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ABSTRACT Measuring the distribution of atmospheric aerosol concentration is of great significance for
accurately assessing the scale of explosions and fires, the evolution of atmospheric environment, and so on.
Due to the effect of atmospheric diffusion and other complex meteorological conditions, the distribution of
aerosol concentration will change significantly in a short period of time, which puts higher requirements
on the speed of aerosol concentration measurement. The existing measurement technology mainly uses
LIDAR for intensive sampling of aerosol in a region. Although lidar can achieve accurate measurement of
the average concentration of atmospheric aerosol more conveniently, due to longer data processing time
and more measurement sampling times, the timeliness of lidar remote sensing has decreased, resulting
in the problem of difficult to capture the shape of atmospheric smoke and clouds in a timely manner.
Therefore, this study proposes a fast reconstruction deep network model of aerosol extinction coefficient
for lidar remote sensing from the perspective of sparse sampling-reconstruction. This model eliminates
the feature distribution difference between lidar return signals under sparse sampling and conventional
dense sampling by using unsupervised generative adversarial networks from the perspective of transfer
learning. Then, the extinction coefficient reconstruction network with the encoding-decoding structure maps
the low-dimensional abstract features of aerosol concentration distribution back to the high-dimensional
extinction coefficient representation space. This model greatly reduces the sampling number of lidar, thereby
reducing the total time required for aerosol extinction coefficient inversion. Experimental measurements of
smoke and clouds above a thermal power plant show that the proposed deep network model can reduce more
than 50% of the lidar sampling times within the allowable error range. This indicates that the model has the
ability to significantly improve the remote sensing measurement efficiency of lidar for atmospheric aerosols.

INDEX TERMS LIDAR, aerosol extinction coefficient, deep learning, inverse problem, fast reconstruction.

I. INTRODUCTION
Aerosols are the dominant uncertainty in assessing anthro-
pogenic forcing of climate change. Their distribution in
space and time domain are highly asymmetrical and variable.
Meanwhile, aerosols have an important impact on global
climate change, atmospheric environment quality, ecological
balance, human health. It also has important scientific signif-
icance and application value in many fields such as weather
forecast, military observation, atmospheric light transmission
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and remote sensing application [1], [2], [3]. Therefore,
accurate measurements of the distribution of aerosol proper-
ties are important for understanding climate change [4], [5].

Previously, aerosol concentration was measured by offline
sampling, which has a low efficiency, and is difficult to
accurately measure the concentration distribution. With the
development of optical remote sensing technology, especially
active remote sensing, LIDAR [6] has gradually become one
of the important methods for aerosol concentration measure-
ment. At present, the development of hardware and algorithm
of LIDAR is gradually maturing. A variety of LIDAR types,
including Mie scattering lidar [7], [8], [9], polarized lidar,
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Raman lidar, high spectral resolution lidar, fluorescent lidar,
etc, have been built and widely used. Due to the obvious
influence of various natural factors and human activities
on the atmosphere, especially the lower boundary layer in
the atmosphere, the aerosol detection requirements become
more and more complex, which brings great challenges to
the LIDAR data processing algorithm. As we know, the key
problem of aerosol concentration reconstruction is extinction
coefficient inversion. For the extinction coefficient inver-
sion, Collis slope method [7], [10], Klett stable analytical
method [11] and Fernald integral method [12], [13] were
proposed successively, and Fernald integral has become the
current mainstream method. On this basis, least square,
Newton and Secant methods were introduced to solve the
extinction coefficient boundary and backscatter ratio, which
are key parameters in Fernald integral method.

