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ABSTRACT With the recent development of artificial intelligence (AI), efforts to apply related technologies
to various fields are rapidly increasing. In the field of cryptanalysis, research utilizing deep learning is
continuously being published in order to keep up with this trend. Side-channel analysis is a a type of
cryptanalysis that uses physical information and can be classified into profiling and nonprofiling analyses.
Nonprofiling attacks using deep learning take advantage of the fact that training is performed relatively well
when the right key is compared to the wrong key. Masking countermeasures are applied to design a secure
cipher against side-channel analysis. The traditional second-order attack for analyzingmasked ciphers is used
by preprocessing the side channel information to remove the mask value. However, deep learning has the
advantage of being able to omit this process. Related works proposed so far attempted to analyze the masked
cipher, but focused only on 1-byte analysis using the masking information itself. In reality, grasping the time-
points, in which only the masking information is revealed, is difficult and far from the secret key analysis
area. In this study, we attempt to analyze the case of combining masked 2-byte information, not only using
the masking information.We also propose a neural network design scheme to performmore effective attacks.
The proposed method highlights the relative difference between the right and wrong keys. Previous research
on analysis evaluation criteria has been lacking. Therefore, we propose herein new evaluation metrics that
can be easily used and demonstrate their validity using simulation and actually collected data. As a result
of the experiment, the proposed methods based on the loss metric improved by approximately 228.59% in
the simulation dataset and 739.46% in the real dataset compared to the binary labeling. And it reduced the
minimum number of analytical traces by approximately 78.95% and 72.5%, respectively.

INDEX TERMS Side-channel analysis, deep-learning, nonprofiling attack, masked block cipher, second-
order analysis.

I. INTRODUCTION
Side-channel analysis (SCA) is a technique that analyzes
secret values using additional physical information such as
power consumption and electromagnetic emissions generated
when algorithms operate in cryptographic devices [1]. The
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SCA is classified into profiling (P-SCA) and nonprofiling
analyses (NP-SCA) according to the analysis environment
and the attacker’s assumption. The P-SCA is a method of
generating a profile based on the side-channel information
obtained in advance from devices in the same environment
as the target and analyzing the secret values by matching
them with the side-channel information acquired from the
target device. A representative P-SCA includes a template
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attack (TA) [2]. Meanwhile, the NP-SCA is a method of
repeatedly performing the encryption of random plaintexts
on a target device that operates as a fixed key and analyzing
the secret values through the statistical relation between the
side-channel information and the intermediate values. The
representative NP-SCA includes differential power analysis
(DPA) [3] and correlation power analysis (CPA) [4].

Deep learning (DL) is a kind of machine learning that is
an important field in the Fourth Industrial Revolution. It is
used in a wide range of fields, including image and voice
recognition and natural language processing. Studies on the
application of DL are being continued in the cryptanalysis
field (e.g., SCA). The DL-based SCA is classified into pro-
filing and nonprofiling, with active research being conducted
on this topic. The DL-based P-SCA is a method that allows
an artificial neural network (ANN) to predict the secret key
related to the target traces after generating DL-based profiles
by learning the side-channel information according to the
secret keys [5], [6], [7], [8]. Meanwhile, the DL-based NP-
SCA is a method that takes advantage of the characteristic
of the correct key having a relatively better learning perfor-
mance (accuracy, loss, etc.) when learning associations with
all key candidates for the target traces [9].

Hiding and masking techniques are studied as counter-
measures to prevent the SCA [10], [11], [12]. The hiding
technique increases the SCA complexity by randomizing the
operation time through dummy operations and shuffling tech-
niques, among others. Themasking technique randomizes the
intermediate value to eliminate the relationship between the
side-channel information and the intermediate value, mak-
ing it statistically independent. Masked ciphers cannot be
key-guessed with traditional statistical analysis.

Second-order SCA (SOSCA) is a technique that attacks
masking countermeasures by generating statistical relation-
ships with intermediate values through the preprocessing of
the side-channel information of two-time points using the
samemask value [13], [14]. This means that the attacker must
explore and preprocess sensitive points in the trace. The DL
is one of the important technologies that can alleviate these
challenges. The SOSCA is divided into two approaches. It is
classified according to whether the side-channel information
for the mask value is leaked. The mask leakage-free environ-
ments have a wide key search area, making analysis difficult.

