 % total memory consumption) for other pro-
cesses. Further object detection experiments on Jetson Nano
edge computing device indicated potential for improvements
with alternative technologies (Yolov4, mcunet/TinyML) or
with TensorRT-based optimizations. Additionally, architec-
ture design of the realized solutions in multiple computing
environments can be considered as a partial evaluation of the
ML-based big data reference architecture [16].

APPENDIX

A. INITIAL OBJECT DETECTION AND HUMAN POSE
RECOGNITION EXPERIMENTS (ITERATION 1)

Object detection and human pose recognition technologies
were initially reviewed and selected for further experi-
mentation. The goal was to experiment efficiency of the
technologies for further development in edge computing
environment.

TABLE 7. Efficiency evaluation results of YOLOv5 object detection
technology with Jetson Nano.

Jetson Nano Tesla P100
Inference latency | Inference latency
Yolov5s (ms) (ms)
Yolov5n6 84 7
YolovSn 71 5

1) EVALUATION

a: EFFICIENCY EVALUATION OF OBJECT DETECTION

Table 7 presents efficiency evaluation results, when
Yolov5 object detection technology was experimented
with Jetson Nano (4 GB RAM) [51] and a virtual
machine with Tesla P100-GPU [41]. HD video file (720p)
was processed, and processing efficiency was evalu-
ated. YolovS achieved adequate processing performance,
which led us to continue further experimentation with the
technology.

b: EFFICIENCY EVALUATION OF HUMAN POSE
RECOGNITION

Table 8 presents efficiency evaluation results, when sin-
gle/multiple human pose recognition models were exper-
imented with Jetson Nano. A HD video file (720p) was
processed, and inference latency was evaluated. Two ML-
based models are needed for realizing human pose recog-
nition based on Movenet. First, the human keypoints are
detected from the video frame. Subsequently, the pre-
dicted human keypoints are input to a human pose clas-
sifier. The results indicated that human keypoint detection
is significantly more time-consuming, when compared to

VOLUME 11, 2023

P. Paakkonen, D. Pakkala: Evaluation of Human Pose Recognition and Object Detection Technologies

IEEE Access

human pose classification. The smaller (and less accurate)
multiple human Movenet-model achieved a lower inference
latency.

Additionally, mmpose [38] was experimented for compar-
ison. However, a low processing performance was achieved
(0.4 FPS).

TABLE 8. Efficiency evaluation results of human pose recognition models
with Jetson Nano.

Model Inference
latency (ms)
Single human keypoint detection 380
(movenet thunder.tflite)
- Pose classifier (TF Lite
1
model)
Multiple human keypoint detection 110
(multipose lightning.tflite)
- Pose classifier (TF Lite
1
model)

Finally, Yolov5 and Movenet-based multiple human key-
point detection methods were experimented simultane-
ously with Jetson Nano. The processes competed for the
same GPU-resource, and the processing performance of
both technologies dropped significantly (to ~5-7 FPS).
Also, sometimes the device became unresponsive, and
had to be rebooted. Thus, Jetson Nano did not provide
enough processing performance for our goal of integrat-
ing object detection and human pose recognition on one
device.

B. API DESCRIPTION
When abstract events of objects were detecte and human
poses were recognized (as described in sections VI-A3
and VI-A4), the events were notified to subscribers (e.g.,
robot application) via a MQTT-broker. A separate MQTT-
topic was used for indicating different detection events. The
MQTT-API for human pose events contained the recognized
human pose class (Table 1). The MQTT-API for object detec-
tion events:

“detectedobject_identifier”’, where identifier is an integer
(e.g., rock_0).

“cleared detectedobject_identifier’’, where identifier is an
integer (e.g., cleared rock_0).

“cleared all”’, when all previous objects detections were
deleted/cleared.

C. DEVICE SW-CONFIGURATIONS

Table 9 describes SW-configurations of edge computing
devices, which were used in the experiments. Jetson Nano
needed Python v3.6 for installation of TensorRT (v8.2.1.8).
Additionally, Python v3.8 was required for execution of
Yolov8. However, TensorRT installation packages were not
available for Python v3.8 on Jetson Nano. Thus, two execu-
tion environments (Python v3.6/v3.8) were used for execution
of the experiments on Jetson Nano. The latest available

VOLUME 11, 2023

JetPack (v4.6) enabled support for both Python v3.6 and v3.8,
which were needed for creating execution environments for
TensorRT/Yolov5 and YolovS.