At present, in addition to the above LIDAR algorithm
research, a problem to be solved is how to reconstruct the
exact extinction coefficient [14] based on sparse scanning
sampling, and then obtain the aerosol concentration distribu-
tion, which has great significance for atmospheric detection,
that is, we can reconstruct aerosol concentration based on
LIDAR remote sensing more quickly, and improve the time-
liness of detection. However, under the existing framework,
the feasible reconstruction method is based on the sparse con-
centration distribution retrieved by the Fernald integral, Klett,
Collis slope or other methods, and the complete concentration
distribution is reconstructed by interpolation methods such
as nearest neighbor and bilinear. Although this can meet the
timeliness requirements of reconstruction, it greatly reduces
the reconstruction accuracy. The problems with the previous
methods focused on two main aspects. Firstly, the method
simplifies the actual inversion formula by putting forward
some assumptions. For example, the Collis slope method
assumes that the extinction coefficient and backscattering
sparsity are constant values at the same height. Since some
hypothetical information is added artificially, the accuracy of
the algorithm is greatly affected. In other words, the previous
methods only invert the approximate extinction coefficient.
Secondly, even if the principle formula is simplified, the time
complexity of the algorithm is still very high which makes
the real-time reconstruction of extinction coefficient difficult
to achieve.

With the development of artificial intelligence, machine
learning, especially deep learning, provide additional solu-
tions to inverse problems, for example, signal compression
and recovery, computer tomography, particle energy spec-
trum solution, et al. This is due to the fact that machine
learning algorithms can quickly solve inverse problems from
the collected data by means of supervised learning, utilizing
strong data fitting capabilities. This is also the motivation for
us to develop a deep learning method for aerosol concentra-
tion inversion under LIDAR remote sensing sparse sampling.

In this work, we present an End-to-end deep network
framework, which can first map LIDAR return signals under
sparse sampling into a high-dimensional space to realize the

high-dimensional feature representation learning of LIDAR
return signals; then this feature with high information den-
sity can be reconstructed as an accurate aerosol extinction
coefficient distribution. Experiments based on Mie scatter-
ing LIDAR show that the accuracy of the proposed sparse
reconstruction method is similar to that of the reconstruction
method with full sampling, which indicates that the proposed
method has the potential to improve the efficiency of aerosol
LIDAR remote sensing measurement.

Algorithm 1 The Implemented Steps for the Generative
Adversarial Network
Input: The training set D, the number of iterations of
adversarial training T , the number of training iterations of
discriminant network K , and the number of small-batch
samplesM
Random initialization θ , φ;
for t ← 1 to T do

// Training discriminant network D(x;φ)
for k ← 1 to K do

// Collect small batches of samples
M samples were collected from the training set D,
{x(m)}, 1 ≤ m ≤ M;
M samples were collected from the distribution
N (0, I ), {z(m)}, 1 ≤ m ≤ M;
Update φ up using a random gradient where the
gradient is ∂

∂φ

[
1
M

∑M
m=1

(
logD(x(m);φ) + log

(
1 −

D
(
G(x(m); θ );φ)

))]
;

end for
// Training generative network G(z; θ )
M samples were collected from the distribution N (0, I ),
{z(m)}, 1 ≤ m ≤ M;
Update φ up using a random gradient where the gradient
is ∂

∂θ

[
1
M

∑M
m=1D(G(z

(m)
; θ ), φ)

]
;

end for
Output: Generative network G(z; θ )

II. PROBLEM FORMULATION
Since the formula of the LIDAR return signals of the Mie
scattering lidar is relatively complex, in order to solve the
parameters such as the aerosol extinction coefficient, the
traditional extinction coefficient inversion algorithm needs
to propose some assumptions to simplify the principle for-
mula, which makes the algorithm less accurate. For example,
the Collis slope method assumes that the extinction coeffi-
cient and backscattering sparsity are constant values at the
same height. The Fernald integral method considers both the
extinction coefficient and backscattering coefficient contri-
butions of aerosols and atmospheric molecules by assuming
the extinction-backscattering ratio of molecules and aerosols.
Then, the boundary value of the extinction coefficient of the
molecule is obtained from the atmospheric model. There-
fore, as long as the boundary value of the aerosol extinc-
tion coefficient at the reference distance is obtained on the
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FIGURE 1. The generative adversarial network architecture to generate the extinction
coefficient matrix, where the output of the discriminator network is B.

FIGURE 2. The proposed unsupervised generative adversarial networks. k is the size of the convolution
kernel and s is the step size.