Unlike the traditional SOSCA, the DL has the advan-
tage of not requiring preprocessing because it can learn the
side-channel information related to the combination of 2-
byte of secret keys. The DL-based SCA on cryptographic
algorithm-applied countermeasures is steadily being stud-
ied, but research on the NP-SCA compared to the P-SCA
is lacking. In the case of the previously studied DL-based
NP-SCA, research mainly focused on guessing 1-byte by
targeting the mask value and the masked intermediate value
[9], [15], [16], [17], [18]. This is mainly because the ASCAD
dataset [19] is used for verification. From a realistic point
of view, however, the timing of the mask value gener-
ation is often far from the actual sensitive side-channel

leakage timing, and the collected data often do not include
it. We define the above environment as a mask leakage-free
environment. In this environment, learning about a combina-
tion of two bytes is required, which is a different problem than
previous studies. Therefore, we will conduct herein a DL-
based second-order NP-SCA (SONP-SCA) study in realistic
environments requiring a combination of 2-byte of secret
keys. Unlike previous studies, there are no open datasets
of mask leakage-free environments that can be compared.
Therefore, we show the results on simulation traces and
directly collected traces. In previous studies onDL-basedNP-
SCA, various methods for performance improvement have
been proposed. However, there are difficulties in determining
hyperparameters due to the diversity of neural networks and
targets in this field. To mitigate these challenges, we explore
methods to maximize the concept of DL-based NP-SCA to
show meaningful performance while using the basic hyper-
parameters.

The primary contributions of this study are as follows:

• Conducting DL-based SONP-SCA intensive study in
a mask-free environment.
We investigated more realistic environments (e.g., anal-
ysis of two nearing bytes containing the same mask
value), which was not addressed in the previous studies.
Through this, we show the advantage of a DL-based
analysis using the side-channel information as it is with-
out preprocessing.

• Proposal and validation of methods to maximize
attack mechanisms of DL-based NP-SCA.
We proposed a broadcast output DNN utilizing broad-
cast operation and the usage of a stretch sigmoid as the
last layer activation function. This showed the effect of
maximizing the difference when observing the learning
index of the right and wrong keys. We demonstrated
that our proposed technique is effective by analyzing
the simulation traces generated based on the HW of the
intermediate value, and the power traces of the masked
AES collected from the Chipwhisperer-Lite capture
board [20].

• Suggestion of new performance evaluation metrics
for the DL-based NP-SCA.
Considering the lack of research on the analytical criteria
for the NP-SCA in previous studies, we propose herein
new metrics using outlier search techniques. We also
prove the effectiveness of the proposed methods based
on the proposed metrics.

Section II begins with descriptions of DL, SOSCA, and
boxplot and introduces the concept of the DL-basedNP-SCA.
Section III describes the attacker’s assumption that performs
the DL-based NP-SCA and proposes an attack performance
improvement method. Section IV proposes a new lightweight
evaluation metric by applying a method to detect outliers
in the quartiles. Section V-A1 demonstrates the validity of
this work through experiments on simulation and actually
collected traces. Section VI describes the limitations and
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FIGURE 1. Example of the MLP.

scalability of this study. Finally, Section VII presents the
conclusion and future works.

II. BACKGROUNDS
A. DEEP LEARNING
DL means performing ML using ANNs with multiple layers.
It is also called deep structured and hierarchical learning.
In traditional ML, researchers must analyze and determine
which characteristics would be extracted from among the
various target data characteristics. In DL, the difference is
that machines automatically extract the features they want
to learn. An ANN is a statistical learning algorithm that
implements biological neural networks in computer science.
It can be classified into multi-layer perceptron (MLP), convo-
lutional neural network (CNN), and recursive neural network
(RNN) according to the form. New mechanisms of neural
network structures, such as attention, are steadily studied.
DL can be divided into regression and classification problems
depending on the type of value to be predicted. In regression,
the result value has continuity by predicting through real
number variables. Classification is a problem in which the
target values are categorical and have discrete rather than
continuous values.