TABLE 9. Edge computing devices’ important SW-configurations.

Jets?n Jetson Nano | Jetson
Xavier Jetson Nano
Nano
Experimented | Yolov5, Yolov4, TensorRT/ | Yolov8
technologies | Movenet | Yolov5, Yolovs
Yolovo6,
Yolov7,
mcunet,
Movenet
JetPack v4.6 v4.4 v4.6 v4.6
CUDA v10.2 v10.2 v10.2 v10.2
Tensorflow v2.31 v2.31 - -
Torch v1.8.0 v1.8.0 v1.80 vl.11
Torchvision v0.9.0 v0.9.0 v0.9.0 v0.12
OpenCV -
Python v46.0.66 |00 | 46066 |vaT072
Python v3.6 v3.6 v3.6 v3.8
ACKNOWLEDGMENT

The authors would like to thank Niko Kinsidkoski and Tapio
Heikkild from VTT for providing access and configuration
support to Jetson AGX Xavier and Intel RealSense D415
devices.

REFERENCES

[1] F. Sherwani, M. M. Asad, and B. S. K. K. Ibrahim, “Collaborative
robots and industrial revolution 4.0 (IR 4.0),” in Proc. Int. Conf. Emerg.
Trends Smart Technol. (ICETST), Mar. 2020, pp. 1-5. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/9080724

[2] M. R. Endsley and W. Jones, “Situation awareness,” in The Oxford

Handbook of Cognitive Engineering, vol. 1, J. D. Lee and A. Kirlik, Ed.

New York, NY, USA: Oxford Univ. Press, 2013, pp. 88-90.

H. Levesque and G. Lakemayer, “Chapter 23: Cognitive robotics,” Found.

Artif. Intell., vol. 3, pp. 869-886, Jan. 2008.

VTT Technical Research Centre of Finland. (Aug. 16, 2021). Press

Release: VTT, Nokia & Sandvik Collaborate in 5G Powered Research

Project on Next Generation Underground Mining Technology. [Online].

Available: https://www.vttresearch.com/en/news-and-ideas/vtt-nokia-

sandvik-collaborate-5g-powered-research-project-next-generation

[S] A. Bochkovskiy, C.-Y. Wang, and H.-Y. Mark Liao, ““YOLOv4: Optimal

speed and accuracy of object detection,” 2020, arXiv:2004.10934.

GitHub. (2023). Ultralytics YOLOvS5. [Online]. Available:

https://github.com/ultralytics/yolov5

[7]1 C.Li, L. Li, H. Jiang, K. Weng, Y. Geng, L. Li, Z. Ke, Q. Li, M. Cheng,
W. Nie, Y. Li, B. Zhang, Y. Liang, L. Zhou, X. Xu, X. Chu, X. Wei,
and X. Wei, “YOLOVG6: A single-stage object detection framework for
industrial applications,” 2022, arXiv:2209.02976.

[8] C.-Y. Wang, A. Bochkovskiy, and H.-Y. Mark Liao, “YOLOvV7: Trainable
bag-of-freebies sets new state-of-the-art for real-time object detectors,”
2022, arXiv:2207.02696.

—
w
[l

[4

=

[6

—

92749

IEEE Access

P. Paakkonen, D. Pakkala: Evaluation of Human Pose Recognition and Object Detection Technologies

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

D.-J. Shin and J.-J. Kim, “A deep learning framework performance eval-
uation to use YOLO in Nvidia Jetson platform,” Appl. Sci., vol. 12, no. 8,
p- 3734, Apr. 2022.

H. Gomes, N. Redinha, N. Lavado, and M. Mendes, *“Counting people
and bicycles in real time using YOLO on Jetson nano,” Energies, vol. 15,
no. 23, p. 8816, Nov. 2022.

J. L. Chung, L. Ong, and M. Leow, ‘“Comparative analysis of skeleton-
based human pose estimation,” Future Internet., vol. 14, no. 380,
pp. 11-23, Dec. 2022.

A. A. Jeny, M. S. Junayed, and M. B. Islam, “PoseTED: A novel
regression-based technique for recognizing multiple pose instances,”
in Proc. 16th Int. Symp. Visual Comput., 2021, pp.573-585, doi:
10.1007/978-3-030-90439-5_45.