FIGURE 3. The proposed fast reconstruction deep network.

detection path, the extinction coefficient at any distance on
the detection path can be defined as Eq.1 and Eq.2, shown at
the bottom of the next page.
where αa(r) denote the aerosol extinction coefficient at dis-
tance r , αm(r) denote the atmospheric molecular extinction
coefficient, βa(r) denote the aerosol backscattering coef-
ficient, βm(r) denote the atmospheric molecular backscat-
tering coefficient [12]. P is the return signals received by
the LIDAR, rc denotes the reference distance. For 532nm
wavelengths, Sa =

αa(r)
βa(r)
= 50. The extinction backscattering

ratio of atmospheric molecules is given by Sm =
αm(r)
βm(r)
=

85
3

[13]. However, the application of this method in the real-time

inversion of aerosol concentration distribution needs to face
two challenges. First of all, the method artificially introduces
prior information, so the extinction coefficient obtained is
not accurate. Secondly, the time complexity of the method
is high, which makes the inversion time too long.

Unlike the representations in above Eqs, if we represent the
relationship between return signals and extinction coefficient
simply as the mapping G shown in Eq.3:

A = G(P), A ∈ Rij, P ∈ Rkl (3)

where, A means the discretized distrubution of αa(r), and P
means the discretized distrubution of P(r); (i, j) and (k, l)
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mean sizes of A and P. Obviously, an end-to-end deep
neural network framework can be built to achieve real-time
accurate inversion of aerosol extinction coefficients through
supervised learning based on the dataset D = (Pn,An)Nn=1.
If we consider improving the reconstruction speed of

aerosol concentration through sparse sampling, then Eq.3 can
be further expressed as Eq.4:

Ã = GM(Ps), Ã ∈ Rij, Ps ∈ Rk ′l′ (4)

where, Ã is the estimate ofA,M(Ps) = P̃, P̃ is the estimate of
P, the Ps means the discretized sparse sampling distrubution
of P(r), and (k ′, l ′) mean sizes of Ps. Clearly, the network
G obtained through supervised learning on dataset D cannot
be directly applied to the mapping from Ps to A, because Ps
and P has significant differences in feature distribution, that
is p(Ps) ̸= p(P). So, a key issue that needs to be addressed is,
how to construct a mappingM in the form of a deep neural
network based on the dataset D.

III. MODEL
A feasible solution to the problem of constructing a deep
network M raised in section II is to use transfer learning
methods to eliminate the differences between p(Ps) and p(P).
In this work, we attempt to construct a Generative Adversarial
Network using unsupervised learning methods, where the
generator network can generate echo signal matrix with the
same probability distribution as P based on the sparse sam-
pled return signal matrix Ps. Due to the rich dense sampling
return signal matrix P and extinction coefficient matrix A
obtained from Eq.1 and Eq.2 in the early research on LIDAR,
we can conveniently construct the dataset D = (Pn,An)Nn=1.
Based on the return singal matrix P constructed by the gen-
eration network M, we can further use supervised learning
to construct a deep network G on the basis of dataset D, and
then achieve end-to-end reconstruction from sparse sampling
return signal matrix Ps to extinction coefficient matrixA. The
structure of the GAN can be given as Fig.1.

In this paper, deep learning technology is introduced. The
proposed network is based on GAN(Generative Adversarial
Network), as shown in Fig. 2., using a total of six reconstruc-
tion modules, adopting a ‘‘step by step’’ strategy to gradually
reconstruct the sparse sampling data, and finally obtaining
high-quality reconstruction data under the superposition of
multiple modules. Here we use pseudocode to show the
steps of GAN implementation. The reconstruction structure
is modularized, and the balance between data accuracy and

reconstruction time can be sought by changing the number of
modules. The reconstruction module is an encoder-decoder
structure, which mainly consists of two convolution, two
deconvolution, residual structure and Skip-connection, and
the activation function is Relu(Rectified Linear Unit), which
can improve the nonlinear fitting ability of the neural network
and thus increase the expression ability of the model. The
sparsely sampled data are first encoded by two convolutions,
which are operated with 32 convolution kernels of size 3*3
with a step size of one. Then, a deconvolution of 32 convolu-
tion kernels with size 3*3 and step size 1 and a deconvolution
of 1 convolution kernel with size 3*3 and step size 1 were
used for decoding, respectively. Skip-connection is used to
combine low-level high-resolution features with high-level
semantics to ensure the details of the reconstructed data.
Then, the number of feature channels is unified by convo-
lution with convolution kernel size of 1*1 and step size of 1.
At the end of the reconstructionmodule, the residual structure
was used to add the input and the learned residual bitwise
to prevent the explosion and disappearance of the network
gradient. Finally, the upsampling function was used to map
the reconstructed data into a high-dimensional space.