The MLP used in this work is a feed-forward neural net-
work, in which perceptrons are connected in multiple layers
(Figure 1). It consists of an input layer, hidden layers, and an
output layer, and is a fully-connected structure in which each
perceptron of the current layer is connected to all perceptrons
of the next layer. Supervised learning is performed while cal-
culating the loss value through the real and predicted output,
and updating the ANNweight (W ). The layer output (Out) of
the MLP is calculated through the inner product of the weight
(W = [w1, . . . ,wn]) and input vectors (X = [x1, . . . , xn]),
addition with bias (b), and activation function (f ) as follows:

Out = f (w1x1 + w2x2 + . . .+ wnxn + b) (1)

Nonlinear functions like tanh, sigmoid, ReLU, and softmax
are used as activation functions in DL construction.

FIGURE 2. Masking values for each layer of the AES boolean masking
design.

B. SECOND-ORDER SIDE-CHANNEL ANALYSIS
Maskingwas proposed to safely design encryption algorithms
from SCAs (e.g., CPA). This technique removes the relation-
ship with the side-channel information by hiding sensitive
intermediate values as mask values [11]. Figure 2 depicts
a typical AES boolean masking design and the mask val-
ues for each layer. The SOCPA is a method for analyzing
masked ciphers. When performing it, multiple points of the
side-channel information with the same mask value are pre-
processed to generate information related to the intermediate
value in which the mask value has been removed. The sen-
sitive time-points can be determined through a simple power
analysis (SPA). A common preprocess technique is the abso-
lute difference (AD) combining function proposed in [13].
When two different point sets at which each length of the
side-channel information is x, y are defined as (tx , ty), the AD
for all (x, y) pairs is calculated as follows:

AD(tx , ty) = |tx − ty|,∀(x, y) (2)

Two main approaches can be used to perform the SOCPA.
The first approach targets the mask value (M ) and the masked
S-Box (S(pi ⊕ ki) ⊕ M ). Only 1-byte is targeted; hence, the
candidate keys are treated in {0, 1}8. However, the timing of
loading or generating the mask value must be included in the
target information, which is a problem. The second approach
considers two distinct masked S-Boxes, namely, S(pi⊕ ki)⊕
M and S(pj ⊕ kj)⊕M with i ̸= j. In this case, the candidate
keys are handled within {0, 1}16 as a guess for 2-byte, which
takes a relatively long analysis time. This is a more realistic
approach because the two point sets are close, making it easy
to search for the sensitive area. In addition, themask value can
be utilized even when the mask generative area is excluded.
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FIGURE 3. Overall process of the DL-based NP-SCA when analyzing a
1-byte key.

C. DIFFERENTIAL DEEP LEARNING ANALYSIS
The DL-based NP-SCA was proposed by Timon in
2019 under the name of differential deep learning analysis
(DDLA) [9]. The attack process is explained in two phases as
follows:
• Phase 1: Training by candidate key
In this phase, the side-channel information is collected
when encrypting random plaintexts on cryptographic
devices that use fixed secret keys. Training according to
each guess key is repeated for the input data after setting
labels (e.g., LSB, MSB, HW, etc.) for the intermediate
value of the target operation (e.g., S-Box output).

• Phase 2: Results analysis
In this phase, the attacker compares the performance
(e.g., accuracy, loss, etc.) for each training after the
training of all guess keys is completed. The right key
is relatively good at predicting labels compared to the
wrong ones, resulting in high accuracy and low loss.

Figure 3 shows the DL-based NP-SCA process when ana-
lyzing a 1-byte key. When performing the NP-SCA, Timon
stated that identity (ID) labeling is unsuitable because the
learning levels of the guess keys become equivalent when
using ID labels. He performed the attack by adopting the
LSB, MSB, and HW models of the AES S-Box output as
labels, consequently proving that binary labeling (i.e., LSB
or MSB) has a better performance than HW labeling. Later
studies also performed the DL-based NP-SCA using MSB
or LSB labeling on the AES [15], [16], [17], [18]. All
these previous studies investigated the second-order analysis,
but aimed only at 1-byte analysis using the mask values.
A study suggested using binary encoding (BE) labeling on
bit-sliced block cipher [21]. This has the advantage of deriv-
ing generalization performance while utilizing the advantage
of binary labeling even for commonly implemented ciphers.
Table 1. compares previous studies described above. Most
of them target the ASCAD dataset and analyze the environ-
ment described in the first approach. These also show that
labeling, which was used mostly in the past, is being used.
We emphasize that the proposed attack was conducted in a
more realistic environment by applying the second approach
that was not targeted in previous studies. Ref. [15] presented