TensorFlow Hub. (2023). Movenet Lightning. [Online]. Available:
https://tfhub.dev/google/movenet/multipose/lightning/1

T. T. Than, D. K. D. Danh, H. L. Nguyen, and M. S. Nguyen,
“Researching and implementing the posture recognition algorithm of
the elderly on Jetson nano,” in Proc. Int. Conf. Multimedia Anal.
Pattern Recognit. (MAPR), Oct. 2022, pp. 1-5. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/9924968

K. Peffers, T. Tuunanen, M. A. Rothenberger, and S. Chatterjee,
“A design science research methodology for information systems

research,” J. Manag. Inf. Syst., vol. 24, no. 3, pp.45-77,
Dec. 2007.
P. Pddkkonen and D. Pakkala, “Extending reference architecture
of big data systems towards machine learning in edge
computing environments,” J. Big Data, vol. 7, no. 1, pp.1-29,
Apr. 2020.

J. Fan, P. Zheng, and S. Li, ““Vision-based holistic scene understanding
towards proactive human-robot collaboration,” Robot. Comput.-Integr.
Manuf., vol. 75, Jun. 2022, Art. no. 102304.
GitHub. (2023). Ultralytics ~ YOLOVS.
https://ultralytics.com/yolov8

W. E. Magalhaes, H. M. Gomes, L. B. Marinho, G. S. Aguiar, and
P. Silveira, “Investigating mobile edge-cloud trade-offs of object detec-
tion with YOLO,” in Proc. Anais Do VII Symp. Knowl. Discovery,
Mining Learn. (KDMiLe), Oct. 2019, pp.49-56. [Online]. Available:
https://sol.sbc.org.br/index.php/kdmile/article/view/8788

Y. Matsubara, S. Baidya, D. Callegaro, M. Levorato, and S. Singh, “Dis-
tilled split deep neural networks for edge-assisted real-time systems,”
in Proc. Workshop Hot Topics Video Analytics Intell. Edges, Oct. 2019,
pp. 21-26, doi: 10.1145/3349614.3356022.

Y. Matsubara, D. Callegaro, S. Singh, M. Levorato, and F. Restuccia,
“BottleFit: Learning compressed representations in deep neural
networks for effective and efficient split computing,” in Proc.
IEEE 23rd Int. Symp. World Wireless, Mobile Multimedia
Netw. (WoWMoM), Jun. 2022, pp.337-346. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/9842809

A. Malawade, M. Odema, S. Lajeuness-Degroot, and M. A. Al Faruque,
“SAGE: A split-architecture methodology for efficient end-to-end
autonomous vehicle control,” ACM Trans. Embedded Comput. Syst.,
vol. 20, no. 5, pp. 1-20, Sep. 2021.

J. Lin, W. Chen, H. Cai, C. Gan, and S. Han, “Memory-efficient
patch-based inference for tiny deep learning,” in Proc. 35th
Conf. Neural Inf. Process. Syst., 2021, pp.2346-2358. [Online].

[Online]. Available:

Available: https://proceedings.neurips.cc/paper_files/paper/2021/file/
1371bccec2447b5aa6d96d2a540fb401-Paper.pdf

TensorFlow. (2023). Human Pose Classification with
MoveNet and TensorFlow Lite. [Online]. Available:
https://www.tensorflow.org/lite/tutorials/pose_classification

Y. Wang, M. Li, H. Cai, W. Chen, and S. Han, “Lite pose:

Efficient architecture design for 2D human pose estimation,”
in Proc. IEEE/CVF Comput. Vis. Pattern Recognit. Conf., New
Orleans, LA, USA, 2022, pp.13126-13136. [Online]. Available:
https://openaccess.thecvf.com/content/CVPR2022/papers/Wang_Lite_
Pose_Efficient_Architecture_Design_for_2D_Human_Pose_Estimation_
CVPR_2022_paper.pdf

M. Yamazaki and M. E. Mori, “Rethinking deconvolution for 2D
human pose estimation light yet accurate model for real-time edge
computing,” in Proc. 16th IEEE Int. Conf. Autom. Face Human Ges-
ture Recognit., Jodhpur, India, Dec. 2021, pp. 1-5. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/9666963

92750

(27]

(28]

(29]

(30]

(31]

(32]

[33]

(34]

(35]

(36]
(371
(38]
(391
(40]
(41]