The corresponding discriminator contains six convolu-
tional layers with 64, 64, 128, 128, 256 and 256 convolution
kernels, respectively. The size of the convolution kernel is
3*3, the step size is 1, and the ‘SAME’ convolution is used,
and the activation function is Relu. This is followed by two
fully connected layers with 1024 and 1 neurons, respectively.

An end-to-end deep neural network framework is proposed
to achieve real-time accurate inversion of aerosol extinc-
tion coefficients under sparse sampling. Specifically, given a
training setD = (xn, yn)Nn=1, where x

n represents the intensity
of the LIDAR return signals in the sparse observation area,
and yn represents the high-dimensional extinction coefficient
of the observation area. The proposed network first uses
the bicubic interpolation method to increase the dimension
of xn to the desired dimension (that is, consistent with yn),
which is still recorded as xn. Then, through the encoder-
decoder structure, the intensity of the LIDAR return signals
is reconstructed as the aerosol extinction coefficient. The loss
function in this process can be defined as:

R(θ) =
1
N

N∑
n=1

L
(
yn, f

(
xn; θ

))
+ λ1l1(θ )+ λ2l2(θ ) (5)

αa(r) = −
Sa
Sm
· αm(r)+

P(r)r2 · exp
[
2
(
Sa
Sm
− 1

) ∫ rc
r αm

(
r ′
)
dr ′
]

P(rc)r2

αa(rc)+
Sa
Sm

αm(rc)
+ 2

∫ rc
r P (r ′) r2 exp

[
2
(
Sa
Sm
− 1

) ∫ rc
r αm (r ′′) dr ′′

]
dr ′

(1)

αa(r) = −
Sa
Sm
· αm(r)+

P(r)r2 · exp
[
−2

(
Sa
Sm
− 1

) ∫ r
cc

αm(r ′)dr ′
]

P(rc)r2

αa(rc)+
Sa
m αm(rc)

− 2
∫ r
rc
P(r ′)r2 exp

[
−2

(
Sa
Sm
− 1

) ∫ r
rc

αm(r ′′)dr ′′
]
dr ′

(2)
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FIGURE 4. Schematic diagram of the measurement point position.

TABLE 1. Performance comparison.

FIGURE 5. The LIDAR.

where l1 and l2 represent the regularization term of the l1
norm and the regularization term of the l2 norm, respectively.
Therefore, the optimization goal of the proposed network is:

θ∗ = argminR(θ) (6)

In order to realize the real-time inversion of the aerosol
extinction coefficient, this paper attempts to use the LIDAR
return signals under sparse sampling to reduce the sampling
time and speed up the inversion of the aerosol extinction

FIGURE 6. The thermal power plant.

coefficient. Due to the sparsely sampled data, in order to
increase the spatial resolution of the aerosol extinction coef-
ficient, we use bicubic interpolation to increase the spatial
resolution of the input LIDAR return signals to the required
size before feeding it into the designed network structure.
This method reduces the number of lidar sampling, and then
reduces the required inversion time. The adopted network
structure is shown in Fig. 3.
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FIGURE 7. The loss change curve of the training phase.

TABLE 2. Comparison of algorithm performance under different sampling
rates.

The network adopts the classic Encoder-Decoder struc-
ture [15], which increases the accuracy of aerosol extinc-
tion coefficient by combining high resolution features with
low resolution features. This paper adopts the idea of Pre-
upsampling, i.e., the resoulution of the input is firstly
increased to the target resolution using the bicubic method,
and then input into the network to calculate the aerosol
extinction coefficient.