TABLE 1. Comparison with previous studies.

evaluationmetrics using reliability; however, showing relativ-
ity is limited because the learning index for the wrong keys
may also exceed the standard.Meanwhile, Ref. [17] proposed
evaluation metrics using the normalized maximum margin
(NMM). It requires a normalized margin calculation accord-
ing to all key candidates and epochs. We believe that a study
on lightweight evaluation metrics was needed because we
performed a 2-byte estimation here. Therefore, we propose
evaluation metrics that can accurately and easily determine
the right key.

D. QUARTILE & OUTLIER
The boxplot is a data visualization method that can easily
compare different data groups while simultaneously showing
the data distribution and outliers. It does not use raw data as
they are, but processes and visualizes them with a statistical
concept called a five-number summary. During this time, the
concept of quartile and outlier is used. As shown in Figure 4,
the data were divided into five points: maximum (Max),
upper quartile (Q3), median (Q2), Lower quartile (Q1), and
minimum (Min). The Q1, Q2, and Q3 meant the data at 25%,
50%, and 75% locations when the entire data were sorted
in ascending order. The quartile is widely used as a method
of searching for outliers for univariate data. The difference
between Q3 and Q1 is defined as the IQR, and the outliers
are defined as follows:

(x < Q1− 1.5 · IQR) ∨ (x > Q3+ 1.5 · IQR)

←→ x =def Outlier (3)

As an evaluation of the DL-based NP-SCA, a method of
searching for outliers using quartiles was proposed here. The
evaluation method will be described in detail in Section III-B.

III. PROPOSED DNN STRUCTURES IN SONP-SCA
This section describes the attacker’s assumptions and attack
targets prior to performing the DL-based SONP-SCA.
We also propose performance improvement methods, DNN
structure, and new criteria for the performance evaluation.
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FIGURE 4. Five-number summary in the boxplot.

A. ATTACKER’s ASSUMPTION
The attacker of the nonprofiling attack can collect the
side-channel information emitted when a cryptographic
device that uses a fixed secret key operates. During this
time, the attacker can input random plaintexts into the device.
In the traditional SOCPA, two sensitive time-points are iden-
tified by first performing the SPA, and then preprocessing
the traces. Considering the advantages of DL-based attacks,
we assumed an environment where it is difficult for the
attacker to apply the SPA. That is, when performing an attack,
part of the collected traces is used without preprocessing.
We considered a more realistic target that does not include the
times for generating and using the masking information or is
far from the analysis area. Therefore, an attacker must search
for a key candidate of {0, 1}16 with S(pi⊕ki)⊕S(pj⊕kj), i ̸= j
as the label to succeed in the attack.

B. PROPOSED METHODS
Our proposed method focused on maximizing the relative
difference in learning metrics when learning with the right
and wrong keys.

1) BROADCAST OUTPUT DNN
When performing operations between a multi-dimensional
vector (v = (v0, . . . , vk )) and a uni-dimensional vector (w),
broadcast is defined as operations between scalar w and each
element of v as follows:

(w) ⊙ (v0, v1, . . . , vk ) = (w⊙ v0,w⊙ v1, . . . ,w⊙ vk )
(4)

We define the broadcast output DNN (BO-DNN) herein as
a mechanism for predicting the DNN output to a single
value when training multi-dimensional labels. Previous stud-
ies proved that using binary labels is more effective than
using HW labels when performing the DL-based NP-SCA.
We used the BE for the HW as a label to integrally take
advantage of the information of each bit because the training
performance was different for each bit. BE is an encoding
method in which a binary representation of the corresponding
value is constructed as a vector as follows:

Y = (y0y1 . . . y7)2 −→ Ylabel = (y0, y1, . . . , y7) (5)

We also considered the NP-SCA as a regression problem and
adopted sigmoid as the activation function of the output node.