[42]

[43]

(44]

(45]

[46]

[47]

(48]

[49]

[50]

[51]

D. Maji, S. Nagori, M. Mathew, and D. Poddar, “YOLO-pose: Enhancing
YOLO for multi person pose estimation using object keypoint similarity
loss,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
Workshops (CVPRW), Jun. 2022, pp.2637-2646. [Online]. Available:
https://openaccess.thecvf.com/content/CVPR2022W/ECV/papers/Maji_
YOLO-Pose_Enhancing_YOLO_for_Multi_Person_Pose_Estimation_
Using_Object CVPRW_2022_paper.pdf

H. Liu and L. Wang, ““Collision-free human-robot collaboration based on
context awareness,” Robot. Comput.-Integr. Manuf., vol. 67, Feb. 2021,
Art. no. 101997.

M. Verma, S. Kumawat, Y. Nakashima, and S. Raman, “YOGA-82: A
new dataset for fine-grained classification of human poses,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. Workshops (CVPRW),
Jun. 2020, pp. 4472—4479. [Online]. Available: https://openaccess.thecvf.
com/content_CVPRW_2020/papers/w70/Verma_Yoga-82_A_New_
Dataset_for_Fine-Grained_Classification_of_Human_Poses_ CVPRW_
2020_paper.pdf

Max Planck Institute Informatik. (2023). MPII Human Pose Dataset.
[Online]. Available: http://human-pose.mpi-inf.mpg.de/

I. Sittén-Candanedo, R. S. Alonso, J. M. Corchado, S. Rodriguez-
Gonzidlez, and R. Casado-Vara, “A review of edge computing reference
architectures and a new global edge proposal,” Future Gener. Comput.
Syst., vol. 99, pp. 278-294, Oct. 2019.

S. Martinez-Fernandez, C. P. Ayala, X. Franch, and H. M. Marques, ‘“Ben-
efits and drawbacks of software reference architectures: A case study,” Inf.
Softw. Technol., vol. 88, pp. 37-52, Aug. 2017.

P. Pdidkkonen, D. Pakkala, J. Kiljander, and R. Sarala, “Architecture for
enabling edge inference via model transfer from cloud domain in a kuber-
netes environment,” Future Internet, vol. 13, no. 1, p. 5, Dec. 2020.

M. E. Arass, “Data life cycle: Towards a reference architecture,” Int. J.
Adv. Trends Comput. Sci. Eng., vol. 9, no. 4, pp. 5645-5653, Aug. 2020.
M. Galster and P. Avgeriou, “Empirically-grounded reference archi-
tectures: A proposal,” in Proc. Joint ACM SIGSOFT Conf. Qual-
ity Softw. Architectures, Boulder, CO, USA, 2011, pp. 153-158, doi:
10.1145/2000259.2000285.

M. Farrajota. (2017). Dbcollection.
https://dbcollection.readthedocs.io/en/latest/
VideoLAN Organization. (2023). VLC Media Player. [Online]. Available:
https://www.videolan.org/vlc/

GitHub. (2023). MMPose. [Online]. Available: https://github.com/open-
mmlab/mmpose

[Online]. Available:

GOM & Company. (2023). GOM-Player. [Online]. Available:
https://www.gomlab.com/gomplayer-media-player/
Roboflow Inc. (2018). Roboflow. [Online]. Available:

https://roboflow.com/

NVIDIA Corporation. (2023). NVIDIA Tesla P100. [Online]. Available:
https://www.nvidia.com/en-us/data-center/tesla-p100/

Roboflow Inc. (2022). Roboflow Train: Understanding Training Graphs.
[Online]. Available: https://help.roboflow.com/fags/roboflow-train-
understanding-training-graphs

Intel. (2018). Introducing the Intel RealSense D400 Product Fam-
ily. [Online]. Available: https://www.intelrealsense.com/introducing-intel-
realsense-d400-product-family/

NVIDIA Corporation. (2023). Jetson AGX Xavier. [Online]. Available:
https://www.nvidia.com/en-us/autonomous-machines/embedded-
systems/jetson-agx-xavier/

OpenCV Team. (2023). OpenCV. [Online]. Available: https://opencv.org/
Python Software Foundation. (2023). Python Multiprocessing. [Online].
Available: https://docs.python.org/3/library/multiprocessing.html

Eclipse Foundation. (2023). Eclipse Mosquitto. [Online]. Available:
https://mosquitto.org/

GitHub. (2023). Jetson-Stats.
https://github.com/rbonghi/jetson_stats
K. Wang, D. A. Rizqi, and H. Nguyen, “Skill transfer support model
based on deep learning,” J. Intell. Manuf., vol. 32, pp. 1129-1146,
Apr. 2021.