The feature extractor we used adopts an alternating struc-
ture of two convolutional layers and one pooling layer.
Our network can accommodate any size of input images.
Here we take an image with a size of 256 × 256 × 3 for
example. Assuming that the size of the input images X is
256 × 256 × 3, the sizes of the three-level features from low
to high are: X1 : 256 × 256 × 64; X2 : 128 × 128 × 128;
X3 : 64 × 64 × 256. The network extracts features layer by
layer. X3 will be the input of the deconvolutional layers, and
then the feature fusion module combines the output of the
deconvolutional layers with the feature X2, and then repeat
the operation in turn. This kind of skip-connection joins
the features of different levels together with complementary
information and therefore improves the accuracy.

IV. EXPERIMENTS AND COMPARATIVE ANALYSES
We first briefly describe the relevant experimental Settings
and then present the experimental results.

A. EXPERIMENTAL DATASET
The experimental address is located near Silihe Thermal
Power Plant, Luyang District, Hefei City (31.90566418◦N,
117.23774834◦E), as shown in Fig. 4, and the 15th floor
of the side household of China Railway International City

(Guangyuan) is rented. The LIDAR sends pulse beam to the
smoke of the thermal power plant for scanning test, as shown
in Fig. 5 and Fig. 6. It is expected to use the smoke aerosol
laser backscattering signal to obtain the chimney smoke
profile and spatial intensity distribution, and the LIDARmea-
surement point position is shown in Fig. 4. We first scanned
horizontally, then lifted vertically at a fixed angle and then
scanned horizontally. The horizontal angle ranged from−20◦

to 20◦ and the vertical angle ranged from 5◦ to 15◦. We use
this dataset to evaluate our proposed network and compare
it with existing methods. We set the ratio of the training set,
validation set, and testing set as 8:1:1.

B. EXPERIMENTAL ENVIRONMENT
All of the experiments are executed on a computer with
NVIDIA GeForce RTX 3090 GPU. The network is imple-
mented by PyTorch. In the training process, we utilize autoen-
coder to get initial parameters and use a stochastic gradient
descent scheme with a batch size of 64 samples, the momen-
tum is 0.9, the weight decay is 0.0005, the initial learning rate
is 0.01. The loss change curve of the proposed unsupervised
generative adversarial networks are shown in Fig. 7.

C. EVALUATION METRICS
In this paper, structural similarity index (SSIM) and signal-
to-noise ratio (SNR) were used to evaluate the performance
of the proposed method.

SSIM is a metric to measure the similarity of two
structures, which can usually be described as:

SSIM
(
I com, IG

)
=

(
2µI comµIG + C1

) (
2σI comIG + C2

)(
µ2
I com + µ2

IG + C1

) (
σ 2
I com + σ 2

IG + C2

) (7)

where, µI com is the average value of I com, µIG is the average
value of IG, σ 2

I com is the variance of I com, σ 2
IG is the variance

of IG, and σI comIG is the covariance of I com and IG. C1 =

(k1L)2 and C2 = (k2L)2 are constants used to maintain
stability, L is the dynamic range, k1 = 0.01, k2 = 0.03. The
range of SSIM is −1 to 1. When the two structures are the
same, the value of SSIM is equal to 1.

PSNR is often used as an evaluation method for signal
reconstruction. A higher PSNR indicates that the generated
data has a higher quality. It can also be defined by MSE:

PSNR(I com, IG) = 10 · log10

(
MAX2

I

MSE(I com, IG)

)
(8)

where, MAXI represents the maximum possible value of the
data.

D. COMPARATIVE EXPERIMENT
In this section, we compare the performance of the proposed
network with some existing deep learning-based methods
and commonly used interpolation-based methods, includ-
ing EDSR(enhanced deep super-resolution network) [16],
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FIGURE 8. Visualization of the spatial distribution of aerosols.

RCAN(residual channel attention networks) [17], nearest-
neighbor interpolation, bilinear interpolation and bicubic
interpolation. The interpolation-based method means that the
sparse aerosol extinction coefficient is first calculated using
the traditional algorithm, i.e. Fernald integral method, and
then the interpolation method is used to increase its spatial
resolution.