FIGURE 5. Overall structure of the BO-DNN.

We used the mean squared error (MSE) as the loss function.
Figure 5 depicts the final constructed DNN.

In the proposed BO-DNN, eight-dimensional labels are
learned as one average value. The average of each calculation
result between each element of the eight-dimensional label
and the uni-dimensional output of the DNN is returned when
computing accuracy and loss. Binary accuracy is particularly
used for accuracy. 0 or 1 is judged according to rounding. The
binary accuracy is determined by 0.125× (# of correct bits)
for one trace. The average for the total number of traces is
then calculated. The BO-DNN learns the average value of
the labels. Therefore, if the HW of the intermediate values
is greater than 4, it is more likely to return 0.5 or higher.
Conversely, less than 4 is more likely to return an output of
less than 0.5. 4 0.5. If the HW is large, 1 is judged as the
correct bit. By contrast, if the HW is small, 0 is determined
as the correct bit. That is, when there are many specific
bit values, the corresponding bits are all determined as the
correct label. Hence, a high weight is given to the accuracy if
it is a definite key. The previous explanation is expressed as
Equation 6 where n(= a+ b+ . . .+ i) is the total number of
training traces, and {a, b, . . . , i} denotes the number of cases
with the HW of 0, 1, . . . , and 8, respectively. When m ∈
{a, . . . , i}, m′ is defined as the number of correct predictions
among the results of learning m times.

Binary_Accuracy =
S
n
,

S = a′ + (b′(
7
8
)+ (b− b′)(

1
8
))+ (c′(

6
8
)+ (c− c′)(

2
8
))+

(d ′(
5
8
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FIGURE 6. Sigmoid graphs according to the stretch coefficient.

Compared to that when learning with the wrong key, m′

increases and (m − m′) decreases when training with the
right key. In this case, the constants associated with m′ are
a value greater than 4

8 , and the average accuracy increases.
Conversely, when learning with the wrong key, (m − m′)
increases, such that constants less than 4

8 are multiplied,
which has a relatively low average accuracy. The BO-DNN
can maximize the relative difference between the right and
wrong keys by increasing the training metric values of the
right key and decreasing those of the wrong keys. Dimension
of the output layer of the BO-DNN is 1, such as binary
and HW labeling. The overhead generated in DNN learning
occurs only in loss and accuracy calculation between Ypred
and Ytrue. This has a relatively small time complexity com-
pared to the feed-forward operation of the DNN, so it does
not significantly affect the analysis time.

2) STRETCH SIGMOID
BE for the intermediate values was employed as the labels.
Therefore, sigmoid was used as an active function of the
output layer as a regression problem. We propose the stretch
sigmoid as a method of maximizing the difference between
the output values for the right and wrong keys. The stretch
sigmoid was multiplied by the sigmoid input and the stretch
coefficient (α) as follows:

sigmoidstretch(x, α) =
1

1+ e−αx (7)

Depending on the α, the graph changes to a stretched form
as shown in Figure 6. As α decreases, the ratio between
the cases, where the differences in training results are large
and small, increases. When Okey is the output of the stretch
sigmoid as a result of training with the candidate keys, the
ratio of difference is defined as follows:

Ratiodifference =
Oright − Owrong1
Owrong1 − Owrong2

(8)

Figure 7 shows the change in the ratio of difference accord-
ing to the decrease in α when Oright = 0.53,Owrong1 =
0.505, and Owrong2 = 0.5. Regardless of the size of Okey,
if the right key deviates from the wrong key distribution,

FIGURE 7. Relative difference between the right and wrong keys
according to the stretch coefficient of the sigmoid.

it will have an upward-sloping shape as shown in Figure 7.
Thus, through the change in α, we can maximize the relative
difference between the right and wrong keys in the NP-SCA.