P. Pddkkonen, J. Backman, D. Pakkala, J. Paananen, K. Seppénen, and
K. Ahola, “Concept and architecture for applying continuous machine
learning in multi-access routing at underground mining vehicles,” Appl.
Sci., vol. 12, no. 20, p. 10679, Oct. 2022.

NVIDIA Corporation. (2023). Jetson Nano Developer Kit. [Online]. Avail-
able: https://developer.nvidia.com/embedded/jetson-nano-developer-kit

[Online]. Available:

VOLUME 11, 2023

http://dx.doi.org/10.1007/978-3-030-90439-5_45
http://dx.doi.org/10.1145/3349614.3356022
http://dx.doi.org/10.1145/2000259.2000285

P. Paéakkonen, D. Pakkala: Evaluation of Human Pose Recognition and Object Detection Technologies

IEEE Access

[52]

[53]
[54]

[55]

[56]

[57]

[58]

C. Wang, A. Bochkovskiy, and H. M. Liao, ‘“Scaled-YOLOv4:
Scaling cross stage partial network,” in Proc. IEEE/CVF
Comput. Vis. Pattern Recognit. Conf., Nashville, TN, USA, 2021,
pp- 13029-13038. [Online]. Available: https://openaccess.thecvf.com/
content/CVPR2021/papers/Wang_Scaled-YOLOv4_Scaling_Cross_
Stage_Partial_Network_CVPR_2021_paper.pdf

C. Li, L. Li, Y. Geng, H. Jiang, M. Cheng, B. Zhang, Z. Ke, X. Xu, and
X. Chu, “YOLOV6 v3.0: A full-scale reloading,” 2023, arXiv:2301.05586.
GitHub. (2023). Torchdistill. [Online]. Available:
https://github.com/yoshitomo-matsubara/torchdistill

X. Yuan, W. Ni, M. Ding, K. Wei, J. Li, and H. V. Poor, “Amplitude-varying
perturbation for balancing privacy and utility in federated learning,” IEEE
Trans. Inf. Forensics Security, vol. 18, pp. 1884-1897, 2023.

J. Lin, W. Chen, Y. Lin, J. Cohn, C. Gan, and S. Han, “MCUNet:
Tiny deep learning on IoT devices,” in Proc. 34th Conf. Neural
Inf. Process. Syst., 2020, pp.11711-11722. [Online]. Available:
https://proceedings.neurips.cc/paper_{files/paper/2020/file/86c¢51678350f
656dcc7f490a43946ee5-Paper.pdf

T. R. Gadekallu, G. Srivastava, M. Liyanage, M. Iyapparaja. C. L. Chowd-
hary, S. Koppu, and P. K. R. Maddikunta, ‘‘Hand gesture recognition based
on a Harris hawks optimized convolution neural network,” Comput. Electr.
Eng., vol. 100, May 2022, Art. no. 107836.

M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L. Chen,
“MobileNetV2: Inverted residuals and linear bottlenecks,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2018,
pp. 4510-4520. [Online]. Available: https://openaccess.thecvf.com/
content_cvpr_2018/papers/Sandler_MobileNetV2_Inverted_Residuals_
CVPR_2018_paper.pdf

VOLUME 11, 2023

PEKKA PAAKKONEN received the double M.Sc.
degree in information technology and in inter-
national business from the University of Oulu,
Finland, in 2002 and 2015, respectively. He is
currently a Senior Research Scientist with the
VTT Technical Research Centre of Finland. His
research interests include big data architectures,
machine learning, databases, edge computing,
stream processing, and service management.

DANIEL PAKKALA received the M.Sc. degree
in electrical engineering and the Ph.D. degree in
information processing science from the Univer-
sity of Oulu, Finland, in 2004 and 2020, respec-
tively. He is currently a Principal Scientist and
a Senior Project Manager (IPMA C) with the
VTT Technical Research Centre of Finland. His
research interest include machine intelligence,
digital service architectures, edge computing, cog-
nitive agents, and information management.

92751