We use three days of LIDAR data from December 16,
2021 to December 18, 2021 for our experiments. The exper-
imental results are shown in Table 1. It can be seen that
the proposed network outperforms the other methods on
all three days of data. The algorithm proposed in this
paper firstly uses GAN-based network to gradually recon-
struct sparse sampled data to improve the quality of sparse
sampled data, and then uses end-to-end fast reconstruction
network to invert aerosol extinction coefficient. Therefore,
the performance of the algorithm is superior to existing
deep learning algorithms. Compare to the interpolation-based
algorithm only considering the data relationship between
adjacent points to increase the spatial resolution of the aerosol
extinction coefficient, the proposed network first maps the
sparse LIDAR return signals Ps into the high-dimensional
space, i.e. P̃, and then establishes the mapping relationship
with the high-resolution aerosol extinction coefficient dis-
tribution Ã through the deep neural network, so that the
aerosol extinction coefficient can be calculated more accu-
rately. In this paper, we use the method based on deep learn-
ing to realize the real-time inversion of aerosol extinction
coefficient.

E. ROBUSTNESS EVALUATION
In this section, we test the performance of the proposed
network at different sampling rates, that is, how sparse the
data can be and how much sampling time can be reduced.
We use the LIDAR data on December 16, 2021 for our exper-
iments. The experimental results are shown in Table 2. It can
be seen that the proposed network can accurately calculate
the aerosol extinction coefficient when the sampling rate is
1/4. When the sampling rate is 1/16, the performance of the
algorithm is greatly reduced, but the inversion accuracy is
still maintained. However, when the sampling rate is 1/64, the
algorithm has been difficult to accurately calculate the aerosol
extinction coefficient. It can be concluded that the algorithm
can achieve a trade-off between computational accuracy and
reconstruction time when only a quarter of the data is sam-
pled, which means that the measurement speed based on our
proposed end-to-end method is 4 times that of the traditional
measurement method in theory.

F. VISUALIZATION RESULT
Taking the sampling rate 1/4 of the original measurement
data as an example, we also give some visualization results in
Fig. 8, where (a) represents the aerosol extinction coefficient
map calculated directly from the sparsely sampled data using
the traditional algorithm, while (b) represents the output of
the proposed network. Based on the distance between the
edge of the target region and the LIDAR (measured by the
map Fig. 4), we can effectively evaluate the performance
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FIGURE 9. Visualization of vertical slices of aerosols.

of the proposed method. Fig. 4 shows that the distance
between LIDAR and the central point of the target region
is 1.3km, which is close to the center of the target area
shown in Fig. 8 (b) (the distance from center position to
LIDAR is 1.1km - 1.2km, the deviation is less than 20). This
result proves that the proposed neural network reconstruc-
tion method has advantages in Sparse Inversion of Aerosol
Concentration Distribution based on LIDAR.

In addition, we visualize part of the results for different
slices of one scan cycle as shown in Fig. 9. It can be seen
that the proposed algorithm can use sparse sampling data
to achieve more detailed and accurate aerosol concentration
inversion.

V. CONCLUSION
In this work, we propose an End-to-end deep sparse recon-
struction framework for aerosol LIDAR remote sensing fast
measurement. This framework first map LIDAR return sig-
nals under sparse sampling into a high-dimensional space to
realize the high-dimensional feature representation learning
of LIDAR return signals, and then this feature with high infor-
mation density can be reconstructed as an accurate aerosol
extinction coefficient distribution. In this way, we can greatly
reduce the number of LIDAR samples and thus reduce the

measurement time. To verify the effectiveness of the End-to-
end method, the experiments based onMie scattering LIDAR
was carried out. The results show that the accuracy of the
proposed sparse reconstruction method is similar to that of
the reconstructionmethodwith full sampling, which indicates
that the proposed method has the potential to improve the
efficiency of aerosol LIDAR remote sensing measurement.
In the future work, we will further improve the mechanical
structure of LIDAR to adapt to the sparse reconstruction
framework, and conduct on-line rapid remote sensing tests
on the improved fast LIDAR.
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