IV. PROPOSED EVALUATION METRICS
We proposed the NP-SCA evaluation metrics using an outlier
search method using quartiles. As mentioned in Section II-D,
x satisfying Equation 3 were judged as outliers. The outlier
coefficient is defined as 1.5, and if it is greater than 3,
it is defined as a strong outlier. When analyzing the training
metrics, the right key in the DL-based NP-SCA showed rel-
atively good performance, whereas the wrong keys formed
a dense distribution. Accordingly, the attack performance
was evaluated by considering the right key metrics as an
outlier. Through the experiments, we confirmed that even the
basic coefficient of 1.5 can sufficiently filter the correct key
candidates. Equation 9 represents the criterion for the right
key determination. The upper-limit outlier is defined herein as
the criterion for determining the accuracy, and the lower-limit
outlier is defined as the criterion for determining the loss.
If multiple values are considered outliers, all of them are
considered key candidates.

Criteriaacc = Q3+ 1.5 · IQR,

Criterialoss = Q1− 1.5 · IQR (9)

If the analysis is successful, the right key will be equal toMax
of accuracy and Min of loss. Max and Min can be expressed
as quartile points and IQR as follows:

Max = Q3+ k · IQR,

Min = Q1− k · IQR, k ∈ R (10)

Based on the above equation, we proposed Ratioacc and
Ratioloss as the metrics of the DL-based NP-SCA evaluation
as follows:

Ratioacc =
Max − Q3
1.5 · IQR

,
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FIGURE 8. Basic process of the experiments.

FIGURE 9. Simulation power traces based on HW model.

FIGURE 10. Statistical SCA results for the simulation dataset.

Ratioloss =
Q1−Min
1.5 · IQR

(11)

They mean how large relative to the outlier criterion (1.5) for
the outlier coefficient k of the Max or Min value determined
by the correct guess key. Each is an evaluation metric for
accuracy and loss. The higher the two values, the clearer the
distribution of the right and wrong keys, so it can be judged as
the more efficient attack. We define the value corresponding
to the outlier coefficient 1.5 as the threshold and an example
of this can be found in Figure 13 shown in Section V-B
Experiments.

V. EXPERIMENT
This section verifies the effectiveness of the proposed meth-
ods on two datasets. Compared to the BE and LSB label-
ing, the proposed method BO-DNN exhibits performance
improvement. The LSB is the most commonly used label-
ing, and the BE has the advantage of binary labeling and
shows generalization performance, so they were selected as
a comparison target. In addition, the performance improve-
ment when using the stretch sigmoid according to the stretch

FIGURE 11. Chipwhisperer-Lite and AVR XMEGA128D4.

coefficient is shown here. Performing training on a certain
number of traces in an experiment means that all correspond-
ing traces are used for training and the verification set is
not configured separately. This is because our experiment is
the mechanism for observing relative differences in training.
The experimental process is as follows. First, an intermediate
value according to all key candidates is calculated, and deep
learning is performed by using these values as labels of
the traces. The learning indexes are compared when all key
candidates are completed. At this time, the key candidate with
the best performance is judged as the right key. Finally, the
success of the attack is confirmed by determining whether
the guessed key matches the actual key. A summary of the
experimental process is shown in Figure 8.

A. ENVIRONMENT
1) SIMULATION DATASET
First, simulation traces were generated according to the
HW model for the intermediate value. They contained the
HW information of two masked AES S-Box output bytes
(S(p1 ⊕ k1) ⊕ M , S(p2 ⊕ k2) ⊕ M ). The remaining infor-
mation comprised meaningless information. Subsequently,
noise insertion and normalization were performed. The gen-
erated simulation trace had a length of 20 (Figure 9). The
dataset consisted of 20,000 traces. The red highlight in the
figure depicts the masked sensitive point. Figure 10 shows
the results of applying the traditional CPA to the generated
simulation dataset. The AD for sections 0 to 3 and 4 to 7 point
of traces was applied when the SOCPA was performed.
We confirmed that the simulation waveform was secure for
the first-order CPA (FOCPA), and that the SOCPA must be
performed for the analysis. We also confirmed that it was
secure for the combined FOCPA (CFOCPA). The CFOCPA
is an attack using vulnerability, where 2-byte combined infor-
mation exists in the raw-data [22]. By analyzing waveforms
without this vulnerability, we show herein that the DNN
generates combined information well.

2) CHIPWHISPERER DATASET
The second target is the Chipwhisperer dataset collected
through Chipwhisperer-Lite, a capture board with a sampling
rate of 29.538 MS/s. The target board was an 8-bit MCU-
based AVR XMEGA128D4. Figure 11 illustrates the overall
configuration. The power traces were collected by operat-
ing the masked AES according to Figure 2. The analysis
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FIGURE 12. Collected Chipwhisperer dataset.

FIGURE 13. DNN structures used in the experiment. (A) Simulation
dataset, (B) Chipswhisperer dataset.

was conducted on the entire area of the SubBytes func-
tion. Figure 12 shows the collected dataset, which like the
simulation dataset, requires a 2-byte analysis. We selected
the 0th and 5th-byte combinations as the targets to perform
attacks against combinations with high robustness to vulner-
ability [22]. We confirmed that the target combination can
be analyzed only through the SOCPA and was secure for the
FOCPA and the CFOCPA.

Finally, we performed a DL analysis using the Keras plat-
form [23]. Elements other than the hyperparameters shown
in Figure 13 are in accordance with the Keras default setup,
and all experiments used Xavier initialization. The proposed
BO-DNN was constructed by utilizing the operation broad-
casting function of the tensor. We provide experimental code
examples for CW [24].

B. EXPERIMENTAL RESULTS
1) SIMULATION DATASET
We will first show here the performance improvements
according to the proposed methods for targeting the simula-
tion dataset. This experiment was conducted with the MLP

FIGURE 14. Pproposed DL-based SONP-SCA results on the simulation
dataset. (loss metrics).

FIGURE 15. Comparison of the experimental results according to labeling
in the simulation dataset.

consisting of one hidden layer (Figure 13-A). For the BE
labeling, eight nodes were used in the output layer. Figure 14
presents the loss metrics of the BO-DNN learning results.
Only the correct key exceeded the threshold. Figure 15 dis-
plays the minimum number of analysis traces according to
each labeling.

When the proposed BO-DNN was used, Ratiometric
increased compared to BE and LSB labeling. In partic-
ular, the analysis performance was better when the loss
metric was used. The analysis was successful with approx-
imately 5,000 traces. The BO-DNN also showed a positive
effect on the accuracy metric performance compared to other
labeling approaches. In other words, the DNN effectively
maximized the relative difference between the right and
wrong keys. Therefore, the proposed technique is expected
to maximize the analysis effect and fully use the accuracy
metrics.

We confirmed that the BO-DNN provides good per-
formance at small epochs. Figure 16 compares the
labeling-specific performances according to the epoch. In the
mask leakage-free environment where two bytes need to be
analyzed at once, it takes 256x more learning time. However,
in the above experiments, the BO-DNN showed overwhelm-
ing performance on 10 epochs and had approximately 3x and
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FIGURE 16. Comparison of the experimental results according to epoch
in the simulation dataset (BO-DNN).

FIGURE 17. Comparison of the experimental results according to the
stretch coefficient in the simulation dataset.

approximately 10x analysis time mitigation effects compared
to LSB and BE, respectively. Through this, we show that the
BO-DNN can be a merit in the DL-based SONP-SCA that
requires a long analytical time.

Figure 17 shows the performance improvement according
to the stretch coefficient size. This was the performance
result using 20,000 traces for the BO-DNN used in the pre-
vious experiment. The analysis performance improved as the
stretch coefficient decreased. The effect was highlighted in
the loss metrics. Therefore, we demonstrated that the use of
the stretch sigmoid was effective in maximizing the learning
difference between the wrong and right keys.

2) CHIPWHISPERER DATASET
The experimental results on the Chipwhisperer dataset will
be elaborated here. Using batch normalization was effective
when analyzing the real-world datasets. The number of hid-
den layer nodes was increased according to the increased
trace length. Figure 13-B exhibits the DNN used in the
experiment. We set the parameters based on the experimental
results on the simulation dataset. Stretch sigmoids with a
0.1 coefficient were used.Metrics of 50 epoch learning results
employed. Figure 18 shows the experimental results accord-

FIGURE 18. Comparison of the experimental results according to labeling
in the Chipwhisperer dataset.

TABLE 2. Analytical efficiency of the BO-DNN compared to the LSB
labeling.

ing to labeling. Similar to the previous experimental results,
the BO-DNN yielded the best performance. Analysis was
possible with approximately 10,000 - 15,000 traces. Using
of accuracy metrics was also possible.

3) SUMMARY OF THE EXPERIMENT RESULTS
Table 2 shows the degree of performance improvement
according to the experiment results. Compared to the LSB
labeling, which was studied a lot before, the increase rates
of Ratioloss and Ratioacc of the proposed BO-DNN were
calculated. When the Ratio does not exceed threshold, the
increase rate is calculated based on the threshold. As a result
of the experiment, the accuracy improved up to 131.01% and
the loss up to 228.59% for the simulation dataset. In case of
Chipwhisperer dataset, the accuracy improved up to 625.79%
and the loss up to 739.46%. The BO-DNN contributed to
reducing the number of traces required for analysis. For
all datasets, both accuracy and loss showed a decrease
rate of more than 60%, proving that efficient attacks were
possible.
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VI. DISSCUSION
Another important aspect of scientific research is the ability
to repeat experiments or studies in different environments and
reuse or apply results. First, this study verified the simula-
tion trace of the HW model, which is a power consumption
model mainly used in SCA. We were able to find the differ-
ence in learning degrees between the right and wrong keys
about the simulation waveform. In addition, it was verified
whether the results of the study could be identified equally
for the actual environment. In other words, this study veri-
fied not only the theoretical environment but also the actual
environment. Experiments show that although there may be
differences depending on the environment, our method can
increase efficiency with a simple DNN structure. Second,
this study targeted the most realistic attack environment. The
reason why we considered {0, 1}8 even though it is valid
in the previously studied {0, 1}16 environment is that most
of the cases do not know the location of the mask value in
the actual attack environment. The problematic part of the
{0, 1}16 environment is the DNN learning time. Although
some contributions have been made to reduce the analysis
time, learning 65,536 times is still very overhead. However,
in two-byte analysis, this is considered an inevitable problem.
We expect that the parallelization technology of deep learning
will solve this problem.

VII. CONCLUSION
This study dealt with the DL-based SONP-SCA is dealt with.
In particular. Different from previous works, we targeted a
situation in which a 2-byte estimation using the same mask
value was required.We targeted a more realistic environment,
in which the mask value is often far from the actual anal-
ysis timing, and the timing of the mask value generation is
often excluded from the collected dataset. We proposed the
usage of the BO-DNN and the stretch sigmoid as the DNN
structure and parameter tuning methods that can maximize
the difference in the learning performance between the wrong
and right keys in the DL-based NP-SCA. We also proposed
lightweight evaluation metrics for situations where more key
candidates must be predicted. In addition, we utilized the out-
lier search technique using quartiles using the characteristic
of the right key being separated from the learning distribution
of the relatively wrong key. The experiment was evaluated
through the proposed metrics. We validated not only the
simulation dataset but also the power traces that occurred
when operating on a real device. The experiment results
showed that the proposed methods improved the performance
compared to other labeling approaches (e.g., BE and LSB).
In particular, the loss metrics showed a better effect. The loss
metric improved by approximately 228.59% in the simula-
tion dataset and 739.46% in the real dataset compared to
the binary labeling. And it reduced the minimum number
of analytical traces by approximately 78.95% and 72.5%,
respectively. We also found its effect of producing a good
performance in a small epoch. One of the disadvantages
of the NP-SCA using DL is its long attack time. Effective

attacks that can be performed with only a small epoch are
expected to contribute to compensating for this shortcoming.
Although we focused on SONP-SCA, the proposed technique
is valuable because it can be sufficiently applied to the gen-
eral NP-SCA. Our future work will include a study on the
logic that can develop the proposed methods. When com-
bined with methods from previous studies, we will observe
how much the proposed methods can improve performance.
Additionally, we will conduct a systematic study on hyper-
parameter selection in DL-based NP-SCA. We will apply
this to higher-order analysis to increase the candidate key
range and determine if it can have positive effects on more
difficult problems. Finally, Studies on parallelization will be
conducted to compensate for the shortcoming of the analysis
time, which is more prominent when guessing 2-byte.
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